JPH0233847B2 - KOONTAIMAMOSEI2SOSHOKETSUBARUBUSHIITO - Google Patents

KOONTAIMAMOSEI2SOSHOKETSUBARUBUSHIITO

Info

Publication number
JPH0233847B2
JPH0233847B2 JP324384A JP324384A JPH0233847B2 JP H0233847 B2 JPH0233847 B2 JP H0233847B2 JP 324384 A JP324384 A JP 324384A JP 324384 A JP324384 A JP 324384A JP H0233847 B2 JPH0233847 B2 JP H0233847B2
Authority
JP
Japan
Prior art keywords
layer
valve seat
less
sintered
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP324384A
Other languages
Japanese (ja)
Other versions
JPS60147513A (en
Inventor
Akira Manabe
Tetsuya Suganuma
Koji Kazuoka
Ryosuke Sagara
Toshio Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP324384A priority Critical patent/JPH0233847B2/en
Publication of JPS60147513A publication Critical patent/JPS60147513A/en
Publication of JPH0233847B2 publication Critical patent/JPH0233847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は内燃機関に用いられる鉄基焼結バルブ
シートに関するものである。 〔従来技術〕 内燃機関のバルブシートには、耐摩耗性が良好
であることから鉄系焼結合金が多用されている
が、バルブシートに要求される耐摩耗性、耐ゆる
み性および近年内燃機関の高性能化にともない要
求されるより良好な熱伝導性の各要件を満足させ
るためにはかなり高価な材料を使用しなければな
らない。これに対し、最近、低廉材を基材に用い
た2層構造のバルブシートが提案されている。し
かし、低廉材でかつ従来の高級材と同等の耐ゆる
み性を確保し、そして強個な界面接合強度を得る
ことは容易でない。これらの解決策として焼結合
金に銅を溶浸することにより、低廉基材を強化す
ることが考えられるが、コスト高になることと、
硬度上昇にともなう切削性の低下並びに第1層に
もCuが溶浸され焼結体の気孔が埋ることにより、
従来高温で気孔周辺に生成されていた潤滑作用を
もつ酸化物の形成がなされず耐摩耗性が低下する
という問題を生じていた。それ故、従来よりバル
ブシートとしての各要件を満足し得る2層構造の
バルブシートが要望されていた。 〔発明の目的〕 本発明は、上記従来の問題を解決し得るもの
で、耐摩耗性、耐ゆるみ性に優れかつ良熱伝導性
である低コストな2層構造のバルブシートを提供
せんとするものである。 〔発明の構成〕 本発明の2層焼結バルブシートは、バルブ当り
面を含む第1層と該第1層を支持する基材である
第2層とからなる2層構造の鉄基焼結合金であつ
て、 第1層が重量比でMo2.5〜15%、Co1〜15%、
C0.5〜1.5%、Pb5〜20%、残部Feおよび2%未
満の不純物からなる成分組成よりなり、かつ平均
粒子径10〜30μのフエロモリブデンを主体とする
硬質粒子が均一に分散した構成のものであり、 第2層が重量比でC0.5〜1.5%、Pb3〜20%、残
部Feおよび2%未満の不純物からなる成分組成
よりなり、そして 第1層および第2層の成分組成中のPbはとも
に焼結体の気孔中に溶浸された形で存在してお
り、かつ第1層と第2層のC量の差が0.3%以下
であることを特徴とする。 本発明において好ましくは、第2層がC0.5〜
1.5%、Pb3〜18%残部Feおよび2%未満の不純
物からなるものである。 また、本発明のバルブシートは第1層は前記第
1層成分のほかに更にCu0.5〜5%、Ni1〜15%、
Mn0.2〜2%、P0.05〜0.8%、B0.05〜0.8%、
Cr0.5〜20%、W0.5〜8%、V0.3〜8%および
Nb0.1〜3%のうち1種もしくは2種以上含むこ
とができる。 また更に、本発明のバルブシートにおいて、第
2層は前記第2層成分のほかに更にCu0.5〜5%、
Ni0.5〜5%、Mn0.2〜2%、P0.05〜0.8%、
B0.05〜0.8%、およびCr0.5〜5%のうち1種も
しくは2種以上を含むことができる。 なお、本明細書において%は重量%を示す。 以下、本発明で用いる各成分元素の限定理由に
ついて説明する。 まず本発明の第1層の成分について説明する
と、Mo(モリブデン)は主として耐摩耗粒子と
して存在し、一部はマトリツクスに固溶してこれ
を強化することから添加される。しかし、限定値
をはずれると特に耐摩耗性が低下するので好まし
くない。フエロモリブデン粒子の平均粒径も同様
に限定値以下の値のとき耐摩耗性が低下する。 Co(コバルト)は、マトリツクスに固溶してこ
れを強化し、高温強度、耐酸化耐食性、耐摩耗性
を向上させるととももに、一部がフエロモリブデ
ン粒子に拡散してこの粒子のマトリツクスへの保
持力を高める。Coは1%未満では添加の効果が
少なく、15%を超えるとコスト高になるだけでな
く添加の割には効果が向上しないことから、1〜
15%と限定した。 C(炭素)は、Feマトリツクスに固溶してこれ
を強化し、合金の強度と耐摩耗性を確保するのに
必要であることから添加されるが、0.5%未満で
はフエライトが多くなつて好ましくなく、また
1.5%を超えると焼結時に液相が出現し、Mo粒子
が溶けだしてしまうので好ましくない。 次に、第1層の任意添加元素について説明す
る。 Cu(銅)、Ni(ニツケル)、Mn(マンガン)はマ
トリツクスに固溶してこれを強化するが、各限定
値以下では効果が少なく、また限定値を超える
と、Cuはコスト高となるほか得られた合金の寸
法精度が低下し、Niはコスト高になるほか残留
オーステナイトが増えて、シリンダヘツドへバル
ブシートを冷却圧入する時にサブゼロ変態を起
し、材質が安定しないので使用上の制約条件が増
すという欠点を示すほか、高温酸化により生成し
た表面酸化物が剥離し易くなるので好ましくな
い。また、Mnは限定値以上では酸化により合金
を脆化せしめるので2%以下とした。 P(リン)およびB(ホウ素)は、Fe−P−C、
Fe−B−Cおよびこれに一部Moを含む液相を焼
結時に形成し、焼結の進行を促進し、焼結体の気
孔を球状化してマトリツクスの強度を高めるほ
か、残留液相は耐摩耗粒子としても働くが、限定
値未満ではその効果が少なく、一方限定値を超え
ると寸法精度が著しく悪化し、また合金が脆化す
るので好ましくない。 Cr(クロム)、W(タングステン)、V(バナジウ
ム)、Mo(モリブデン)は主としてフエロアロイ
または炭化物として存在し、合金の耐摩耗性を向
上させるが、それぞれの限定値以下では効果が少
なく、限定値を超えるとコストが高くなるほかに
硬くなりすぎて合金の被削性が低下するのみなら
ず、相手材であるバルブへの攻撃性も増すので好
ましくないことからそれぞれの限定値の範囲内と
した。 なお、Cu、Ni、Mn、P、B、Cr、W、V、
Nbは目的に応じて1種もしくは2種以上第1層
成分に添加することができる。添加に際しては、
フエロモリブデンを除く他の元素は、適当なプリ
アロイにして添加してもよい。Moはフエロモリ
ブデンに含まれるMo分以外に、純Moやプリア
ロイの形で追加してもよく、全合計量が限定値を
満足していればよい。 次に第2層成分について説明する。 Cは第1層におけるCと同じ限定理由のもとに
添加される。なお、第1層と第2層のマトリツク
スのC量の差が0.3%を超えると、第1層と第2
層の接合境界面近傍で高C量側から低C量側への
Cの拡散が無視できなくなり、両層の材質が目標
値どおりに安定化せず好ましくないので0.3%以
下とした。 次に両層におけるNd(鉛)溶浸の効果について
説明する。 Pbは、第1層および第2層の気孔中に溶浸さ
れ、溶浸前に比べ合金の熱伝導性を向上させる。
これにより、バルブおよびバルブシートの熱負荷
を低減させ耐久性を向上させる。また、第1層の
場合にはバルブとの当接によつて生ずる摩耗にお
いて潤滑剤として作用し、耐摩耗性を著しく向上
させる。 またPbの溶浸は、低廉な基材の強度を向上さ
せ、特に焼結体の気孔周辺の変形に起因する、高
温作動時のシリンダヘツドとの圧入代の減少とい
うバルブシートの圧入ゆるみを大巾に改善させる
という効果を示す。 Pb溶浸は、従来のCu溶浸に比べ硬さの上昇が
ほとんどなく、また潤滑剤としての作用を有する
ことから、合金の切削性を著しく向上させ、加工
を容易にする。 更にまた、Pb溶浸は第1層、第2層の界面で
の接合性を著しく向上させる。その理由は、第1
層、第2層の弾性特性の差を吸収する緩衝材とし
て作用すること、および気孔の応力集中を緩和す
ること、このほか焼結後さらに溶浸工程で加熱さ
れることにより各元素の拡散がさらに進むためな
どである。 上記のPb溶浸による効果は、溶浸量が3%未
満では不充分であり、また20%以上溶浸するため
には焼結体の密度を下げる必要があり強度低下と
なることから、溶浸量は3〜20%とした。特に第
1層の場合には耐摩耗性、潤滑性の点から5〜20
%が好ましく、第2層の場合には強度の向上と耐
ゆるみ性の点から3〜18%であることが好まし
い。 第1層と第2層の厚さの比は、目的に応じて選
択される。 〔実施例〕 以下本発明を実施例により説明する。 実施例 純鉄粉(−100メツシユ)に4%のFe−63Mo
合金粉(−100メツシユ)、1%のCo粉(−100メ
ツシユ)、0.6%のグラフアイト粉(粒径10μ)を
添加してなる混粉100部(重量:以下同じ)に潤
滑剤としてステアリン酸亜鉛8部を加え、V型混
粉機で30分間混合して第1層用粉末を得た。 次に、純鉄粉に0.7%のグラフアイト粉を配合
した混粉100部にステアリン酸亜鉛0.8部を加え、
同様に混粉して第2層用粉末を得た。 しかるのち、外径30mm、内径20mmの円環形状の
キヤビテイを有する金型内にまず第2層用粉末を
充填し、上パンチで予備加圧した後第1層用粉末
を更に充填して、全体の高さが8mmになるように
加圧成形した。なお、第1層と第2層の比率は約
50%ずつになるように充填量を調整し、また成形
は図に示すように第1層1と第2層2との接合界
面状が環状体の内径側に向つて下降した曲面とな
るようにした。 得られた粉末成形体をアンモニア分解ガス雰囲
気中で1150℃の温度にて60分間焼結して焼結体を
得、しかる後同じ炉中で1120℃の温度にてPbを
溶浸して、第1層成分がFe−2.5Mo−1Co−0.5C
−20Pb、第2層成分がFe−0.6C−18Pbであり、
両層が治金学的に接合された複合焼結合金を得
た。 以下、同様にして表1に示す組成の複合焼結合
金および比較材を製造した。 これらの各材料を所定のバルブシート形状に加
工した後、1600c.c.のアルミ合金製シリンダヘツド
のエンジンに組込み、5万Km高速連続走行相当の
台上耐久試験を実施した。結果を表1に示す。表
1の結果からわかるように、耐摩耗性(タペツト
クリアランス変化量)および抜き荷重ともに良好
な結果を示している。
[Industrial Application Field] The present invention relates to an iron-based sintered valve seat used in internal combustion engines. [Prior art] Iron-based sintered alloys are often used for valve seats in internal combustion engines because of their good wear resistance. In order to satisfy the requirement of better thermal conductivity, which is required as performance increases, considerably more expensive materials must be used. In response to this, recently, a two-layer valve seat using an inexpensive material as a base material has been proposed. However, it is not easy to use an inexpensive material to ensure the same level of loosening resistance as conventional high-quality materials and to obtain strong interfacial bonding strength. As a solution to these problems, it may be possible to strengthen the inexpensive base material by infiltrating the sintered alloy with copper, but this would result in high costs and
As the hardness increases, the machinability decreases and the first layer is also infiltrated with Cu, filling the pores of the sintered body.
The problem has been that oxides with a lubricating effect, which were conventionally produced around the pores at high temperatures, are not formed, resulting in a decrease in wear resistance. Therefore, there has been a demand for a two-layer valve seat that can satisfy various requirements for a valve seat. [Object of the invention] The present invention is capable of solving the above-mentioned conventional problems, and aims to provide a low-cost, two-layer valve seat having excellent wear resistance, loosening resistance, and good thermal conductivity. It is something. [Structure of the Invention] The two-layer sintered valve seat of the present invention is an iron-based sintered bond with a two-layer structure consisting of a first layer that includes a valve contact surface and a second layer that is a base material that supports the first layer. Gold, the first layer is Mo2.5~15%, Co1~15% by weight,
Consisting of a composition consisting of 0.5-1.5% C, 5-20% Pb, the balance Fe and less than 2% impurities, and a structure in which hard particles mainly composed of ferromolybdenum with an average particle size of 10-30μ are uniformly dispersed. The second layer has a composition of 0.5 to 1.5% C, 3 to 20% Pb, the balance Fe and less than 2% impurities by weight, and the composition of the first and second layers is Pb is present in the form of infiltration into the pores of the sintered body, and the difference in C content between the first layer and the second layer is 0.3% or less. In the present invention, preferably the second layer is C0.5~
1.5% Pb, 3 to 18% balance Fe and less than 2% impurities. In addition to the first layer components, the first layer of the valve seat of the present invention further includes 0.5 to 5% Cu, 1 to 15% Ni,
Mn0.2~2%, P0.05~0.8%, B0.05~0.8%,
Cr0.5~20%, W0.5~8%, V0.3~8% and
One or more types of Nb can be contained in an amount of 0.1 to 3%. Furthermore, in the valve seat of the present invention, the second layer further contains Cu0.5 to 5% in addition to the second layer components.
Ni0.5~5%, Mn0.2~2%, P0.05~0.8%,
It can contain one or more of B0.05-0.8% and Cr0.5-5%. In addition, in this specification, % indicates weight %. The reason for limiting each component element used in the present invention will be explained below. First, the components of the first layer of the present invention will be explained. Mo (molybdenum) mainly exists as wear-resistant particles, and a part of it is added as a solid solution in the matrix to strengthen it. However, if it deviates from the limited value, it is not preferable because wear resistance in particular decreases. Similarly, when the average particle diameter of the ferromolybdenum particles is less than the limiting value, the wear resistance decreases. Co (cobalt) is solid dissolved in the matrix to strengthen it and improve high temperature strength, oxidation and corrosion resistance, and wear resistance, and a part of it diffuses into the ferromolybdenum particles and strengthens the matrix of these particles. Increase the holding power to. If Co is less than 1%, the effect of adding it will be small, and if it exceeds 15%, not only will the cost increase, but the effect will not improve compared to the amount of addition.
It was limited to 15%. C (carbon) is added as a solid solution in the Fe matrix to strengthen it and is necessary to ensure the strength and wear resistance of the alloy, but if it is less than 0.5%, ferrite will increase and is not preferred. Not again
If it exceeds 1.5%, a liquid phase will appear during sintering and Mo particles will begin to dissolve, which is not preferable. Next, optionally added elements in the first layer will be explained. Cu (copper), Ni (nickel), and Mn (manganese) are dissolved in the matrix to strengthen it, but below their respective limiting values, the effect is small, and beyond the limiting values, Cu becomes expensive. The dimensional accuracy of the resulting alloy decreases, the cost of Ni increases, residual austenite increases, sub-zero transformation occurs when the valve seat is cooled and press-fitted into the cylinder head, and the material is unstable, which is a constraint on use. In addition to the drawback that the oxidation rate increases, surface oxides generated by high-temperature oxidation tend to peel off, which is not preferable. In addition, Mn is set at 2% or less since it causes the alloy to become brittle due to oxidation if it exceeds a limited value. P (phosphorus) and B (boron) are Fe-P-C,
A liquid phase containing Fe-B-C and some Mo is formed during sintering to accelerate the progress of sintering, make the pores of the sintered body spheroidal, and increase the strength of the matrix. They also act as wear-resistant particles, but if they are less than a limited value, their effect will be small, while if they exceed a limited value, dimensional accuracy will significantly deteriorate and the alloy will become brittle, which is not preferable. Cr (chromium), W (tungsten), V (vanadium), and Mo (molybdenum) mainly exist as ferroalloys or carbides, and improve the wear resistance of alloys, but below their respective limit values, the effect is small and the limit value Exceeding this value increases the cost, becomes too hard, reduces the machinability of the alloy, and increases the aggressiveness of the mating material, the valve, which is undesirable. . In addition, Cu, Ni, Mn, P, B, Cr, W, V,
One or more types of Nb can be added to the first layer component depending on the purpose. When adding,
Elements other than ferromolybdenum may be added in the form of suitable prealloys. Mo may be added in the form of pure Mo or prealloy in addition to the Mo content contained in ferromolybdenum, as long as the total amount satisfies the limited value. Next, the second layer components will be explained. C is added based on the same limiting reasons as C in the first layer. Note that if the difference in C content between the matrix of the first layer and the second layer exceeds 0.3%, the difference between the first layer and the second layer
The diffusion of C from the high C content side to the low C content side near the bonding interface of the layers cannot be ignored, and the materials of both layers will not be stabilized as per the target value, which is not preferable, so the value was set at 0.3% or less. Next, the effect of Nd (lead) infiltration in both layers will be explained. Pb is infiltrated into the pores of the first and second layers and improves the thermal conductivity of the alloy compared to before infiltration.
This reduces the thermal load on the valve and valve seat and improves durability. Furthermore, in the case of the first layer, it acts as a lubricant during wear caused by contact with the valve, thereby significantly improving wear resistance. In addition, Pb infiltration improves the strength of the inexpensive base material and significantly reduces press-fit loosening of the valve seat due to deformation around the pores of the sintered body, which reduces the press-fit allowance with the cylinder head during high-temperature operation. It shows the effect of improving the width. Pb infiltration causes almost no increase in hardness compared to conventional Cu infiltration, and also acts as a lubricant, so it significantly improves the machinability of the alloy and makes processing easier. Furthermore, Pb infiltration significantly improves the bondability at the interface between the first layer and the second layer. The reason is the first
It acts as a buffer material that absorbs the difference in elastic properties between the second layer and the second layer, and it also relieves the stress concentration in the pores.In addition, it is heated in the infiltration process after sintering to prevent the diffusion of each element. In order to proceed further. The above effect of Pb infiltration is insufficient if the amount of infiltration is less than 3%, and in order to infiltrate more than 20%, it is necessary to lower the density of the sintered body, resulting in a decrease in strength. The amount of immersion was 3 to 20%. In particular, in the case of the first layer, 5 to 20
%, and in the case of the second layer, it is preferably 3 to 18% from the viewpoint of improving strength and loosening resistance. The ratio of the thicknesses of the first layer and the second layer is selected depending on the purpose. [Example] The present invention will be explained below with reference to Examples. Example 4% Fe-63Mo in pure iron powder (-100 mesh)
Stearin was added as a lubricant to 100 parts of mixed powder (weight: same below) made by adding alloy powder (-100 mesh), 1% Co powder (-100 mesh), and 0.6% graphite powder (particle size 10μ). 8 parts of zinc oxide was added and mixed for 30 minutes using a V-type powder mixer to obtain a powder for the first layer. Next, 0.8 parts of zinc stearate was added to 100 parts of a mixed powder of pure iron powder and 0.7% graphite powder.
The powder was mixed in the same manner to obtain a powder for the second layer. After that, the powder for the second layer was first filled into a mold having an annular cavity with an outer diameter of 30 mm and an inner diameter of 20 mm, and after preliminary pressurization with an upper punch, the powder for the first layer was further filled. Pressure molding was performed so that the overall height was 8 mm. The ratio of the first layer to the second layer is approximately
The filling amount was adjusted so that the filling amount was 50% each, and the molding was performed so that the joint interface between the first layer 1 and the second layer 2 became a curved surface that descended toward the inner diameter side of the annular body, as shown in the figure. I made it. The obtained powder compact was sintered in an ammonia decomposition gas atmosphere at a temperature of 1150°C for 60 minutes to obtain a sintered body, and then Pb was infiltrated in the same furnace at a temperature of 1120°C to obtain a sintered body. 1st layer component is Fe−2.5Mo−1Co−0.5C
-20Pb, the second layer component is Fe-0.6C-18Pb,
A composite sintered alloy in which both layers were metallurgically bonded was obtained. Thereafter, composite sintered alloys and comparative materials having the compositions shown in Table 1 were produced in the same manner. After each of these materials was processed into a predetermined valve seat shape, it was assembled into a 1600 c.c. aluminum alloy cylinder head engine, and a bench durability test equivalent to continuous high-speed driving of 50,000 km was conducted. The results are shown in Table 1. As can be seen from the results in Table 1, both the wear resistance (change in tappet clearance) and pull-out load show good results.

【表】 次に本発明材1と比較材1について、第1層と
第2層の接合強度を測定した。結果を表2に示
す。この結果からわかるように、Pb溶浸前の比
較材1に対し、Pb溶浸した発明材2は倍の強度
を示している。
[Table] Next, for Inventive Material 1 and Comparative Material 1, the bonding strength between the first layer and the second layer was measured. The results are shown in Table 2. As can be seen from this result, inventive material 2 infiltrated with Pb has double the strength of comparative material 1 before infiltration with Pb.

〔発明の効果〕〔Effect of the invention〕

本発明は、耐摩耗性を必要とするバルブ当り面
を含む第1層と、該第1層を支持する基材として
の第2層との2層構造とすることにより、従来単
一構造の焼結体では得られなかつた耐摩耗性、良
熱伝導性、耐ゆるみ性を有するバルブシートを得
ることができる。しかも、第1層と第2層の厚さ
の割合などを調整することによつて熱伝導性、耐
ゆるみ性を調節できるため、アルミ合金製シリン
ダヘツドに限らず従来の鋳鉄製のものなどに巾広
く使用できるという利点をも併用する。
The present invention has a two-layer structure consisting of a first layer that includes a valve contact surface that requires wear resistance, and a second layer that serves as a base material that supports the first layer. A valve seat can be obtained that has wear resistance, good thermal conductivity, and loosening resistance that cannot be obtained with a sintered body. Moreover, by adjusting the ratio of the thickness of the first layer and the second layer, the thermal conductivity and loosening resistance can be adjusted, so it can be used not only for aluminum alloy cylinder heads but also for conventional cast iron cylinder heads. It also has the advantage of being widely usable.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のバルブシートを示す断面図であ
る。 図中、1…第1層、2…第2層。
The figure is a sectional view showing the valve seat of the present invention. In the figure, 1...first layer, 2...second layer.

Claims (1)

【特許請求の範囲】 1 バルブ当り面を含む第1層と該第1層を支持
する第2層とからなる2層構造の鉄基焼結合金で
あつて、 第1層が重量比でMo2.5〜15%、Co1〜15%、
C0.5〜1.5%、Pb5〜20%、残部Feおよび2%未
満の不純物からなる成分よりなり、かつ平均粒子
径10〜30μのフエロモリブデンを主体とする硬質
粒子が均一に分散した構成であり、 第2層が重量比でC0.5〜1.5%、Pb3〜20%、残
部Feおよび2%未満の不純物からなる成分より
なり、 第1層および第2層の成分中のPbはともに焼
結体の気孔中に溶浸された形で存在しており、か
つ第1層と第2層のC量の差が0.3%以下である
ことを特徴とする高温耐摩耗性2層焼結バルブシ
ート。 2 第2層が重量比でC0.5〜1.5%、Pb3〜18%、
残部Feおよび2%未満の不純物からなることを
特徴とする特許請求の範囲第1項記載のバルブシ
ート。 3 第1層が前記成分のほかにCu0.5〜5%、
Ni1〜15%、Mn0.2〜2%、P0.05〜0.8%、B0.05
〜0.8%、Cr0.5〜20%、W0.5〜8%、V0.3〜8%
およびNb0.1〜3%のうち1種もしくは2種以上
を含む成分よりなることを特徴とする特許請求の
範囲第1項記載のバルブシート。 4 第2層が前記成分のほかに更にCu0.5〜5%、
Ni0.5〜5%、Mn0.2〜2%、P0.05〜0.8%、
B0.05〜0.8%およびCr0.5〜5%のうち1種もし
くは2種以上を含む成分よりなることを特徴とす
る特許請求の範囲第1〜3項のいずれか1項に記
載のバルブシート。
[Scope of Claims] 1 An iron-based sintered alloy with a two-layer structure consisting of a first layer including a valve contact surface and a second layer supporting the first layer, wherein the first layer has a weight ratio of Mo2 .5~15%, Co1~15%,
It consists of 0.5 to 1.5% C, 5 to 20% Pb, the balance Fe and less than 2% impurities, and has a structure in which hard particles mainly composed of ferromolybdenum with an average particle size of 10 to 30μ are uniformly dispersed. Yes, the second layer consists of components consisting of 0.5 to 1.5% C, 3 to 20% Pb, the balance Fe and impurities less than 2% by weight, and Pb in the components of the first and second layers are both sintered. A high-temperature wear-resistant two-layer sintered valve, characterized in that it exists in the form of infiltration into the pores of a compact, and the difference in the amount of carbon between the first layer and the second layer is 0.3% or less. sheet. 2 The second layer has a weight ratio of C0.5 to 1.5%, Pb3 to 18%,
The valve seat according to claim 1, characterized in that the balance consists of Fe and less than 2% impurities. 3 In addition to the above ingredients, the first layer contains Cu0.5-5%,
Ni1~15%, Mn0.2~2%, P0.05~0.8%, B0.05
~0.8%, Cr0.5~20%, W0.5~8%, V0.3~8%
The valve seat according to claim 1, characterized in that the valve seat comprises a component containing one or more of Nb and 0.1 to 3%. 4 In addition to the above ingredients, the second layer further contains Cu0.5 to 5%,
Ni0.5~5%, Mn0.2~2%, P0.05~0.8%,
The valve seat according to any one of claims 1 to 3, characterized in that it is made of a component containing one or more of B0.05 to 0.8% and Cr0.5 to 5%. .
JP324384A 1984-01-11 1984-01-11 KOONTAIMAMOSEI2SOSHOKETSUBARUBUSHIITO Expired - Lifetime JPH0233847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP324384A JPH0233847B2 (en) 1984-01-11 1984-01-11 KOONTAIMAMOSEI2SOSHOKETSUBARUBUSHIITO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP324384A JPH0233847B2 (en) 1984-01-11 1984-01-11 KOONTAIMAMOSEI2SOSHOKETSUBARUBUSHIITO

Publications (2)

Publication Number Publication Date
JPS60147513A JPS60147513A (en) 1985-08-03
JPH0233847B2 true JPH0233847B2 (en) 1990-07-31

Family

ID=11552014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP324384A Expired - Lifetime JPH0233847B2 (en) 1984-01-11 1984-01-11 KOONTAIMAMOSEI2SOSHOKETSUBARUBUSHIITO

Country Status (1)

Country Link
JP (1) JPH0233847B2 (en)

Also Published As

Publication number Publication date
JPS60147513A (en) 1985-08-03

Similar Documents

Publication Publication Date Title
JP3191665B2 (en) Metal sintered body composite material and method for producing the same
US4424953A (en) Dual-layer sintered valve seat ring
JP3952344B2 (en) Wear-resistant iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JP2004232088A (en) Valve seat made of iron-based sintered alloy, and production method therefor
JPH0313299B2 (en)
JPH03158445A (en) Valve seat made of fe-base sintered alloy excellent in wear resistance
JPH0350823B2 (en)
JP3763782B2 (en) Method for producing wear-resistant iron-based sintered alloy material for valve seat
JPH0233848B2 (en) KOONTAIMAMOSEIBARUBUSHIITO
JP3186816B2 (en) Sintered alloy for valve seat
JP3340908B2 (en) Sintered sliding member and manufacturing method thereof
JP3434527B2 (en) Sintered alloy for valve seat
JPH0233847B2 (en) KOONTAIMAMOSEI2SOSHOKETSUBARUBUSHIITO
JP5253132B2 (en) Wear-resistant sintered alloy and method for producing the same
JPH0137466B2 (en)
JP3573872B2 (en) Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat
JP3303030B2 (en) Connecting rod excellent in fatigue strength and toughness and method for manufacturing the same
JP2007064165A (en) Combination of valve and valve seat for internal combustion engine
JPH0115583B2 (en)
JP4240761B2 (en) Al-based oxide-dispersed Fe-based sintered alloy with excellent wear resistance and method for producing the same
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP5358131B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JP2010144235A (en) Wear-resistant sintered alloy and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees