JPH0234733B2 - - Google Patents

Info

Publication number
JPH0234733B2
JPH0234733B2 JP54028464A JP2846479A JPH0234733B2 JP H0234733 B2 JPH0234733 B2 JP H0234733B2 JP 54028464 A JP54028464 A JP 54028464A JP 2846479 A JP2846479 A JP 2846479A JP H0234733 B2 JPH0234733 B2 JP H0234733B2
Authority
JP
Japan
Prior art keywords
hafnium
titanium
solid solution
temperature
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54028464A
Other languages
Japanese (ja)
Other versions
JPS55120937A (en
Inventor
Moriaki Fuyama
Mitsuru Ura
Haruhiko Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2846479A priority Critical patent/JPS55120937A/en
Publication of JPS55120937A publication Critical patent/JPS55120937A/en
Publication of JPH0234733B2 publication Critical patent/JPH0234733B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐摩耗性に優れた薄い被覆層を有する
切削用及び耐摩耗部品用の表面被覆超硬質合金に
関するものである。 従来、超硬質合金の耐摩耗性を向上させる目的
で、その表面に母材より耐摩耗性に富む、炭化チ
タン(TiC)、窒化チタン(TiN)などの周期率
4a、5a、6a族金属の各種炭化物、窒化物、炭窒
化物の単層または多層を被覆することは公知であ
り、コーテイングチツプとして広く実用化されて
いる。被覆物質としてもつとも広く用いられてい
るものはTiCであり、超硬質合金自体に比べ、耐
酸化性、硬度、耐摩耗性においてすぐれた物性を
持つている。 しかし、被削材及び切削方法の進歩に伴つて、
さらに高性能、長寿命化を目的として、さらに高
特性の切削工具が要望され、開発がなされてい
る。 これらの対策として、上述したように、単層膜
から多量膜への移行がそうである。つまり、単層
膜の特徴をそれぞれ生かした使いかたがなされて
いる。例えば、代表例として等開昭49−3841に示
すTiC+TiNの2重被覆コーテイングチツプがそ
れである。TiCは硬度が高いことから耐フランク
摩耗はあるが、耐クレータ性に対して劣る欠点が
ある。また、TiNは硬度が低いことから耐フラ
ンク摩耗に劣るが、化学的安定性、つまり生成自
由エネルギー、−△Gが大きいことから、熱に対
して安定なため耐クレータ摩耗に優れている。し
たがつて、おのおのの特徴を生かすために、TiC
+TiN、Ti(C・N)が開発され、単層膜より優
れた切削性能を示している。また、特開昭50−
56381に示すようにTiC−TiN、VC−VN、ZrC
−ZrNなどの固溶体を被覆する方法があるが、こ
れらも同じことが言える。さらに、最近では、耐
溶着性を向上さすため、高温において安定なコー
テイング材料が要求されており、これに対して
は、例えば特開昭51−42029のように、TiCの上
にAl2O3を被覆したTiC+Al2O3コーテイングチ
ツプが開発されている。 これらの被覆層例えばTiC+TiN、TiC+
Al2O3の多層膜は異種の炭化物、窒化物及び酸化
物を積層するために異種層間の密着性が悪く、切
削時に皮膜がはく離およびチツピングが起こりや
すい問題がある。また、固溶体被覆層、例えば
TiC−TiN、VC−VN固溶体などは製造方法が
難しいことから、単一金属の炭窒化物のみであつ
た。これらの固溶体被覆層では、例えばTi金属
のみの特徴しかだせない問題があつた。 そこで、本発明者らは、被覆層として要求され
る(1)高温硬度が高いこと→耐摩耗性、(2)チツプ素
材の熱膨張係数にできるだけ近いこと→耐はく離
性、(3)化学的安定性が高いこと、一△Gが大きい
→耐溶着性に注目して探索した結果、ハフニウム
カーバイド(HfC)がよいことがわかつた。そこ
で、本発明者らは2種金属の炭化物、窒化物を組
合せた固溶体被覆層(Ti、Hf)C、(Ti、Hf)
N、(Ti、Hf)C・Nを容易に形成できる方法を
見い出し、切削性能が優れた特徴ある固溶体被覆
切削工具の開発に成功し、このものは特公昭61−
54872号に示すとおりである。そして、本発明者
らは発明した固溶体被覆切削工具の切削性能をさ
らに改善するものとして、例えば(Ti、Hf)C
被覆切削工具の表面をさらにその固溶体の酸素を
含む化合物を被覆することよつて、切削性能が著
しく向上することを見い出し、この知見に基づい
て本発明をするに至つた。 本発明の目的は、超硬質合金の表面にチタン化
合物とハフニウム化合物の固溶体を被覆し、更に
その上に前記固溶体の酸素を含む化合物層を被覆
することによつて、耐摩耗性、耐クレータ性及び
耐溶着性に優れた2重被覆層からなる表面被覆超
硬質合金を提供することにある。 本発明では、まず、チタン化合物とハフニウム
化合物の固溶体皮膜の形成する工程、次いで、そ
の固溶体の酸素を含む化合物皮膜を形成する工程
の2工程に分けられる。例として、(Ti、Hf)C
+(Ti、Hf)C・Oの2重被覆膜コーテイングに
ついて述べる。 本発明の2重被覆皮膜の生成には、炭化物、窒
化物及び酸化物を形成するのに広く用いられてい
るChemical Vapor Deposition法(CVD法)を
用いた。さらに、このCVD法は皮膜の均一性及
び緻密な皮膜を得るために減圧下の状態で行つ
た。 まず、第1工程として(Ti、Hf)Cの生成は、
下記に示す反応式で説明される。 Hf+2I2→HfI4 ………(1) Ti+2I2→TiI4 ………(2) 4TiI4+4HfI4+C4H104(Hf、Ti)C+ 10H1+11I2 ………(3) (2)、(3)の反応式において、TiI4、HfI4の生成
は、Ti、Hf金属を一定温度に加熱した中に、一
定量のヨウ素蒸気(I2)流しこんでいる。このヨ
ウ化物の生成及びその組成は金属の加熱温によつ
て決定され、250℃〜350℃が最適である。何故な
らば、ハフニウムヨウ化物は蒸気圧の高いHfI4
が常に安定に生成されるが、、チタンヨウ化物は
金属の加熱温度により、得られるヨウ化物組成が
異なり、TiI3、TiI2という蒸気圧の小さいものが
生成される。したがつてTiI4を得るためには、
250〜350℃が最適温度であることを発見し、この
温度範囲にるする必要がある。かつ、反応に寄与
する金属(Ti、Hf)は好ましくはスポンジ状の
ものがよく、粒度をそろえた方がよい。さらに、
ヨウ素(I2)は、その蒸気圧をコントロールする
ことにより、調節され、一定量がTi、Hfに導入
され、反応に寄与する。このようにして生成され
た、TiI4、HfI4は反応ガス(ここでは、炭化水素
C4H10である)と一緒に所定温度に加熱された基
体上に導かれ、(3)の反応が起こる。その際の基体
の加熱温度(反応温度)は850℃〜1250℃の範囲
がよい。このようにし、TiとHfとの固溶体
(Hf、Ti)Cが得られる。反応温度が850℃以下
の場合は、(Hf、Ti)Cが得られるが、耐摩耗性
のものが生全成されない。1250℃以上の場合は、
基体(Wc−Co合金)の液相温度が1270℃にある
ため、基体自体の物性が低下し、好ましくない。
得られる(Hi、Ti)Cの特性は、反応温度、反
応圧力、C4H10流量及びI2量によつて左右される
のはもちろんであるが、その中でも特に(Hf、
Ti)Cの組成はTi、Hfに供給されるI2量によつ
て決まり、TiI4、HfI4の量をコントロールするこ
とにより任意に制御できることを明らかにした。 次に、第2工程として、ハフニウム・チタンオ
キシカーバイド(Hf、Ti)C・Oを被覆する工
程である。(Hf、Ti)C・O生成反応の詳細な機
構は不明であるが、以下の反応式で示されるもの
と考えられる。つまり、反応ガスとしてC4H10
かわりに、CO2+H2の混合ガスを用いればよい。 CO2+H2CO+H2O ………(4) HfI4+TiI4+2CO+H2O→(Hf、Ti)C・O +2H1+3I2+CO2 ………(5) (4)の反応において、CO2:H2のガス組成比は
周知であるが、例えばCO2:H2=20:80容量%
でよい。反応温度としては(4)の反応式が800℃以
上で右側に完全に移行することから、800〜1200
℃の範囲がよい。また、ハフニウム・チタンオキ
シカーバイドの炭素成分は反応ガスおよび反応温
度によつて任意となる。このようにして、(Hf、
Ti)C・Oを被覆することにより、高温におけ
る化学的安定性にすぐれ、特に耐酸化性、被削材
との耐反応性にすぐれる。また、(Hf、Ti)Cに
生成した後、反応ガスを切りかえることにより
(Hf、Ti)C・Oを生成するために(Hf、Ti)
Cと(Hf、Ti)C・Oとは連続していることか
ら密着性が極めて良好なことがわかつた。(Hf、
Ti)C・Oの膜厚は後述するように0.5〜2μmが
最適である。 実施例 1 基体としてWc72−9Co−8TiC−11Tac(wt%、
P30グレード)よりなる超硬チツプ合金を用い下
記の条件で、(Hf、Ti)Cを5.0μm形成した。 反応温度:950℃ 反応圧力:0.05Torr C4H10流量:0.2ml/min Hf、Ti加熱温度:300℃ Hf側I2温度:30℃ Ti側I2温度、:25℃ この条件による生成速度は1.2μm/hであり、
かつ得られた皮膜の組成は、X線回折により格子
定数の変化から求められた結果40HfC−60TiC
(mol%)であつた。さらに、ダイヤモンドによ
る引つかきテストの結果、皮膜ははく離すること
なく密着強度は大であつた。 次に、下記条件で(Hf、Ti)Cの上にハフニ
ウム・チタンオキシカーバイド(Hf、Ti)C・
Oを1.0μm形成した。 反応温度:1000℃ 反応圧力:0.2Torr 反応ガス:CO2:H2=20:80(容量%) Hf、Ti加熱温度:300℃ Hf側I2温度:30℃ Ti側I2温度:25℃ この条件により、得られた(Hf、Ti)C・O
と(Hf、Ti)Cとの密着性は非常によいことを
確認している。 実施例 2 実施例1と同一の超硬合金に20HfC−80TiCを
5.0μm形成する。この方法は、実施例1と同様で
あるが、生成するヨウ化物の量を変化させるた
め、Hf側I2温度27.5℃、Ti側I2温度30℃とした。
その後、実施例1と同様に(Hf、Ti)C・Oを
1.0μm形成した。得られた被覆層は密着性がよい
ことを確認している。 そこで、次に本発明品の耐摩耗性を調べるた
め、実施例1及び2の試料を用いて切削試験を行
つた。比較としてTiC、TiNコーテイングチツプ
を用いた。その結果を表1に示す。切削条件とし
ては、被削材SCM3(HS36〜40)、切削速度160
m/min、切込み1.5mm、送り0.2mm/revである。
切削寿命としては平均フランク摩耗が0.4mmに達
する時間を限界とした。その結果を表1に示す。
The present invention relates to a surface-coated superhard alloy for cutting and wear-resistant parts having a thin coating layer with excellent wear resistance. Conventionally, in order to improve the wear resistance of superhard alloys, periodic materials such as titanium carbide (TiC) and titanium nitride (TiN), which are more wear resistant than the base metal, were added to the surface of the superhard alloys.
Coating with a single layer or multiple layers of various carbides, nitrides, and carbonitrides of group 4a, 5a, and 6a metals is well known and has been widely put into practical use as coating chips. One of the most widely used coating materials is TiC, which has superior physical properties in terms of oxidation resistance, hardness, and wear resistance compared to the cemented carbide itself. However, with advances in workpiece materials and cutting methods,
In order to achieve higher performance and longer life, cutting tools with even higher characteristics are desired and are being developed. As mentioned above, one possible countermeasure for these problems is the transition from a single-layer film to a multi-layer film. In other words, single-layer films are being used in ways that take advantage of their respective characteristics. For example, a typical example is a TiC+TiN double coating chip shown in Kokai 1983-3841. Due to its high hardness, TiC has flank wear resistance, but it has the disadvantage of poor crater resistance. Further, TiN has low hardness and therefore is inferior in flank wear resistance, but it is chemically stable, that is, has a large free energy of formation, -ΔG, and is stable against heat, so it is excellent in crater wear resistance. Therefore, in order to take advantage of the characteristics of each TiC
+TiN and Ti(C/N) have been developed and show better cutting performance than single layer films. In addition, JP-A-1987-
TiC-TiN, VC-VN, ZrC as shown in 56381
-There are methods of coating with solid solutions such as ZrN, and the same can be said of these. Furthermore, recently there has been a demand for coating materials that are stable at high temperatures in order to improve welding resistance . A TiC+Al 2 O 3 coating chip has been developed. These coating layers e.g. TiC+TiN, TiC+
Since the Al 2 O 3 multilayer film has different types of carbides, nitrides, and oxides laminated, there is a problem in that the adhesion between the different types of layers is poor and the film is likely to peel off and chip when being cut. Also, solid solution coating layers, e.g.
Since TiC-TiN, VC-VN solid solutions, etc. are difficult to manufacture, only single metal carbonitrides were used. These solid solution coating layers had a problem, for example, in that they could only exhibit the characteristics of Ti metal. Therefore, the present inventors determined that the coating layer should have (1) high high temperature hardness → wear resistance, (2) thermal expansion coefficient as close as possible to the chip material → peeling resistance, and (3) chemical resistance. As a result of our search focusing on high stability, large △G → welding resistance, we found that hafnium carbide (HfC) is good. Therefore, the present inventors developed solid solution coating layers (Ti, Hf)C, (Ti, Hf) that combined two metal carbides and nitrides.
We found a method to easily form N, (Ti, Hf)C/N, and succeeded in developing a unique solid solution coated cutting tool with excellent cutting performance.
As shown in No. 54872. In order to further improve the cutting performance of the solid solution coated cutting tool invented by the present inventors, for example, (Ti, Hf)C
The present inventors have discovered that cutting performance can be significantly improved by further coating the surface of a coated cutting tool with a compound containing oxygen as a solid solution, and based on this finding, the present invention has been developed. The object of the present invention is to provide wear resistance and crater resistance by coating the surface of a superhard metal with a solid solution of a titanium compound and a hafnium compound, and further coating the solid solution with a layer of a compound containing oxygen from the solid solution. Another object of the present invention is to provide a surface-coated superhard alloy comprising a double coating layer with excellent welding resistance. The present invention is divided into two steps: first, a step of forming a solid solution film of a titanium compound and a hafnium compound, and then a step of forming a compound film containing oxygen as the solid solution. As an example, (Ti, Hf)C
+(Ti, Hf)C・O double film coating will be described. A chemical vapor deposition method (CVD method), which is widely used to form carbides, nitrides, and oxides, was used to generate the double coating film of the present invention. Furthermore, this CVD method was carried out under reduced pressure in order to obtain a uniform and dense film. First, as the first step, the generation of (Ti, Hf)C is as follows:
This is explained by the reaction formula shown below. Hf+2I 2 →HfI 4 ………(1) Ti+2I 2 →TiI 4 ………(2) 4TiI 4 +4HfI 4 +C 4 H 104 (Hf, Ti)C+ 10H 1 +11I 2 ………(3) (2 ), (3), TiI 4 and HfI 4 are produced by pouring a certain amount of iodine vapor (I 2 ) into Ti and Hf metals heated to a certain temperature. The formation of this iodide and its composition are determined by the heating temperature of the metal, and 250°C to 350°C is optimal. This is because hafnium iodide has a high vapor pressure, HfI 4
is always produced stably, but the resulting iodide composition varies depending on the heating temperature of the metal, and TiI 3 and TiI 2 , which have low vapor pressures, are produced. Therefore, to obtain TiI 4 ,
We found that 250-350℃ is the optimum temperature, and it is necessary to stay within this temperature range. In addition, the metals (Ti, Hf) that contribute to the reaction are preferably sponge-like, and the particle size is preferably uniform. moreover,
Iodine (I 2 ) is regulated by controlling its vapor pressure, and a certain amount is introduced into Ti and Hf to contribute to the reaction. The TiI 4 and HfI 4 produced in this way are reactant gases (here, hydrocarbons
C 4 H 10 ) is introduced onto a substrate heated to a predetermined temperature, and the reaction (3) occurs. The heating temperature (reaction temperature) of the substrate at that time is preferably in the range of 850°C to 1250°C. In this way, a solid solution of Ti and Hf (Hf, Ti)C is obtained. When the reaction temperature is below 850°C, (Hf, Ti)C is obtained, but a wear-resistant product is not completely produced. If the temperature is over 1250℃,
Since the liquidus temperature of the base (Wc-Co alloy) is 1270°C, the physical properties of the base itself deteriorate, which is not preferable.
The properties of (Hi, Ti)C obtained are of course influenced by the reaction temperature, reaction pressure, C 4 H 10 flow rate and I 2 amount, but especially (Hf,
It was revealed that the composition of Ti)C is determined by the amount of I2 supplied to Ti and Hf, and can be controlled arbitrarily by controlling the amounts of TiI4 and HfI4 . Next, the second step is a step of coating with hafnium titanium oxycarbide (Hf, Ti) C.O. Although the detailed mechanism of the (Hf, Ti)C.O production reaction is unknown, it is thought to be expressed by the following reaction formula. In other words, a mixed gas of CO 2 +H 2 may be used instead of C 4 H 10 as the reaction gas. CO 2 +H 2 CO+H 2 O ………(4) HfI 4 +TiI 4 +2CO+H 2 O → (Hf, Ti)C・O +2H 1 +3I 2 +CO 2 ………(5) In the reaction of (4), CO 2 The gas composition ratio of :H 2 is well known, for example CO 2 :H 2 = 20:80% by volume.
That's fine. The reaction temperature is 800 to 1200, because the reaction formula (4) shifts completely to the right side at 800℃ or higher.
A range of ℃ is preferable. Further, the carbon component of hafnium titanium oxycarbide is optional depending on the reaction gas and reaction temperature. In this way, (Hf,
By coating Ti)C.O, it has excellent chemical stability at high temperatures, especially oxidation resistance and reaction resistance with the work material. In addition, in order to generate (Hf, Ti)C O by switching the reaction gas after generating (Hf, Ti)C, (Hf, Ti)
It was found that since C and (Hf, Ti)C.O are continuous, the adhesion is extremely good. (Hf,
The optimum film thickness of Ti)C.O is 0.5 to 2 μm, as described later. Example 1 Wc72-9Co-8TiC-11Tac (wt%,
(Hf, Ti)C was formed to a thickness of 5.0 μm using a cemented carbide chip alloy (P30 grade) under the following conditions. Reaction temperature: 950℃ Reaction pressure: 0.05Torr C 4 H 10 flow rate: 0.2ml/min Hf, Ti heating temperature: 300℃ Hf side I 2 temperature: 30℃ Ti side I 2 temperature: 25℃ Generation rate under these conditions is 1.2μm/h,
The composition of the obtained film was determined from the change in lattice constant by X-ray diffraction, and was 40HfC−60TiC.
(mol%). Furthermore, as a result of a diamond scratch test, the film did not peel off and the adhesion strength was high. Next, under the following conditions, hafnium titanium oxycarbide (Hf, Ti)C was placed on top of (Hf,Ti)C.
O was formed to a thickness of 1.0 μm. Reaction temperature: 1000℃ Reaction pressure: 0.2Torr Reaction gas: CO 2 : H 2 = 20:80 (volume %) Hf, Ti heating temperature: 300℃ Hf side I 2 temperature: 30℃ Ti side I 2 temperature: 25℃ Under these conditions, the obtained (Hf, Ti)C.O
It has been confirmed that the adhesion between (Hf, Ti)C and (Hf, Ti)C is very good. Example 2 20HfC-80TiC was added to the same cemented carbide as in Example 1.
Form 5.0μm. This method was the same as in Example 1, but in order to vary the amount of iodide produced, the I 2 temperature on the Hf side was 27.5°C and the I 2 temperature on the Ti side was 30°C.
After that, (Hf, Ti)C.O was added as in Example 1.
A thickness of 1.0 μm was formed. It has been confirmed that the obtained coating layer has good adhesion. Next, in order to investigate the wear resistance of the products of the present invention, cutting tests were conducted using the samples of Examples 1 and 2. For comparison, TiC and TiN coated chips were used. The results are shown in Table 1. Cutting conditions include workpiece material SCM 3 (HS36~40), cutting speed 160
m/min, depth of cut 1.5mm, feed 0.2mm/rev.
The cutting life limit was set at the time when the average flank wear reached 0.4 mm. The results are shown in Table 1.

【表】【table】

【表】 本発明品は、従来品に比較して切削寿命が2倍
以上向上することがわかつた。さらに、耐酸化性
の目安とされるクレータ摩耗についての結果を表
2に示す。この際の切削条件は上述と同じであ
り、切削時間80分の値である。
[Table] It was found that the cutting life of the product of the present invention was more than twice as long as that of the conventional product. Furthermore, Table 2 shows the results regarding crater wear, which is a measure of oxidation resistance. The cutting conditions at this time were the same as above, and the cutting time was 80 minutes.

【表】 本発明品のクレータ摩耗は従来品と比較して1/
3程度であり、非常に優れていることがわかる。
この結果から、(Hf、Ti)C・OはTiC及びTiN
よりも高温において安定性があり、かつ被削材と
チツプ素材との熱拡散摩耗を少なくすることがわ
かる。 実施例 3 次に、ハフニウム・チタンオキシカーバイド
(Hf、Ti)C・Oの膜厚を種々変化させた試料を
作成し、その耐摩耗性について調べた。まず、実
施例1と同一の超硬合金に20HfC−80TiCを5.0μ
m形成する。この組成は、実施例2と同一条件で
あり、Hf側I2温度27.5℃、Ti側I2温度30℃として
ある。その後、20Hf−80TiC被覆層の上に、実
施例1と同一条件ハフニウム・チタンオキシカー
バイド(Hf・Ti)C・Oを0.25、0.5、1、2.0、
2.5、及び3.0μmと膜厚を変化させた6種類の試
料を作成した。(Hf・Ti)C・Oを2.5μm以上形
成した試料は、被覆層の表面は凹凸が激しく、粗
大な結晶が成長しているのが認められた。次に、
これらの6種類の試料について、切削試験を行つ
た。比結品としてTiC、TiNコーテイングチツプ
を用いた。その結果を表3に示す。切削条件とし
ては、切削材SCM−3(Hs35〜40)、切削速度
160m/min、切込み1.5mm、送り0.2mm/revであ
る。切削寿命としては、平均フランク摩耗VB
0.4mmに達する時間を限界とした。
[Table] The crater wear of the inventive product is 1/1 compared to the conventional product.
It can be seen that it is about 3, which is very good.
From this result, (Hf, Ti)C・O is TiC and TiN
It can be seen that this material is more stable at higher temperatures than the previous one, and reduces thermal diffusion wear between the workpiece material and the chip material. Example 3 Next, samples were prepared with various film thicknesses of hafnium titanium oxycarbide (Hf, Ti) C.O, and their wear resistance was investigated. First, 5.0μ of 20HfC−80TiC was applied to the same cemented carbide as in Example 1.
m form. This composition was under the same conditions as in Example 2, with the Hf side I 2 temperature being 27.5°C and the Ti side I 2 temperature being 30°C. After that, on the 20Hf-80TiC coating layer, hafnium titanium oxycarbide (Hf・Ti) C・O was applied under the same conditions as in Example 1 at 0.25, 0.5, 1, 2.0,
Six types of samples were prepared with varying film thicknesses of 2.5 and 3.0 μm. In the sample in which (Hf.Ti)C.O was formed to a thickness of 2.5 μm or more, the surface of the coating layer was highly uneven, and it was observed that coarse crystals had grown. next,
Cutting tests were conducted on these six types of samples. TiC and TiN coated chips were used as specific products. The results are shown in Table 3. Cutting conditions include cutting material SCM-3 (Hs35~40) and cutting speed.
160m/min, depth of cut 1.5mm, feed 0.2mm/rev. As for the cutting life, the average flank wear V B is
The time to reach 0.4 mm was set as the limit.

【表】 本発明品は、(Hf・Ti)C・Oの膜厚が0.5〜
2.0μmの範囲で、切削寿命の良好のものが得られ
ることがわかつた。また、(Hf・Ti)C・Oの膜
厚が0.25μm、2.5μm及び3.0μmのものでも、比較
品と同じ性能を示すことが認められた。(Hf・
Ti)C・O0.25μmの場合は、(Hf・Ti)C・O
の被覆層が薄すぎるため、被削材の拡散が起こ
り、バリヤー効果がないため、2重被覆の効果が
なく、(Hf・Ti)Cのみの切削性能を示したもの
と考えられる。なお、(Hf・Ti)C被覆層に関し
ては、前述の特公昭61−54872号公報に詳述して
ある通りである。さらに、(Hf・Ti)C・O2.5μ
m以上の場合は、前述したように表面層の凹凸が
激しく、結晶粒の粗大化があるために、表面の摩
擦抵抗は大きくなり、また被覆層そのものの強度
も低下する。このために切削時にチツピングが発
生しやすくなり、被覆層のはく離が起こり、切削
寿命が短くなる欠点が生じる。 以上において、(Ti、Hf)C+(Ti、Hf)C・
Oの被覆層の場合を一例として詳述したが、
(Ti、Hf)C・N+(Ti、Hf)C・N・Oの場合
には次の条件が好適である。 <(Ti、Hf)C・N形成条件> 反応温度:950℃ 反応圧力:0.15Torr 反応ガス:CH4:1ml/min.N2:4ml/min. Hf、Ti加熱温度:300℃ I2温度:30℃ この条件による生成速度は2.5μm/hであり、
更にこの第1被覆層の上に(Ti、Hf)・C・N・
Oの第2被覆層を次の条件で形成する。 反応温度:920℃ 反応圧力:0.2Torr 反応ガス:CH4:1ml/min.CO2及び/又は
CO:1.0ml/min.N2:4ml/min.H2:1.0ml/
min. Hf、Ti加熱温度:300℃ I2温度:30℃ 尚、(Ti、Hf)N+(Ti、Hf)N・Oの場合に
は、反応ガスを切りかえてN2又はNH3、及び
H2Oを含むH2を用いることにより該被覆層を得
ることができ、更に又、(Ti、Hf)C+(Ti、
Hf)N・Oや(Ti、Hf)N+(Ti、Hf)C・O
などの組合せも、反応ガスを切りかえることによ
り形成することができる。 以上に述べたように本発明によれば、切削工具
の耐摩耗性と耐溶着性が向上され、切削寿命の延
長化が可能となる。
[Table] The product of the present invention has a (Hf・Ti)C・O film thickness of 0.5~
It was found that good cutting life could be obtained within the range of 2.0 μm. It was also observed that (Hf.Ti)C.O film thicknesses of 0.25 μm, 2.5 μm, and 3.0 μm exhibited the same performance as the comparative product. (Hf・
For Ti)C・O0.25μm, (Hf・Ti)C・O
Because the coating layer is too thin, the workpiece material diffuses and there is no barrier effect, so it is thought that the double coating had no effect and only (Hf・Ti)C exhibited cutting performance. The (Hf.Ti)C coating layer is as detailed in the aforementioned Japanese Patent Publication No. 61-54872. Furthermore, (Hf・Ti)C・O2.5μ
If it is more than m, as mentioned above, the surface layer is highly uneven and the crystal grains are coarsened, so the frictional resistance of the surface increases and the strength of the coating layer itself decreases. For this reason, chipping is likely to occur during cutting, peeling of the coating layer occurs, and the cutting life is shortened. In the above, (Ti, Hf)C + (Ti, Hf)C・
The case of the coating layer of O was explained in detail as an example, but
In the case of (Ti, Hf)C.N+(Ti, Hf)C.N.O, the following conditions are suitable. <(Ti, Hf)C/N formation conditions> Reaction temperature: 950℃ Reaction pressure: 0.15Torr Reaction gas: CH 4 : 1ml/min.N 2 : 4ml/min. Hf, Ti heating temperature: 300℃ I 2 temperature :30℃ The production rate under these conditions is 2.5μm/h,
Furthermore, on this first coating layer, (Ti, Hf)・C・N・
A second coating layer of O is formed under the following conditions. Reaction temperature: 920℃ Reaction pressure: 0.2Torr Reaction gas: CH 4 : 1ml/min.CO 2 and/or
CO: 1.0ml/min.N 2 : 4ml/min.H 2 : 1.0ml/
min. Hf, Ti heating temperature: 300℃ I 2 temperature: 30℃ In addition, in the case of (Ti, Hf)N + (Ti, Hf)N・O, the reaction gas can be changed to N 2 or NH 3 , and
The coating layer can be obtained by using H 2 containing H 2 O, and also (Ti, Hf)C+(Ti,
Hf)N・O or (Ti, Hf)N+(Ti, Hf)C・O
Combinations such as the above can also be formed by switching the reaction gases. As described above, according to the present invention, the wear resistance and welding resistance of the cutting tool are improved, and the cutting life can be extended.

Claims (1)

【特許請求の範囲】 1 超硬合金又はサーメツトで製造した材料の表
面に、炭化チタン及び/又は窒化チタンからなる
チタン化合物と、炭化ハフニウム及び/又は窒化
ハフニウムからなるハフニウム化合物との複合固
溶体より形成される第1被覆層を設け、さらにそ
の上に前記複合固溶体に酸素を含んだ化合物層よ
りなる第2被覆層を設けたことを特徴とする表面
被覆超硬質合金。 2 特許請求の範囲第1項において、前記複合固
溶体より形成される第1被覆層は、(Ti、Hf)
C、(Ti、Hf)N、(Ti、Hf)C・Nのいずれか
であることを特徴とする表面被覆超硬質合金。 3 特許請求の範囲第1項又は第2項において、
前記複合固溶体に酸素を含んだ化合物層よりなる
第2被覆層は、チタン・ハフニウムオキシカーバ
イド(Ti、Hf)C・O、チタン・ハフニウムオ
キシナイトライド(Ti、Hf)N・O、チタン・
ハフニウムオキシカーボナイトライド(Ti、Hf)
C・N・Oのいずれかであり、その膜厚は0.5〜
2.0μmであることを特徴とする表面被覆超硬質合
金。
[Claims] 1. Formed on the surface of a material made of cemented carbide or cermet from a composite solid solution of a titanium compound made of titanium carbide and/or titanium nitride and a hafnium compound made of hafnium carbide and/or hafnium nitride. 1. A surface-coated superhard alloy, characterized in that a first coating layer is provided thereon, and a second coating layer made of a compound layer containing oxygen in the composite solid solution is further provided thereon. 2. In claim 1, the first coating layer formed from the composite solid solution comprises (Ti, Hf)
A surface-coated superhard alloy characterized by being any one of C, (Ti, Hf)N, and (Ti, Hf)C/N. 3 In claim 1 or 2,
The second coating layer made of a compound layer containing oxygen in the composite solid solution includes titanium/hafnium oxycarbide (Ti, Hf) C.O, titanium/hafnium oxynitride (Ti, Hf) N.O, titanium/hafnium oxycarbide (Ti, Hf), N.O.
Hafnium oxycarbonitride (Ti, Hf)
Either C, N, or O, and the film thickness is 0.5~
A surface-coated superhard alloy characterized by a thickness of 2.0 μm.
JP2846479A 1979-03-12 1979-03-12 Cutting tool Granted JPS55120937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2846479A JPS55120937A (en) 1979-03-12 1979-03-12 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2846479A JPS55120937A (en) 1979-03-12 1979-03-12 Cutting tool

Publications (2)

Publication Number Publication Date
JPS55120937A JPS55120937A (en) 1980-09-17
JPH0234733B2 true JPH0234733B2 (en) 1990-08-06

Family

ID=12249369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2846479A Granted JPS55120937A (en) 1979-03-12 1979-03-12 Cutting tool

Country Status (1)

Country Link
JP (1) JPS55120937A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653373A (en) * 1986-01-08 1987-03-31 Gerber Scientific Inc. Knife blade and method for making same
JPS6456865A (en) * 1987-08-28 1989-03-03 Sumitomo Cement Co High-hardness coating film and its production
US6105467A (en) * 1998-06-26 2000-08-22 Baker; David A. Method for preparing a cutting edge on an end mill
US6655880B2 (en) 2001-02-15 2003-12-02 Macarthur Mike End mill

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144388A (en) * 1975-06-09 1976-12-11 Sumitomo Electric Ind Ltd Hard alloy parts coated with multiple layer film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144388A (en) * 1975-06-09 1976-12-11 Sumitomo Electric Ind Ltd Hard alloy parts coated with multiple layer film

Also Published As

Publication number Publication date
JPS55120937A (en) 1980-09-17

Similar Documents

Publication Publication Date Title
US5915162A (en) Coated cutting tool and a process for the production of the same
US4357382A (en) Coated cemented carbide bodies
USRE32111E (en) Coated cemented carbide bodies
US4264682A (en) Surface hafnium-titanium compound coated hard alloy material and method of producing the same
FR2467689A1 (en) SINTERED HARD METAL PRODUCT HAVING A MULTI-LAYERED WEAR RESISTANT COATING
JP2746036B2 (en) Surface coated cutting tool
JP2002160105A (en) Cutting tool made of surface coating cemented carbide having high chipping resistance
JP3291775B2 (en) Surface coated cutting tool
JP3989664B2 (en) Slow-away tip made of surface-coated cemented carbide with excellent chipping resistance
JPH0234733B2 (en)
JPS6354495B2 (en)
JPS586969A (en) Surface clad sintered hard alloy member for cutting tool
JP3478358B2 (en) Composite hard layer surface coated cutting tool
JPH0364469A (en) Coated sintered hard alloy tool
JPS5824501B2 (en) Method for manufacturing tungsten carbide coating layer
JP3236903B2 (en) Surface coated cutting tool
JPH0515786B2 (en)
JPH0433865B2 (en)
JPH0120227B2 (en)
JPH04246174A (en) Surface-coated tungsten carbide-based cemented carbide cutting tip obtained by forming hard coating layer free of interlayer bonded surface
JP3988176B2 (en) Surface-coated cemented carbide throwaway tip-shaped cutting tool with excellent surface lubricity against chips
JPH0890311A (en) Composite head layer surface coat cutting tool
JPS59170264A (en) Surface coated sintered hard alloy member for cutting tool
JP3994591B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JPS5952704B2 (en) Surface-coated cermet parts for cutting tools