JPH0233920A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPH0233920A
JPH0233920A JP18401988A JP18401988A JPH0233920A JP H0233920 A JPH0233920 A JP H0233920A JP 18401988 A JP18401988 A JP 18401988A JP 18401988 A JP18401988 A JP 18401988A JP H0233920 A JPH0233920 A JP H0233920A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
wafer
semiconductor manufacturing
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18401988A
Other languages
Japanese (ja)
Inventor
Yoshihiko Okamoto
岡本 佳彦
Yasuyuki Hashizume
靖之 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18401988A priority Critical patent/JPH0233920A/en
Publication of JPH0233920A publication Critical patent/JPH0233920A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To treat wafers uniformly by a method wherein the cross-section of a reaction chamber is gradually reduced along the direction from the one end of the chamber to the other and the wafers near the one end and the wafers near the other end are brought into contact with the same number of gas particles. CONSTITUTION:The inner wall of a reaction chamber 1 is corrugated along its longitudinal direction. The cross-section of the reaction chamber 1 is gradually reduced along the direction from the gas introducing side 4a to the gas exhaust side 5a of the chamber 1. Reactive gas 4 is discharged from the gas exhaust side 5a of the reaction chamber 1 as exhaust gas. The flow speed of the gas is gradually accelerated. Therefore, even if the concentration of the gas 4 is low near the exhaust side 5a, wafers 2 near the exhaust side 5a are brought into contact with the same number of the particles of the gas 4 as the wafers 2 near the introducing side 4a. With this constitution, the wafers 2 are treated uniformly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発朗は、反応室内にガスを導入することによりウェ
ーハに所望の処理を施す半導体製造装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a semiconductor manufacturing apparatus that performs desired processing on a wafer by introducing a gas into a reaction chamber.

〔従来の技術〕[Conventional technology]

第5図は従来から減圧下における化学的気相成f%(C
VD)および酸化・拡散に用いられている横型反応室を
示す断面図であり、その断面形状は円形になっている。
Figure 5 shows the chemical vapor phase composition f% (C
FIG. 2 is a cross-sectional view showing a horizontal reaction chamber used for VD) and oxidation/diffusion, and its cross-sectional shape is circular.

図において、1は反応室である。In the figure, 1 is a reaction chamber.

第6図は反応室1内につ丁−ハを収納した場合の断面図
である。図において、2はウェーハ、3はウェーハ2を
並べるボート、4は反応室1内に導入される反応ガス、
5は反応室1より排出される排出ガスである。4aは反
応室1のガス導入側、5aはガス排出側である。
FIG. 6 is a cross-sectional view of the case where the tube is housed in the reaction chamber 1. In the figure, 2 is a wafer, 3 is a boat in which the wafers 2 are arranged, 4 is a reaction gas introduced into the reaction chamber 1,
5 is exhaust gas discharged from the reaction chamber 1. 4a is the gas introduction side of the reaction chamber 1, and 5a is the gas discharge side.

次に動作について説明する。「ウェーハ2をボート3に
乗せ反応室1内に収納し、ガス導入側4aより反応ガス
4を導入する。反応室1に導入された反応ガス4は、反
応室1の内壁とボート3に並んだウェハ2との隙間を通
過したり、あるいは・りニーム2どうしの隙間を通過し
たりする。そして、反応ガス4はウェーハ2と化学反応
を起こしつニーム2上に処理(膜の形成等)が施される
。その後、反応ガス4は、排出ガス5となりガス排出側
5aより排出される。
Next, the operation will be explained. The wafer 2 is placed on the boat 3 and stored in the reaction chamber 1, and the reaction gas 4 is introduced from the gas introduction side 4a. The reactant gas 4 then passes through the gap with the wafer 2, or through the gap between the neem 2.Then, the reaction gas 4 causes a chemical reaction with the wafer 2 and processes the neem 2 (forming a film, etc.). Thereafter, the reaction gas 4 becomes exhaust gas 5 and is discharged from the gas discharge side 5a.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体製造装置は以上のように構成されているの
で、ガス排出側5aでの反応ガス4の濃度が、上記反応
のためガス導入側4aでのそれより薄くなっており、ウ
ェーハ2への処理の度合が、ガス導入側4aとガス排出
側5aとで相違するという問題点があった。また、ウェ
ーハ2を乗せたボート3を反応室1内に収納する場合、
ボート3と反応室1の内壁とがこすれ、異物が生じ、こ
の状態で反応室1内に反応ガス4を導入した場合、この
異物が舞い上り、ウェーハ2の表面に付着するという問
題点があった。
Since the conventional semiconductor manufacturing apparatus is configured as described above, the concentration of the reaction gas 4 on the gas discharge side 5a is lower than that on the gas introduction side 4a due to the above reaction, and the concentration of the reaction gas 4 on the wafer 2 is lower than that on the gas introduction side 4a. There was a problem in that the degree of treatment was different between the gas introduction side 4a and the gas discharge side 5a. Furthermore, when storing the boat 3 carrying the wafers 2 in the reaction chamber 1,
When the boat 3 and the inner wall of the reaction chamber 1 rub against each other, foreign matter is generated, and when the reaction gas 4 is introduced into the reaction chamber 1 in this state, there is a problem that this foreign matter flies up and adheres to the surface of the wafer 2. Ta.

この発明は上記のような問題点を解決するためになされ
たもので、ウェーハ処理を均等に行うことができる半導
体製造装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to obtain a semiconductor manufacturing apparatus that can uniformly process wafers.

また、反応室内に異物が生じた場合、異物が舞い上らな
い半導体製造装置を得ることを目的とする。
Another object of the present invention is to obtain a semiconductor manufacturing apparatus in which foreign matter does not fly up when it occurs in a reaction chamber.

〔課題を解決するための手段〕[Means to solve the problem]

第1の態様において、この発明に係る半導体製造装置は
、処理すべきウェーハを収納し、一方端よりガスを導入
し、他方端より前記ガスを排出することにより、前記ウ
ェーハに所望の処理を施す筒状の反応室を有する半導体
製造装置であって、前記反応室の断面積を前記一方端か
ら前記他方端方向へ次第に小さくした構成としている。
In a first aspect, the semiconductor manufacturing apparatus according to the present invention houses a wafer to be processed, and performs desired processing on the wafer by introducing gas from one end and discharging the gas from the other end. The semiconductor manufacturing apparatus has a cylindrical reaction chamber, and the cross-sectional area of the reaction chamber is gradually reduced from the one end toward the other end.

第2の態様において、この発明に係る半導体製造装置は
、処理すべきウェーハを内壁下面に収納し、一方端より
ガスを導入し他方端より前記ガスを排出することにより
前記ウェーハに所望の処理を施す筒状の反応室を有する
半導体製造装置であって、前記反応室の内壁下面を前記
反応室の長手方向に沿って凹凸を繰り返す凹凸形状にし
た構成としている。
In a second aspect, the semiconductor manufacturing apparatus according to the present invention stores the wafer to be processed on the lower surface of the inner wall, and performs desired processing on the wafer by introducing gas from one end and discharging the gas from the other end. The present invention is a semiconductor manufacturing apparatus having a cylindrical reaction chamber, in which a lower surface of an inner wall of the reaction chamber has an uneven shape that repeats unevenness along the longitudinal direction of the reaction chamber.

〔作用〕[Effect]

この発明の第1の態様においては、反応室の一方端から
他方端にかけて反応室の断面積を次第に小さくしたので
前記一方端からガスを導入し、前記他方端へガスを排出
する場合、前記他方端付近でガスの速度が増す。このた
め、前記他方端でガス濃度が薄くなっても、単位時間当
りに前記他方端付近のウェーハに接するガスの粒子の数
が前記一方端付近のウェーハに接するガスの粒子の数と
等しくなる。
In the first aspect of the invention, the cross-sectional area of the reaction chamber is gradually reduced from one end of the reaction chamber to the other end. The velocity of the gas increases near the edge. Therefore, even if the gas concentration is reduced at the other end, the number of gas particles that come into contact with the wafer near the other end per unit time is equal to the number of gas particles that come into contact with the wafer near the one end.

この発明の第2の態様においては、反応室の内壁下面を
前記反応室の長手方向に沿って凹凸を繰り返す凹凸形状
にしたので、反応室内にガスを導入すると前記凹部にお
いて渦が生じ、この渦は、ウェーハを反応室内へ収納す
る時に生じた異物を巻き込み粘性の作用により凹部壁面
で集束する。
In the second aspect of the invention, the lower surface of the inner wall of the reaction chamber has an uneven shape that repeats unevenness along the longitudinal direction of the reaction chamber, so that when gas is introduced into the reaction chamber, a vortex is generated in the recess, and this vortex is formed. This traps foreign matter generated when the wafer is stored in the reaction chamber and focuses it on the wall of the recess due to the action of viscosity.

そのため、異物は凹部内壁に溜る。Therefore, foreign matter accumulates on the inner wall of the recess.

〔実施例〕〔Example〕

第1図(a)はこの発明に係る半導体製造装置で用いら
れる反応室の一例を示す断面図である。第1図(b)は
、第1図(a)のA−A’線に沿っての断面図である。
FIG. 1(a) is a sectional view showing an example of a reaction chamber used in a semiconductor manufacturing apparatus according to the present invention. FIG. 1(b) is a sectional view taken along line AA' in FIG. 1(a).

第2図は第1図に示した反応室1内に処理されるべきウ
ェーハ2を収納したときの状態を示ず。従来例の反応室
1との相違点は、反応室1の内壁を反応室1の長手方向
に波形を繰り返す形状にし、かつ反応室1のガス導入側
4aからガス排出側5bへ次第にその断面積を小さくし
ていることである。
FIG. 2 does not show the state when the wafer 2 to be processed is housed in the reaction chamber 1 shown in FIG. 1. The difference from the conventional reaction chamber 1 is that the inner wall of the reaction chamber 1 has a repeating wave shape in the longitudinal direction of the reaction chamber 1, and its cross-sectional area gradually increases from the gas inlet side 4a to the gas outlet side 5b of the reaction chamber 1. This is to make it smaller.

次に動作について説明する。まず、ウェーハ2を乗せた
ボート3を反応室1内へ収納する。この場合、反応室1
とボート3の接触により異物6が生じ、反応室1の内壁
下部に溜る。その後、従来例と同様反応室1のガス導入
側4aから反応ガス4を導入する。反応ガス4は反応室
1内のボート3に並んだウェーハ2と反応室1の間を通
り、反応室1のガス排出側5aから排出ガス5として排
出される。このとき、反応室1の断面積をガス導入側4
aからガス排出側5bにかけて次第に小さくしているの
で、反応ガス4の速度が次第に速くなる。そのため、ガ
ス排出側5aでは付近の反応ガス4の濃度が薄くても、
単位時間にウェーハ2に接触する反応ガス4の粒子の数
は、ガス導入側4a付近とガス排出側5a付近とでは等
しくなり、ウェーハ2に施される処理(例えばウェーハ
2上に形成される膜の厚さ)は等しくなる。
Next, the operation will be explained. First, the boat 3 carrying the wafers 2 is stored in the reaction chamber 1. In this case, reaction chamber 1
Foreign matter 6 is generated due to the contact between the boat 3 and the boat 3, and accumulates at the lower part of the inner wall of the reaction chamber 1. Thereafter, the reaction gas 4 is introduced from the gas introduction side 4a of the reaction chamber 1 as in the conventional example. The reaction gas 4 passes between the wafers 2 lined up in the boat 3 in the reaction chamber 1 and the reaction chamber 1, and is discharged as exhaust gas 5 from the gas discharge side 5a of the reaction chamber 1. At this time, the cross-sectional area of the reaction chamber 1 is changed to the gas introduction side 4
Since the velocity of the reaction gas 4 gradually decreases from a to the gas discharge side 5b, the velocity of the reaction gas 4 gradually increases. Therefore, even if the concentration of the nearby reaction gas 4 is low on the gas discharge side 5a,
The number of particles of the reactive gas 4 that come into contact with the wafer 2 per unit time is equal near the gas introduction side 4a and near the gas discharge side 5a, thickness) will be equal.

また、第2図(b)に示すように、反応ガス4はボート
3と反応室1の間を通る。この場合、反応室1の内壁の
波形形状のため、凹部と凸部に圧力差を生じ、四部にお
いて反応ガス4の渦7が発生する。渦7は異物6を巻き
込み、反応室1の四部壁面で粘性の作用から集束する。
Further, as shown in FIG. 2(b), the reaction gas 4 passes between the boat 3 and the reaction chamber 1. In this case, due to the waveform shape of the inner wall of the reaction chamber 1, a pressure difference is generated between the concave portion and the convex portion, and a vortex 7 of the reaction gas 4 is generated in the four portions. The vortex 7 entrains the foreign matter 6 and converges on the four walls of the reaction chamber 1 due to the action of viscosity.

そのため凹部に異物6が堆積するとともに、渦7の集束
部であるため、異物が舞い上らず、異物6がウェーハ2
の表面に付着することはない。
Therefore, the foreign matter 6 is deposited in the concave portion, and since it is a convergence part of the vortex 7, the foreign matter does not fly up, and the foreign matter 6 is deposited on the wafer 2.
will not adhere to the surface.

第3図及び第4図はこの発明の他の実施例を示す断面図
である。第3図、第4図において第3図(b)、第4図
(b)は各々第3図(a)のB−8’線、第4図(a)
のc−c’線に沿っての断面図を示している。これらの
実施例では、反応室1の内壁の形状を波形でない凹凸形
状にしている。このような形状にしても、反応室1内に
反応ガスを導入すると上記実施例と同様凹部において渦
が発生し、この渦は凹部内壁で収束する。そのため、渦
が異物を巻き込み、異物が凹部に溜り舞い上らず、つニ
ーハ表面に付着することはない。
FIGS. 3 and 4 are sectional views showing other embodiments of the present invention. In Figures 3 and 4, Figures 3(b) and 4(b) are line B-8' in Figure 3(a) and Figure 4(a), respectively.
A cross-sectional view taken along line c-c' is shown. In these embodiments, the inner wall of the reaction chamber 1 has an uneven shape that is not a corrugated shape. Even with such a shape, when a reaction gas is introduced into the reaction chamber 1, a vortex is generated in the recess as in the above embodiment, and this vortex converges on the inner wall of the recess. Therefore, the vortex does not engulf foreign matter, and the foreign matter does not accumulate in the recess and fly up, and does not adhere to the surface of the knee.

なお、反応室1の内壁の凹凸形状は、反応室1内に反応
ガスを導入した場合、四部において渦が生じ、この渦が
凹部内壁で収束するような形状であればいかなる形状で
あってもよい。
Note that the uneven shape of the inner wall of the reaction chamber 1 may be any shape as long as it is such that when a reaction gas is introduced into the reaction chamber 1, a vortex is generated in the four parts, and this vortex converges on the inner wall of the recessed part. good.

また、上記実施例では、反応室1の内壁全体を凹凸形状
にしたが、下面のみを凹凸形状にしても、異物6が舞い
上らないという効果が得られる。
Further, in the above embodiment, the entire inner wall of the reaction chamber 1 is made uneven, but even if only the lower surface is made uneven, the effect that the foreign matter 6 will not fly up can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、請求項1の半導体製造装置によれば、反
応室の断面積を一方端から他方端方向へ次第に小さくし
たので、前記一方端よりガスを導入し、前記他方端より
排出する場合、前記他方端付近でガスの速度が増す。そ
のため、前記他方端でガス濃度が薄くなっても、単位時
間当りにつニーハに接触するガスの粒子の数は、前記一
方端付近と直配弛万端付近では等しくなり、その結果ウ
ェーハの処理を均一に行うことができるという効果があ
る。
As described above, according to the semiconductor manufacturing apparatus of the first aspect, the cross-sectional area of the reaction chamber is gradually reduced from one end to the other end, so that when gas is introduced from the one end and discharged from the other end, , the velocity of the gas increases near the other end. Therefore, even if the gas concentration becomes thinner at the other end, the number of gas particles that come into contact with the knee per unit time is the same near the one end and near the direct loosening end, resulting in a reduction in wafer processing. This has the advantage that it can be done evenly.

また、請求項2の半導体製造装置によれば、反応室の内
壁下面を前記反応室の長手方向に沿って凹凸を繰り返す
凹凸形状にしたので、反応室の一方端からガスを導入し
、他方端より排出する場合、反応室内壁の凹部にガスの
渦が生じ、この渦は四部壁面で粘性の作用により収束す
る。そのため、前記反応室下面に異物が生じても、この
異物は凹部に堆積し、ガス導入により舞い上ることはな
い。
Further, according to the semiconductor manufacturing apparatus of claim 2, the lower surface of the inner wall of the reaction chamber has an uneven shape that repeats unevenness along the longitudinal direction of the reaction chamber, so that gas is introduced from one end of the reaction chamber, and the gas is introduced from the other end. When discharging more gas, a gas vortex is generated in the recessed portion of the inner wall of the reaction chamber, and this vortex converges on the four walls due to the action of viscosity. Therefore, even if foreign matter occurs on the lower surface of the reaction chamber, the foreign matter will be deposited in the recess and will not fly up when gas is introduced.

その結果、ウェー八表面に異物が付着しないという効果
がある。
As a result, there is an effect that foreign matter does not adhere to the surface of the wafer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る半導体製造装置に用いられる反
応室の一実施例を示す図、第2図は第1図に示した反応
室の動作を説明するための図、第3図及び第4図はこの
発明に用いられる反応室の他の実施例を示す図、第5図
は従来の半導体製造装置に用いられている反応室を示す
図、第6図は第5図に示した反応室の動作を説明するた
めの図である。 図において、1は反応室、2はウェーハ、4は反応ガス
、4aはガス導入側、5はすE比ガス、5aはガス排出
側である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing an embodiment of the reaction chamber used in the semiconductor manufacturing apparatus according to the present invention, FIG. 2 is a diagram for explaining the operation of the reaction chamber shown in FIG. 1, and FIGS. 4 is a diagram showing another embodiment of the reaction chamber used in the present invention, FIG. 5 is a diagram showing a reaction chamber used in conventional semiconductor manufacturing equipment, and FIG. 6 is a diagram showing the reaction chamber shown in FIG. 5. FIG. 3 is a diagram for explaining the operation of the chamber. In the figure, 1 is a reaction chamber, 2 is a wafer, 4 is a reaction gas, 4a is a gas introduction side, 5 is an E ratio gas, and 5a is a gas discharge side. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)処理すべきウェーハを収納し、一方端よりガスを
導入し、他方端より前記ガスを排出することにより、前
記ウェーハに所望の処理を施す筒状の反応室を有する半
導体製造装置であって、前記反応室の断面積を前記一方
端から前記他方端方向へ次第に小さくしたことを特徴と
する半導体製造装置。
(1) A semiconductor manufacturing apparatus having a cylindrical reaction chamber that houses a wafer to be processed and performs desired processing on the wafer by introducing gas from one end and discharging the gas from the other end. A semiconductor manufacturing apparatus characterized in that the cross-sectional area of the reaction chamber is gradually reduced from the one end to the other end.
(2)処理すべきウェーハを内壁下面に収納し、一方端
よりガスを導入し他方端より前記ガスを排出することに
より前記ウェーハに所望の処理を施す筒状の反応室を有
する半導体製造装置であつて、前記反応室の内壁下面を
前記反応室の長手方向に沿つて凹凸を繰り返す凹凸形状
にしたことを特徴とする半導体製造装置。
(2) A semiconductor manufacturing apparatus having a cylindrical reaction chamber in which the wafer to be processed is housed on the lower surface of the inner wall, and the wafer is subjected to desired processing by introducing gas from one end and discharging the gas from the other end. A semiconductor manufacturing apparatus characterized in that the lower surface of the inner wall of the reaction chamber has an uneven shape that repeats unevenness along the longitudinal direction of the reaction chamber.
JP18401988A 1988-07-22 1988-07-22 Semiconductor manufacturing equipment Pending JPH0233920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18401988A JPH0233920A (en) 1988-07-22 1988-07-22 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18401988A JPH0233920A (en) 1988-07-22 1988-07-22 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH0233920A true JPH0233920A (en) 1990-02-05

Family

ID=16145919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18401988A Pending JPH0233920A (en) 1988-07-22 1988-07-22 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0233920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135890A (en) * 1994-11-10 1996-05-31 Nippon Control Kogyo Kk Camera stand
JP2018075553A (en) * 2016-11-11 2018-05-17 トヨタ自動車株式会社 Air blow type washing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135890A (en) * 1994-11-10 1996-05-31 Nippon Control Kogyo Kk Camera stand
JP2018075553A (en) * 2016-11-11 2018-05-17 トヨタ自動車株式会社 Air blow type washing equipment
US20180133761A1 (en) * 2016-11-11 2018-05-17 Toyota Jidosha Kabushiki Kaisha Air-blow cleaning apparatus

Similar Documents

Publication Publication Date Title
EP0380119B1 (en) Microwave plasma processing apparatus
KR101061657B1 (en) Plasma processing apparatus and method and baffle plate of plasma processing apparatus
JP2000030896A (en) Plasma confining device
JPH02234419A (en) Plasma electrode
JP2700316B2 (en) Organic material surface modification method
US5210055A (en) Method for the plasma treatment of semiconductor devices
JPH0233920A (en) Semiconductor manufacturing equipment
JPH0437578B2 (en)
US4554047A (en) Downstream apparatus and technique
EP0140975A1 (en) Reactive ion etching apparatus
JPS60123032A (en) Plasma treatment and device thereof
JP2000235954A (en) Gas-discharging member
JPH04236425A (en) Plasma processing equipment
JPH0666301B2 (en) Plasma etching method
JP2000082698A (en) Plasma processing apparatus
JPH02198138A (en) Electrode plate of parallel plate type dry etching apparatus
JP2000188281A (en) Plasma process device, baffle plate, and plasma process
JPH07283203A (en) Surface treatment device
JP3164188B2 (en) Plasma processing equipment
JP2002334870A (en) Remote plasma-cleaning method of high-density plasma cvd system
JPH0212818A (en) Washing method of plasma processing equipment
JP3071729B2 (en) Plasma processing equipment
JP2967681B2 (en) Microwave plasma processing equipment
JPS61247032A (en) Taper etching method
JPH0555150A (en) Microwave plasma processing apparatus