JPH0234906B2 - TANKAKEISOTODOTONOSETSUGOKOZO - Google Patents

TANKAKEISOTODOTONOSETSUGOKOZO

Info

Publication number
JPH0234906B2
JPH0234906B2 JP21583083A JP21583083A JPH0234906B2 JP H0234906 B2 JPH0234906 B2 JP H0234906B2 JP 21583083 A JP21583083 A JP 21583083A JP 21583083 A JP21583083 A JP 21583083A JP H0234906 B2 JPH0234906 B2 JP H0234906B2
Authority
JP
Japan
Prior art keywords
copper
silicon carbide
silver
interposed
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21583083A
Other languages
Japanese (ja)
Other versions
JPS60108378A (en
Inventor
Masaya Ito
Seiji Mori
Shunichi Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP21583083A priority Critical patent/JPH0234906B2/en
Publication of JPS60108378A publication Critical patent/JPS60108378A/en
Publication of JPH0234906B2 publication Critical patent/JPH0234906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭化珪素と銅との接合構造に関するも
のである。 炭化珪素は、強度が高く、また耐熱衝撃性や高
温度域での化学的安定性に優れていることから、
高周波減衰器、内燃機関周辺部品、原子炉周辺部
品等高温構造材料としての広範な用途が期待され
ている。反面、炭化珪素はヤング率大きく、脆い
材料であるため単体で用いられることは少なく、
金属などの異種材料と接合した複合体として使用
されることが多い。ところが接合対象となる金属
のうち最も汎用的なものの一つである銅は炭化珪
素との熱膨張係数の差が極めて大きいために炭化
珪素が破壊してしまうか又はセラミツク中に応力
が残り信頼性の少ない接合体しかできない。 発明者等は低ヤング率材料である銀を炭化珪素
と銅との間に介在させることにより、銀が緩衝材
としての機能を果たし、炭化珪素と銅の熱膨張係
数の相違から生じる熱応力を吸収し得ることを見
出した。 本発明は上記の知見にもとづいてなされ、接合
強度の高い炭化珪素と銅との接合構造を提供する
もので、その要旨とする処は表面に金属化面が形
成されている炭化珪素焼結体、銅体及び上記金属
化面と該銅体との対向面間に介在しロー付け用金
属にて挟着されている銀体からなることを特徴と
する炭化珪素と銅との接合構造に存する。 また上記特定発明と関連する同様に本発明の要
旨とする処は表面に金属化面が形成されている炭
化珪素焼結体、銅体、上記金属化面と該銅体との
対向面間の金属化面側に介在する銀体及び該対向
面間の銅体側に介在する異種媒体よりなり、これ
ら4体のすべてがロー付け用金属にて接合されて
いることを特徴とする炭化珪素と銅との接合構造
に存する。 金属化面は炭化珪素焼結体と銅又はその合金よ
りなる有形体との間に緩衝材として介在させる銀
を炭化珪素焼結体の表面に容易に且つ強固にロー
付けすることを可能にするもので、炭酸銀法(特
開昭53―130714号)、蒸着法(特願昭57―167030
号)等従来手段によつて形成される。 銀と銅とは通常容易にロー付けし得るが、コス
ト面から銀の使用量は少量が望ましいので、融点
が両者の共晶点である780℃よりも高いロー付け
用金属を使用する場合は、すべての銀が銀銅共晶
物生成に関与して炭化珪素と銅との間の緩衝材と
しての機能を失つてしまう。従つて、クライスト
ロン、マグネトロン等の装置内部の高周波用電子
管容器内で炭化珪素を電波吸収体として使用する
場合のようにどうしても融点の高いロー付け用金
属を使用せざるを得ない場合は銀と銅との間にこ
れらと異なる種類の媒体を介在させなければなら
ない。異種媒体としてはコバール(Kovar),ニ
ツケル系合金、鉄系合金,タングステン,モリブ
デンが挙げられる。その他にジルコニア焼結体、
アルミナ焼結体のように熱膨張係数が炭化珪素の
それと銅のそれとの中間にあるセラミツクスで、
銀体及び銅体と対向すべき両表面が金属化された
ものでも良い。就中タングステンはその熱膨張係
数が炭化珪素のそれに比較的近いことから好適で
ある。本発明接合構造は、炭化珪素焼結体、銀
体、異種媒体及び銅体の4体を同時にロー付けし
て得られるが、予め銀体と異種媒体との積層体を
製作し、その積層体を炭化珪素焼結体と銅体との
間に介在させロー付けしても得られる。 ロー付け用金属としては、銀ロー、銀銅共晶ロ
ー、アルミニウムロー、鉛すず共晶ロー等融点が
銀のそれより低いすべての金属が適用可能であ
る。 以下実施例を示す。 実施例 1 気孔率2%、炭化珪素含有率95重量%、大きさ
10×10×5mmの炭化珪素焼結体の主表面にチタ
ン,クロム及び銅をそれぞれ500Å、500Å及び
5μmの厚さに順に蒸着し、次いで蒸着された面の
上に第1表に示す種類及び厚さのロー付け用金属
を載置し、更にその上に厚さ1mmの銀板を載置
し、更にその上に上記ロー付け用金属を載置し、
更にまたその上に大きさ10×10×5mmの銅体を載
置した後、第1表に示すロー付け温度及び雰囲気
で加熱することによつて本発明接合構造を有する
試料No.1及びNo.2を製造した。比較のために銀板
を使用せず、蒸着された面の上にロー付け用金属
を載置し、その上に銅体を載置した後、加熱する
ことによつて試料No.3を製造した。試料No.1及び
No.2の剪断強度を測定した結果を第1表に示す。
尚、試料No.3については加熱終了後、放冷時に炭
化珪素焼結体が破壊したので剪断強度を測定する
ことができなかつた。
The present invention relates to a bonding structure between silicon carbide and copper. Silicon carbide has high strength, thermal shock resistance, and chemical stability in high temperature ranges.
It is expected to have a wide range of applications as a high-temperature structural material such as high-frequency attenuators, internal combustion engine peripheral parts, and nuclear reactor peripheral parts. On the other hand, silicon carbide has a large Young's modulus and is a brittle material, so it is rarely used alone.
It is often used as a composite bonded with dissimilar materials such as metals. However, copper, which is one of the most commonly used metals to be joined, has an extremely large difference in coefficient of thermal expansion from silicon carbide, which may cause the silicon carbide to break or cause stress to remain in the ceramic, impairing reliability. Only zygotes with a small amount of conjugate can be formed. The inventors have discovered that by interposing silver, a low Young's modulus material, between silicon carbide and copper, the silver functions as a buffer material and alleviates the thermal stress caused by the difference in thermal expansion coefficient between silicon carbide and copper. I found out that it can be absorbed. The present invention has been made based on the above findings, and provides a bonding structure between silicon carbide and copper with high bonding strength. , a bonding structure of silicon carbide and copper, characterized by comprising a copper body and a silver body interposed between the metallized surface and the opposing surface of the copper body and sandwiched by brazing metal. . Also, related to the above-mentioned specific invention, the gist of the present invention is a silicon carbide sintered body having a metallized surface formed on the surface, a copper body, and a gap between the metallized surface and the opposing surface of the copper body. Silicon carbide and copper comprising a silver body interposed on the metallized surface side and a dissimilar medium interposed on the copper body side between the opposing surfaces, all of these four bodies being joined with a brazing metal. It consists in the joint structure with. The metallized surface makes it possible to easily and firmly braze silver, which is interposed as a buffer between the silicon carbide sintered body and the tangible body made of copper or its alloy, to the surface of the silicon carbide sintered body. Silver carbonate method (Japanese Unexamined Patent Application No. 130714/1982), vapor deposition method (Japanese Patent Application No. 167030/1983)
(No.) etc. by conventional means. Silver and copper can usually be easily brazed together, but from a cost standpoint it is desirable to use a small amount of silver, so when using a brazing metal whose melting point is higher than the eutectic point of 780°C, , all the silver participates in the formation of a silver-copper eutectic and loses its function as a buffer between silicon carbide and copper. Therefore, if it is unavoidable to use a brazing metal with a high melting point, such as when silicon carbide is used as a radio wave absorber in a high-frequency electron tube container inside equipment such as a klystron or magnetron, silver and copper should be used. A different type of medium must be interposed between the two. Examples of the different media include Kovar, nickel-based alloys, iron-based alloys, tungsten, and molybdenum. In addition, zirconia sintered bodies,
Ceramics, such as alumina sintered bodies, have a coefficient of thermal expansion between that of silicon carbide and that of copper.
Both surfaces facing the silver body and the copper body may be metallized. Among these, tungsten is preferred because its coefficient of thermal expansion is relatively close to that of silicon carbide. The bonded structure of the present invention is obtained by simultaneously brazing four bodies: a silicon carbide sintered body, a silver body, a dissimilar medium, and a copper body. It can also be obtained by interposing and brazing between a silicon carbide sintered body and a copper body. As the brazing metal, all metals having a melting point lower than that of silver, such as silver solder, silver-copper eutectic solder, aluminum solder, and lead-tin eutectic solder, can be used. Examples are shown below. Example 1 Porosity: 2%, silicon carbide content: 95% by weight, size
Titanium, chromium, and copper were deposited on the main surface of a 10×10×5 mm silicon carbide sintered body at a thickness of 500 Å, 500 Å, and 500 Å, respectively.
The metal was vapor-deposited in order to a thickness of 5 μm, and then a brazing metal of the type and thickness shown in Table 1 was placed on the vapor-deposited surface, and a silver plate with a thickness of 1 mm was further placed on top of it. , further place the above brazing metal on top of it,
Furthermore, after placing a copper body with a size of 10 x 10 x 5 mm thereon, samples No. 1 and No. 1 having the bonding structure of the present invention were heated at the brazing temperature and atmosphere shown in Table 1. .2 was manufactured. For comparison, sample No. 3 was produced by placing a brazing metal on the vapor-deposited surface without using a silver plate, placing a copper body on top of it, and heating it. did. Sample No. 1 and
Table 1 shows the results of measuring the shear strength of No. 2.
For sample No. 3, the shear strength could not be measured because the silicon carbide sintered body was destroyed during cooling after heating was completed.

【表】 実施例 2 実施例1と同一条件で炭化珪素焼結体の主表面
にチタン,クロム及び銅を蒸着し、蒸着された面
の上に、厚さ1mmの銀板と第2表に示す種類及び
厚さの異種媒体と大きさ10×10×5mmの銅体とを
これら4体の各対向面間に第2表に示すロー付け
用金属を介在させて積層載置した後、第2表に示
すロー付け温度及び雰囲気で加熱することによつ
て本発明接合構造を有する試料No.4〜No.7を製造
した。比較のために異種媒体を使用せず、蒸着さ
れた面の上にロー付け用金属を載置し、その上に
銀板を載置し、更にその上に銅体を載置した後、
第2表に示すロー付け温度及び雰囲気で加熱する
ことによつて試料No.8を製造した。試料No.4〜No.
8の剪断強度を測定した結果を第2表に示す。
[Table] Example 2 Titanium, chromium and copper were deposited on the main surface of a silicon carbide sintered body under the same conditions as in Example 1, and a 1 mm thick silver plate and a silver plate of 1 mm thickness were placed on the deposited surface. After dissimilar media of the type and thickness shown and a copper body of size 10 x 10 x 5 mm were stacked with the brazing metal shown in Table 2 interposed between the opposing surfaces of these four bodies, Samples No. 4 to No. 7 having the bonding structure of the present invention were manufactured by heating at the brazing temperature and atmosphere shown in Table 2. For comparison, a different medium was not used, and a brazing metal was placed on the vapor-deposited surface, a silver plate was placed on top of it, and a copper body was placed on top of it.
Sample No. 8 was manufactured by heating at the brazing temperature and atmosphere shown in Table 2. Sample No.4~No.
The results of measuring the shear strength of No. 8 are shown in Table 2.

【表】 用した。
尚、試粉No.8については加熱終了後、放冷時に
炭化珪素焼結体が破壊したので剪断強度を測定す
ることができなかつた。
[Table] Used.
For sample powder No. 8, the shear strength could not be measured because the silicon carbide sintered body was destroyed when it was left to cool after heating.

Claims (1)

【特許請求の範囲】 1 表面に金属化面が形成されている炭化珪素焼
結体、銅体及び上記金属化面と該銅体との対向面
間に介在しロー付け用金属にて挟着されている銀
体からなることを特徴とする炭化珪素と銅との接
合構造。 2 表面に金属化面が形成されている炭化珪素焼
結体、銅体、上記金属化面と該銅体との対向面間
の金属化面側に介在する銀体及び該対向面間の銅
体側に介在する異種媒体よりなり、これら4体の
すべてがロー付け用金属にて接合されていること
を特徴とする炭化珪素と銅との接合構造。
[Scope of Claims] 1. A silicon carbide sintered body having a metallized surface formed on its surface, a copper body, and a surface interposed between the metallized surface and the opposing surface of the copper body and sandwiched between brazing metals. A bonding structure between silicon carbide and copper, characterized by consisting of a silver body. 2. A silicon carbide sintered body with a metallized surface formed on its surface, a copper body, a silver body interposed on the metallized surface side between the metallized surface and the opposing surface of the copper body, and a copper body between the opposing surfaces. A bonding structure between silicon carbide and copper, characterized in that it consists of dissimilar media interposed on the body side, and all of these four bodies are joined with a brazing metal.
JP21583083A 1983-11-15 1983-11-15 TANKAKEISOTODOTONOSETSUGOKOZO Expired - Lifetime JPH0234906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21583083A JPH0234906B2 (en) 1983-11-15 1983-11-15 TANKAKEISOTODOTONOSETSUGOKOZO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21583083A JPH0234906B2 (en) 1983-11-15 1983-11-15 TANKAKEISOTODOTONOSETSUGOKOZO

Publications (2)

Publication Number Publication Date
JPS60108378A JPS60108378A (en) 1985-06-13
JPH0234906B2 true JPH0234906B2 (en) 1990-08-07

Family

ID=16678964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21583083A Expired - Lifetime JPH0234906B2 (en) 1983-11-15 1983-11-15 TANKAKEISOTODOTONOSETSUGOKOZO

Country Status (1)

Country Link
JP (1) JPH0234906B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI114855B (en) * 1999-07-09 2005-01-14 Outokumpu Oy A method of plugging a hole and a heat sink made by the method

Also Published As

Publication number Publication date
JPS60108378A (en) 1985-06-13

Similar Documents

Publication Publication Date Title
US4602731A (en) Direct liquid phase bonding of ceramics to metals
US4606978A (en) Ductile brazing alloy foil containing reactive metals and precious metals
US4598025A (en) Ductile composite interlayer for joining by brazing
JPS59232979A (en) Ceramic aluminum alloy composite body
US4486386A (en) Reactive metal-palladium-gold brazing alloys
US4604328A (en) Ductile brazing alloy containing reactive metals and precious metals
EP0301492B1 (en) Method for bonding cubic boron nitride sintered compact
JPS62220299A (en) Solder for brazing and coupling method using said solder
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
US4690876A (en) Article comprising a ductile brazing alloy foil containing reactive metals and precious metals
JPH0234906B2 (en) TANKAKEISOTODOTONOSETSUGOKOZO
US4678636A (en) Ductile brazing alloy containing reactive metals and precious metals
JPS61127674A (en) Structure of bonding ceramic and metal
JPS60239372A (en) Method of bonding ceramic and magnetic material
JP3388617B2 (en) Thyristor container manufacturing method
JP3081256B2 (en) Alloy for metallizing ceramics and metallizing method
JPS59227783A (en) Ceramic-aluminum alloy bonded body
JPS62168694A (en) Cladding solder
JPS62227596A (en) Ceramics-metal joining member
JPH07172948A (en) Adhesion of metallic material to ceramic material
JPH0142914B2 (en)
JP2512495B2 (en) Bonded body of silicon nitride ceramics and metal
JPS63206365A (en) Joined body of ceramic and metal
JPS6065774A (en) Ceramic-metal bonded body and manufacture
JPS59184778A (en) Pressure welding of ceramic member to metal member