JPH0234015A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH0234015A
JPH0234015A JP18362988A JP18362988A JPH0234015A JP H0234015 A JPH0234015 A JP H0234015A JP 18362988 A JP18362988 A JP 18362988A JP 18362988 A JP18362988 A JP 18362988A JP H0234015 A JPH0234015 A JP H0234015A
Authority
JP
Japan
Prior art keywords
circuit
current
resistor
semiconductor integrated
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18362988A
Other languages
Japanese (ja)
Inventor
Kunihiko Yamaguchi
邦彦 山口
Kazuo Kanetani
一男 金谷
Hiroaki Nanbu
南部 博昭
Kenichi Ohata
賢一 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Japan Display Inc
Original Assignee
Hitachi Device Engineering Co Ltd
Hitachi Ltd
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Device Engineering Co Ltd, Hitachi Ltd, Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Device Engineering Co Ltd
Priority to JP18362988A priority Critical patent/JPH0234015A/en
Publication of JPH0234015A publication Critical patent/JPH0234015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To prevent malfunction of the circuit due to the conduction of a parasitic transistor(TR) by employing a resistor made of an n-channel impurity layer for a load resistor and generating the operating current from a current source circuit using a current mirror circuit. CONSTITUTION:A current mirror circuit is used for part of the current source circuit CS. That is, the current mirror circuit consists of a TR Q5 and a diode D3 to generate the operating current, which is fed to a current switch comprising TRs Q1-Q4 and resistors R1, R2. Thus, it is possible to eliminate the resistor connected directly to a power voltage VEE and to prevent the conduction of a parasitic TR. That is, even if the power voltage is fluctuated, the margin of the conduction of the parasitic TR is increased by a forward voltage VBE (nearly 0.8V) of the diode D3. For example, even when the power voltage is varied by 20%, the reverse bias voltage is 0.16V by taking the said voltage of 0.8V into account and the parasitic TR is not conducted.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は半導体集積回路および情報処理装置に係り、特
に高速回路用の抵抗として好適な寄生容量の小さい抵抗
を用いた回路および情報処理装置に関する。
[Industrial Field of Application] The present invention relates to semiconductor integrated circuits and information processing devices, and particularly to circuits and information processing devices using resistors with small parasitic capacitance suitable as resistors for high-speed circuits.

【従来の技術】[Conventional technology]

従来の半導体集積回路で、特に第2図に示すようなゲー
ト回路を高速化する場合、使用するトランジスタQ工〜
Q5の性能を高めるとともに、使用する抵抗R1〜R4
の寄生容量を小さくすることが必要である。これは、ゲ
ート回路の速度がカレントスイッチを構成するトランジ
スタのコレクタ部の時定数に強く依存するためである。 このために抵抗R,,R2にn形不純物層で形成した抵
抗(以下n層抵抗と略す)を使用してコレクタ部の浮遊
容量(トランジスタと抵抗の寄生容量と配線の寄主容量
などの総計値)を減らして時定数を小さくし、高速化す
る方法が効果的である。 まず、この回路動作を説明する。この回路では、入力信
号VINは参照電圧V!3Bと比較され、入力信号の高
低によって出力信号として肯定信号VORと否定信号V
NORとが得られる。電流源回路C8において、電流源
トランジスタQ、のベースは抵抗R1とダイオードDi
、D2でバイアスされ、動作電流は電流制限抵抗R4で
決まる。この動作電流と抵抗R1、R2とで決まる信号
振幅が出力信号の信号振幅となる。−1方、回路動作の
安定化のために、抵抗R3もR1、R2と同じn形抵抗
で形成されることが好ましい。 次にn形抵抗の一構成例を第3図に示す。この例では、
基板p−3ub上に形成されたn形エピタキシャル層n
ai1層を絶縁物l501で分離し、n形不純物を拡散
またはイオン打ち込みして形成したn暦を抵抗層として
用いている。また電極N工、N2との接触抵抗を軽減す
るためにn−層を電極下に設けている。尚、I so、
は#@縁用のms膜である。 上記のゲート回路を複数個設け、2種の電源電圧で駆動
する場合の例を第4図で説明する。第1の電流源回路C
81は第1の電源電圧VEE工で駆動され、第2の電流
源回路C82は第2の電源電圧V EE2で駆動される
。この様に2種の電源電圧を用いるのは、出来る限り低
い電源電圧で駆動し全体の消費電力を小さくするためで
ある。このゲート回路を含む半導体集積回路を電gPS
で駆動する場合、第1.の電源E1と第2の電源E2が
独立して動作するならば、Elの変化とR2の変化とが
互いに逆に変化することがある。すなわち、最も低い電
源電圧であるVEElが高くなるように変化し、もう一
方の電源電圧VEE2が低くなるように変化する場合が
起こる。また回路の動作マージンを検査する場合にも同
様なことが起こる。例えば、VEE、が−5,2vから
一20%変化L−4,16Vになり、vEE、が−4,
Ovから+20%変化し−4,80Vになる ここで基板はVEE工てバイアスされているため第5図
に示すように基板をベースとし、1層をエミッタとする
寄生トランジスタQpの導通が起こってしまう。この寄
生トランジスタにより、電極N1をコレクタとし電極N
2をエミッタとする電流バスが生じ、両電極間の実効的
な抵抗値は小さくなる。その結果1例えば、ゲート回路
の動作電流の異常が起こり、正常な回路動作が損なわれ
る。
In conventional semiconductor integrated circuits, especially when speeding up the gate circuit as shown in Fig. 2, the transistors used are
In addition to improving the performance of Q5, the resistors R1 to R4 to be used
It is necessary to reduce the parasitic capacitance of This is because the speed of the gate circuit strongly depends on the time constant of the collector section of the transistor forming the current switch. For this purpose, resistors formed with n-type impurity layers (hereinafter referred to as n-layer resistors) are used for resistors R, R2, and the stray capacitance of the collector portion (the total value of the parasitic capacitance of the transistor and the resistor, the parasitic capacitance of the wiring, etc.) is ) is effective to reduce the time constant and speed up the process. First, the operation of this circuit will be explained. In this circuit, the input signal VIN is the reference voltage V! 3B, and depending on the level of the input signal, the output signal is an affirmative signal VOR and a negative signal V
NOR is obtained. In the current source circuit C8, the base of the current source transistor Q is connected to the resistor R1 and the diode Di.
, D2, and the operating current is determined by the current limiting resistor R4. The signal amplitude determined by this operating current and resistors R1 and R2 becomes the signal amplitude of the output signal. On the other hand, in order to stabilize the circuit operation, it is preferable that the resistor R3 is also formed of the same n-type resistor as R1 and R2. Next, an example of the configuration of an n-type resistor is shown in FIG. In this example,
n-type epitaxial layer n formed on substrate p-3ub
The ai1 layer is separated by an insulator l501, and an n-type impurity formed by diffusion or ion implantation is used as the resistance layer. Further, an n-layer is provided under the electrodes to reduce contact resistance with the electrodes N and N2. Furthermore, I so,
#@ is the ms film for the edge. An example in which a plurality of the above gate circuits are provided and driven with two types of power supply voltages will be explained with reference to FIG. First current source circuit C
81 is driven by the first power supply voltage VEE, and the second current source circuit C82 is driven by the second power supply voltage VEE2. The reason why two types of power supply voltages are used in this way is to drive at the lowest possible power supply voltage and reduce the overall power consumption. A semiconductor integrated circuit including this gate circuit can be converted into an electric gPS.
When driving with 1st. If the power source E1 and the second power source E2 operate independently, the changes in El and the changes in R2 may change inversely to each other. That is, a case may occur in which the lowest power supply voltage VEEl changes to become higher and the other power supply voltage VEE2 changes to become lower. A similar situation also occurs when testing the operating margin of a circuit. For example, VEE changes from -5.2V to L-4.16V by 20%, and vEE becomes -4.
It changes by +20% from Ov to -4.80V. At this point, the substrate is biased by VEE, so as shown in Figure 5, the parasitic transistor Qp, which has the substrate as its base and the first layer as its emitter, becomes conductive. Put it away. This parasitic transistor causes the electrode N1 to be the collector and the electrode N1 to be the collector.
A current bus is generated with 2 as the emitter, and the effective resistance value between the two electrodes becomes small. As a result, for example, an abnormality occurs in the operating current of the gate circuit, impairing normal circuit operation.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記従来技術は、n形不純物層で形成した抵抗を使用し
、複数の電源電圧で駆動される半導体回路での、基板を
ベースとする寄生トランジスタの導通による回路の異常
動作の点について配慮がされておらず、安定な動作をす
る回路の実現が困難であった。本発明の目的はn形不純
物層で形成した抵抗を使用する際、寄生トランジスタに
よる回路の異常動作を防止し、同抵抗の寄生容量が小さ
い特長を生かした高速の半導体集積回路を提供すること
にある。
The above conventional technology uses a resistor formed with an n-type impurity layer, and takes into consideration the abnormal operation of the circuit due to conduction of a parasitic transistor based on the substrate in a semiconductor circuit driven by multiple power supply voltages. This made it difficult to realize a circuit with stable operation. The purpose of the present invention is to prevent abnormal circuit operation caused by parasitic transistors when using a resistor formed with an n-type impurity layer, and to provide a high-speed semiconductor integrated circuit that takes advantage of the resistor's small parasitic capacitance. be.

【課題を解決するための手段】[Means to solve the problem]

上記目的は、n形不純物層で形成した抵抗を負荷抵抗と
して使用する際、動作電流の発生回路の一部にカレント
ミラー回路を用いることにより達成される。
The above object is achieved by using a current mirror circuit as part of an operating current generating circuit when a resistor formed of an n-type impurity layer is used as a load resistor.

【作用1 カレントミラー回路を使用することにより、n形不純物
層で形成した抵抗の電極に加わる電圧を、基板をバイア
スする電源電圧より常に高くする。 それによって、基板とn形不純物層とを逆バイアスでき
るので、基板をベース、上記抵抗の電極をエミッタとす
る寄生トランジスタの導通による回路の誤動作を防止で
きる。 (実施例] 以下、本発明の一実施例を第1図により説明する。この
実施例は電流源回路C8の一部に、カレントミラー回路
を使用している。すなわち、トランジスタQ、とダイオ
ードD、とてカレントミラー回路を構成して動作電流を
発生し、トランジスタロ工〜Q、と抵抗R1、R2とで
構成されたカレントスイッチに供給している。これによ
り電源電圧VE[に直接接続される抵抗を無くすことが
可能になリ、寄生トランジスタの導通を防止できる。す
なわち、上記の如く電源電圧が変化した場合でも、ダイ
オードD、の順方向電圧VBE(約0.8V)分だけ寄
生トランジスタの導通に対する余裕度が広がる。この例
で電源電圧を+20%変化させた時でも、この0.8V
を考慮すると逆バイアス電圧は0.16Vとなり、寄生
トランジスタは導通することが無い。尚この実施例では
ダイオードD3に流す電流を抵抗R9のみで発生してい
る。この抵抗は負荷抵抗R□、R2の製造時のバラツキ
を補償するためにn形抵抗で構成するのが好ましい。 もちろんこれに限定されるものではない。 ダイオードDJに流す電流の発生方法として他の方法を
適用した例を第6図で説明する。この例は、トランジス
タロ5.抵抗R,,R7,ダイオードD4.D、で電流
源を構成している。この回路でトランジスタQ、とダイ
オードD、を同じ構造で同じエミッタ面積のトランジス
タで構成すると、Q、を流れる動作電流は、ダイオード
D、を流れる電流に等しくなる。すなわち動作電流は、
電流制限抵抗R6で決まる電流と、ダイオードD4、D
、を流れる電流の合計電流となる。ここでD4、D、を
流れる電流を小さくすれば、D、を流れる電流は近似的
に抵抗R5で決まるようになる。従って。 この回路で抵抗R6をn形抵抗で構成することにより、
同抵抗の製造時のバラツキを補償することが出来るよう
になる。更に抵抗Rr、の値は上記ゲート回路の負荷抵
抗R1、R2とほぼ同じ値に設計できるため、レイアウ
トに起因する製造時のバラツキをも補償できる。 次にダイオードD、、D、を流れる電流をも考慮した、
もう一つの実施例を第7図に示す。この回路では、ダイ
オードD4、D、に流れる電流を1ヘランジスタQ7.
抵抗R,,R9,ダイオードD6、D7で構成した電流
源で、電FA電圧VEHにバイパスして流すようにして
いる。更に、ダイオードDJにダイオードD7を、トラ
ンジスタQ5にダイオードDGをそれぞれ直列に挿入し
ている。これによりトランジスタQ、を流れる動作電流
をn形抵抗R6で決めることが出来るようになり、より
精度良くn形抵抗の補償を行うことが可能となる。 なお、ダイオードDs、 D、はトランジスタQ7の飽
和を防止するためであり、D3のアノードとQ、のエミ
ッタとを結線しダイオードを共通にすることも可能であ
る。 以上、n形抵抗とカレントミラー回路とを組合せた本実
施例によれば、寄生トランジスタの導通を防止出来る効
果がある。 同様な効果を得るための、もう一つの実施例について第
4図を用いて説明する。従来、第1の電源E1と第2の
電源E2は、独立して設けられていた。このため、これ
らの電源を、n形抵抗を用いた半導体集積回路の駆動に
使用した場合、前記の高低が逆転する問題を生じ易い欠
点を有していた。このため本実施例では、両電源間に制
御回路pcを設けている。 この制御回路pcは、両電源が独立に変化するのを防止
し、例えば、電源E1が+20%変化すると電源E2も
+20%変化するように動作する。 これにより、複数の電源電圧を使用する半導体集積回路
にも、n形抵抗を使用することが出来るようになり、同
抵抗のもつ寄生容量が小さいことによる回路の高速化を
可能にする。尚基板をバイアスする専用の電源を別途設
けることでも、同様の効果を得ることが出来る。 【発明の効果】 本発明によれば、寄生容量の小さなn形不純物層で形成
した抵抗をゲート回路等の負荷抵抗として用いることが
出来るので、寄生容量低減により高速化した半導体集積
回路を実現出来る効果がある。
[Operation 1] By using a current mirror circuit, the voltage applied to the electrode of the resistor formed of the n-type impurity layer is always higher than the power supply voltage that biases the substrate. As a result, the substrate and the n-type impurity layer can be reverse biased, thereby preventing malfunction of the circuit due to conduction of a parasitic transistor whose base is the substrate and whose emitter is the electrode of the resistor. (Embodiment) An embodiment of the present invention will be described below with reference to FIG. 1. In this embodiment, a current mirror circuit is used as a part of the current source circuit C8. That is, a transistor Q and a diode D , constitutes a current mirror circuit to generate an operating current, and supplies it to a current switch composed of transistors ~Q and resistors R1 and R2. This makes it possible to eliminate the resistance of the parasitic transistor, thereby preventing conduction of the parasitic transistor.In other words, even when the power supply voltage changes as described above, the parasitic transistor is reduced by the forward voltage VBE (approximately 0.8V) of the diode D. In this example, even when the power supply voltage is changed by +20%, this 0.8V
Considering this, the reverse bias voltage is 0.16V, and the parasitic transistor does not become conductive. In this embodiment, the current flowing through the diode D3 is generated only by the resistor R9. This resistor is preferably constructed of an n-type resistor in order to compensate for manufacturing variations in the load resistors R□ and R2. Of course, it is not limited to this. An example in which another method is applied to generate the current flowing through the diode DJ will be explained with reference to FIG. This example uses Transistoro 5. Resistor R,, R7, diode D4. D constitutes a current source. In this circuit, if transistor Q and diode D are configured with transistors having the same structure and the same emitter area, the operating current flowing through Q will be equal to the current flowing through diode D. In other words, the operating current is
The current determined by the current limiting resistor R6 and the diodes D4 and D
, is the total current flowing through . If the current flowing through D4 and D is made small, the current flowing through D will be approximately determined by the resistor R5. Therefore. By configuring resistor R6 with an n-type resistor in this circuit,
It becomes possible to compensate for variations in the manufacturing process of the same resistor. Furthermore, since the value of the resistor Rr can be designed to be approximately the same value as the load resistors R1 and R2 of the gate circuit, it is possible to compensate for manufacturing variations due to layout. Next, considering the current flowing through the diodes D, D,
Another embodiment is shown in FIG. In this circuit, the current flowing through the diodes D4, D, and the transistor Q7.
A current source composed of resistors R, , R9 and diodes D6 and D7 is used to bypass the electric FA voltage VEH. Further, a diode D7 is inserted in series with the diode DJ, and a diode DG is inserted in series with the transistor Q5. As a result, the operating current flowing through the transistor Q can be determined by the n-type resistor R6, and it becomes possible to compensate for the n-type resistor with higher accuracy. Note that the diodes Ds and D are used to prevent saturation of the transistor Q7, and it is also possible to connect the anode of D3 and the emitter of Q to make the diodes common. As described above, according to this embodiment in which an n-type resistor and a current mirror circuit are combined, conduction of the parasitic transistor can be prevented. Another embodiment for obtaining the same effect will be described with reference to FIG. 4. Conventionally, the first power source E1 and the second power source E2 were provided independently. For this reason, when these power supplies are used to drive a semiconductor integrated circuit using an n-type resistor, they have the disadvantage that the above-mentioned height is likely to be reversed. For this reason, in this embodiment, a control circuit pc is provided between both power supplies. This control circuit pc prevents the two power supplies from changing independently, and operates so that, for example, when the power source E1 changes by +20%, the power source E2 also changes by +20%. This makes it possible to use n-type resistors even in semiconductor integrated circuits that use a plurality of power supply voltages, and the small parasitic capacitance of the resistors makes it possible to speed up the circuit. Note that the same effect can be obtained by separately providing a dedicated power source for biasing the substrate. [Effects of the Invention] According to the present invention, a resistor formed of an n-type impurity layer with a small parasitic capacitance can be used as a load resistor for a gate circuit, etc., so a semiconductor integrated circuit can be realized with higher speed by reducing the parasitic capacitance. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の、ゲート回路の回路図、第
2図は従来の回路例にn形抵抗使用した、ゲート回路の
回路図、第3図はn形不純物層で形成した抵抗の断面図
、第4図は従来例の、複数の電源を使用した半導体集積
回路の電流源の回路図、第5図はn形不純物層で形成し
た抵抗で、寄生トランジスタの導通を説明するための断
面図、第6図は本発明の一実施例の、電流源回路図、第
7図は本発明のもう一つの実施例の、電流源回路図であ
る。 符号の説明 Q1〜Q7・・・トランジスタ、R工〜R7・・・抵抗
、D1〜D7・・・ダイオード、C8・・・電流源回路
、pc・・・制御回路、E1〜E2・・・電源、QP・
・・寄生トランジスタ、N1〜N2・・・電極、r S
o、〜I So2・・・絶縁物 第 〕 図 第4図 第7図 ylr: 第7@
Figure 1 is a circuit diagram of a gate circuit according to an embodiment of the present invention, Figure 2 is a circuit diagram of a gate circuit using an n-type resistor in a conventional circuit example, and Figure 3 is a circuit diagram of a gate circuit formed with an n-type impurity layer. A cross-sectional view of a resistor, Figure 4 is a circuit diagram of a conventional current source for a semiconductor integrated circuit using multiple power supplies, and Figure 5 is a resistor formed with an n-type impurity layer to explain the conduction of a parasitic transistor. 6 is a current source circuit diagram of one embodiment of the present invention, and FIG. 7 is a current source circuit diagram of another embodiment of the present invention. Explanation of symbols Q1-Q7...Transistor, R-R7...Resistor, D1-D7...Diode, C8...Current source circuit, PC...Control circuit, E1-E2...Power supply ,QP・
... Parasitic transistor, N1-N2 ... Electrode, r S
o, ~I So2...Insulator] Figure 4 Figure 7 ylr: Figure 7 @

Claims (1)

【特許請求の範囲】 1、負荷抵抗に動作電流を流して生ずる電圧を信号電圧
として用いる半導体集積回路において、該負荷抵抗にn
形不純物層で形成した抵抗を使用するとともに、回路の
一部にカレントミラー回路を使用した電流源回路で、該
動作電流を発生することを特徴とした半導体集積回路。 2、特許請求範囲第1項記載のカレントミラー回路にお
いて、電流値を決める電流制限抵抗に上記第1項記載の
負荷抵抗と同一構造のn形不純物層で形成した抵抗を使
用したことを特徴とした半導体集積回路。 3、負荷抵抗に動作電流を流して生ずる電圧を信号電圧
とした回路を、内部回路に用いるとともに、複数の電源
電圧で駆動される半導体集積回路を使用する情報処理装
置において、少なくとも一電源は、基板をバイアスする
電源の変化と同一の変化をするように制御された電源で
、半導体集積回路を駆動することを特徴とする情報処理
装置。
[Claims] 1. In a semiconductor integrated circuit that uses a voltage generated by passing an operating current through a load resistor as a signal voltage, the load resistor has n
1. A semiconductor integrated circuit characterized in that the operating current is generated by a current source circuit that uses a resistor formed of a shaped impurity layer and a current mirror circuit in a part of the circuit. 2. In the current mirror circuit according to claim 1, a resistor formed of an n-type impurity layer having the same structure as the load resistor according to claim 1 is used as the current limiting resistor that determines the current value. semiconductor integrated circuit. 3. In an information processing device that uses a circuit whose signal voltage is a voltage generated by passing an operating current through a load resistor as an internal circuit, and also uses a semiconductor integrated circuit driven by a plurality of power supply voltages, at least one power supply: An information processing device characterized in that a semiconductor integrated circuit is driven by a power source that is controlled to make the same changes as changes in a power source that biases a substrate.
JP18362988A 1988-07-25 1988-07-25 Semiconductor integrated circuit Pending JPH0234015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18362988A JPH0234015A (en) 1988-07-25 1988-07-25 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18362988A JPH0234015A (en) 1988-07-25 1988-07-25 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0234015A true JPH0234015A (en) 1990-02-05

Family

ID=16139114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18362988A Pending JPH0234015A (en) 1988-07-25 1988-07-25 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0234015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067188A (en) * 2006-09-08 2008-03-21 Ricoh Co Ltd Differential amplifier circuit and charge controller using the differential amplifier circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067188A (en) * 2006-09-08 2008-03-21 Ricoh Co Ltd Differential amplifier circuit and charge controller using the differential amplifier circuit
US8102156B2 (en) 2006-09-08 2012-01-24 Ricoh Company, Ltd. Differential amplifier circuit and electric charge control apparatus using differential amplifier circuit

Similar Documents

Publication Publication Date Title
US5028811A (en) Circuit for controlling a power MOS transistor on an inductive load
US4138614A (en) JFET switch circuit
US4115711A (en) Threshold circuit with hysteresis
US4633095A (en) Monolithic semiconductor integrated a.c. switch circuit
JPH0234015A (en) Semiconductor integrated circuit
EP0041363A1 (en) Schmitt trigger circuit with a hysteresis characteristic
JPH0249575B2 (en)
US3970866A (en) Logic gate circuits
US4032796A (en) Logic dot-and gate circuits
US4139781A (en) Logic gate circuits
JPS597245B2 (en) hand dryer warmer
JPH0267819A (en) Semiconductor circuit device for high-speed switching process
JP3199857B2 (en) Conductivity modulation type MOSFET
US5543747A (en) Bipolar integrated device having parasitic current detector
JPH03227118A (en) Semiconductor logic circuit
JPS61158175A (en) Planar-type transistor device
JP2586601B2 (en) Current mirror circuit
JPH0441847B2 (en)
US5543642A (en) P-channel transistor
JPH0832436A (en) Semiconductor integrated circuit
JPH02137516A (en) Semiconductor switch driving circuit
JP2674274B2 (en) Reference voltage circuit
JPH02136563A (en) Semiconductor switching circuit and semiconductor ic element
JP2696300B2 (en) Two-terminal photoelectric conversion element
JPH0127586B2 (en)