JPH0233773B2 - YUSEIYOATSUPUSETSUTOKOKANNOSEIZOHO - Google Patents

YUSEIYOATSUPUSETSUTOKOKANNOSEIZOHO

Info

Publication number
JPH0233773B2
JPH0233773B2 JP6291084A JP6291084A JPH0233773B2 JP H0233773 B2 JPH0233773 B2 JP H0233773B2 JP 6291084 A JP6291084 A JP 6291084A JP 6291084 A JP6291084 A JP 6291084A JP H0233773 B2 JPH0233773 B2 JP H0233773B2
Authority
JP
Japan
Prior art keywords
tempering
strength
temperature
bainite
upset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6291084A
Other languages
Japanese (ja)
Other versions
JPS60208415A (en
Inventor
Takeshi Terasawa
Akihiko Takahashi
Takeshi Ikemoto
Yoshihiro Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6291084A priority Critical patent/JPH0233773B2/en
Publication of JPS60208415A publication Critical patent/JPS60208415A/en
Publication of JPH0233773B2 publication Critical patent/JPH0233773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は高強度油井用アツプセツト鋼管の製
造法に関する。 (従来技術) 高強度油井用アツプセツト鋼管は、素管の管端
のアツプセツト部分を高温(例えば1200℃以上)
に加熱してアツプセツト加工し、その後焼準、焼
準−焼戻しあるいは焼入−焼戻しの熱処理を行つ
て製造される。 この従来法は、オーステナイト域に再加熱する
ためエネルギー的にもコスト高であるうえ、アツ
プセツトされた鋼管は肉厚が違う部分があるため
加熱および冷却時の歪みが大きいという欠点があ
る。又、焼入を行う場合には肉厚の異なる部分に
均等に焼きを入れるため、特殊な焼入装置が必要
となる。 (発明の目的) 本発明はこれら従来法の欠点を回避し、アツプ
セツト加工後熱歪みの生じない低温での焼戻しの
みで均一な材質をもつ高強度油井用アツプセツト
鋼管を得る製造法を提供するものである。 (発明の構成) 以下、本発明を詳細に説明する。 本発明による鋼の成分範囲はオーステナイト域
から空冷した場合にベイナイト組織となるもので
ある。こゝで本発明鋼の成分を示す。 Cは0.30wt%を超えると靭性劣化するので、
0.30wt%以下に添加する。 Siは脱酸あるいは強度調整用として添加する
が、脱酸には0.1wt%以上必要で、1wt%を超え
る脆化が生ずるので、0.10〜1.00wt%とした。 Mnは空冷でベイナイト組織とするため、
1.5wt%以上必要であり、3.0wt%を超えると脆化
が生ずるので1.5〜3.0wt%とした。 Alは脱酸のために必要な量、即ち0.005〜
0.10wt%添加する。 Nbは空冷でベイナイト組織とするため添加す
るが、このためには0.01wt%以上必要であり、ま
た、0.15wt%を超えても効果の向上はないので
0.01〜0.15wt%とする。 Cr、Ni、Mo、B、Cuはベイナイト組織生成
作用に有効な範囲、即ちCr;1.0wt%以下、Ni;
2.0wt%以下、Mo;0.5wt%以下、B;0.002wt%
以下、Cu;1.0wt%以下、そして、V、Tiは細粒
化に有効な範囲、即ちVt;0.15wt%以下、Ti;
0.10wt%以下で、1種または2種以上添加するも
のである。 本発明者はベイナイト組織の焼戻し抵抗につい
て研究した結果、ベイナイト組織の焼戻し抵抗は
マルテンサイトより高いこと、すなわち容易に軟
化しないことを見出した。この焼戻し抵抗の高い
ベイナイト組織を利用し、アツプセツト加工後低
温焼戻し処理のみで均質なアツプセツト鋼管を製
造するものである。 アツプセツト加工は、管端を高温(1200℃以
上)に加熱して行われるが、その際管全体の温度
分布を見ると管端の1200℃から室温まで温度が分
布する。そのため、アツプセツト加工を行つたあ
とは主に温度分布に対応した材質変化、とくに強
度変化が生じてしまう。そこで従来法ではアツプ
セツト加工後オーステナイト域に再加熱する処理
が必要となるわけである。 本発明にようにオーステナイト域からの空冷で
ベイナイト組織となる成分の鋼においては、アツ
プセツト前の素管つまり熱間圧延のままの状態の
組織がやはりベイナイト組織を呈する。これがア
ツプセツト加工の際の温度履歴により如何に変化
するかを第1図によつて見る。 第1図は第1表に示した化学成分(wt%)を
有する肉厚8.0mm、外径75mmの鋼管の管端約500mm
を1250℃に加熱アツプセツト加工し、管端部長さ
110mmを肉厚14mm外径85mmになし空冷した鋼管の
長手方向の強度分布を、アツプセツト加工時に到
達した最高温度に対応させて示す図である。
(Industrial Application Field) This invention relates to a method for manufacturing high-strength oil well upset steel pipes. (Prior art) High-strength oil well upset steel pipes are manufactured by subjecting the upset portion of the end of the raw pipe to high temperatures (e.g., over 1200°C).
It is manufactured by heating it to a temperature of 100°C for upset processing, and then performing heat treatments such as normalizing, normalizing-tempering, or quenching-tempering. This conventional method has the disadvantage of being expensive in terms of energy because reheating is required to reach the austenite region, and that the upset steel pipe has portions with different wall thicknesses, resulting in large distortions during heating and cooling. Further, when hardening is performed, special hardening equipment is required to uniformly harden parts of different wall thicknesses. (Objective of the Invention) The present invention avoids the drawbacks of these conventional methods and provides a manufacturing method for obtaining a high-strength oil well upset steel pipe with uniform material quality only by tempering at a low temperature that does not cause thermal distortion after upsetting. It is. (Structure of the Invention) The present invention will be described in detail below. The composition range of the steel according to the present invention ranges from an austenite region to a bainitic structure when air-cooled. Here, the composition of the steel of the present invention is shown. When C exceeds 0.30wt%, toughness deteriorates, so
Add at 0.30wt% or less. Si is added for deoxidation or strength adjustment, but 0.1wt% or more is required for deoxidation, and since embrittlement occurs if it exceeds 1wt%, it is set at 0.10 to 1.00wt%. Since Mn is air-cooled to form a bainitic structure,
1.5wt% or more is required, and if it exceeds 3.0wt%, embrittlement occurs, so it is set at 1.5 to 3.0wt%. Al is in the amount required for deoxidation, i.e. 0.005 ~
Add 0.10wt%. Nb is added to form a bainitic structure by air cooling, but for this purpose, it is necessary to use more than 0.01wt%, and even if it exceeds 0.15wt%, there is no improvement in the effect.
The content should be 0.01-0.15wt%. Cr, Ni, Mo, B, and Cu are within the effective range for bainite structure generation, that is, Cr: 1.0wt% or less, Ni;
2.0wt% or less, Mo; 0.5wt% or less, B; 0.002wt%
Hereinafter, Cu; 1.0wt% or less, and V and Ti within effective ranges for grain refinement, that is, Vt; 0.15wt% or less, Ti;
One or more types are added at 0.10wt% or less. As a result of researching the tempering resistance of bainite structure, the present inventor found that bainite structure has higher tempering resistance than martensite, that is, it does not soften easily. Utilizing this bainite structure with high tempering resistance, a homogeneous upset steel pipe can be manufactured by simply performing low-temperature tempering treatment after upsetting. Upset processing is performed by heating the tube end to a high temperature (over 1200℃), but when looking at the temperature distribution throughout the tube, the temperature ranges from 1200℃ at the tube end to room temperature. Therefore, after the upsetting process is performed, changes in material quality, especially changes in strength, occur mainly in response to temperature distribution. Therefore, in the conventional method, it is necessary to reheat the material to the austenite region after upsetting. In the steel of the present invention, which has a composition that becomes a bainite structure by air cooling from an austenite region, the structure of the raw tube before upset, that is, the structure in the hot rolled state still exhibits a bainite structure. Figure 1 shows how this changes depending on the temperature history during upsetting. Figure 1 shows the approximately 500 mm end of a steel pipe with a wall thickness of 8.0 mm and an outer diameter of 75 mm that has the chemical composition (wt%) shown in Table 1.
The pipe is heated to 1250℃ and the length of the tube end is
FIG. 3 is a diagram showing the strength distribution in the longitudinal direction of a 110 mm steel pipe with a wall thickness of 14 mm and an outer diameter of 85 mm and air-cooled, in correspondence with the maximum temperature reached during upset processing.

【表】 室温からA1変態点までの温度に加熱された部
分は焼戻し処理を受けたことに相当する。それで
熱間圧延ままより引張強度は低下するが降伏強度
は上昇する。A1変態点からA3変態点までの温度
に加熱された部分において、加熱時には素管は元
のベイナイト組織のままで一部オーステナイトに
変態し、冷却後はオーステナイトに変態した部分
は成分の濃縮により素地よりも変態温度の低い、
すなわち硬ベイナイトあるいはマルテンサイトに
変態する。そのため均一ベイナイトより引張強度
が上昇する。しかし部分的変態による残留応力の
ため降伏強度は低下する。 A3変態点以上に加熱された部分は加熱時には
全てオーステナイトに変態し、冷却後は熱間圧延
後と同じ均一ベイナイトに変態する。加熱時のオ
ーステナイト粒度、炭化物の固溶度などに対応し
た強度変化を示すが、組織が均一ベイナイトのた
め熱間圧延まま、すなわち素管とほぼ同程度の強
度となる。 さてこのような強度分布をもつ管に低温焼戻し
処理を施す場合の変化を第2図によつて見る。 第2図は第1図と同じ条件でアツプセツト加工
をなし、空冷後45℃×15分焼戻しした後の長手方
向の強度分布をアツプセツト加工時に到達した最
高温度に対応させて示す図である。 室温からA1変態点までアツプセツト加工時に
加熱された部分においては、この焼戻し温度以下
の部分は低温焼戻し処理を受けたことになり、焼
戻し温度からA1変態点までの部分はわずか焼戻
しが進むだけである。強度変化は、前述のように
ベイナイト素管の焼戻し抵抗の高いことから著し
い強度変化は示さず、引張強さの若干の低下、降
伏強度の上昇を示す。 A1〜A3変態点間に加熱された部分においては、
部分的変態により生じた残留応力を焼戻しにより
解放するため降伏強度は著しく上昇し、引張り強
さは低下する。A3変態点以上の場合は熱間圧延
後のベイナイト組織の焼戻しと同じ焼戻し挙動を
示し降伏強度の上昇、引張り強さの若干の低下を
示す。 (実施例) 次に本発明の実施例を示す。 第2表のA、B、C、Dは本発明の実施例であ
り従来法のEに比較し耐力のバラツキは劣つては
いるが充分実用に耐えるバラツキ範囲である。
[Table] Parts heated from room temperature to the A1 transformation point correspond to tempering treatment. Therefore, the tensile strength is lower than as hot rolled, but the yield strength is higher. In the part heated from the A 1 transformation point to the A 3 transformation point, during heating the raw tube retains its original bainite structure and partially transforms into austenite, and after cooling, the part transformed into austenite becomes concentrated. The transformation temperature is lower than that of the base material.
That is, it transforms into hard bainite or martensite. Therefore, the tensile strength is higher than that of uniform bainite. However, the yield strength decreases due to residual stress due to partial transformation. A All parts heated above the 3 transformation point transform into austenite during heating, and after cooling transform into uniform bainite, the same as after hot rolling. The strength changes depending on the austenite grain size and carbide solid solubility during heating, but since the structure is uniform bainite, the strength is almost the same as that of the hot-rolled pipe, that is, the raw pipe. Now, the changes when low-temperature tempering is applied to a tube having such an intensity distribution are shown in FIG. 2. FIG. 2 is a diagram showing the strength distribution in the longitudinal direction after upsetting was performed under the same conditions as in FIG. 1, and after air cooling and tempering at 45° C. for 15 minutes, the strength distribution in the longitudinal direction corresponds to the maximum temperature reached during upsetting. In the part heated during upsetting from room temperature to the A1 transformation point, the part below this tempering temperature has undergone low-temperature tempering, and the part from the tempering temperature to the A1 transformation point is only slightly tempered. It is. As mentioned above, due to the high tempering resistance of the bainite tube, there is no significant change in strength, but there is a slight decrease in tensile strength and an increase in yield strength. In the part heated between A 1 and A 3 transformation point,
Since the residual stress caused by the partial transformation is released by tempering, the yield strength increases significantly and the tensile strength decreases. When the A3 transformation point is higher than that, the tempering behavior is the same as that of the tempering of the bainite structure after hot rolling, and the yield strength increases and the tensile strength slightly decreases. (Example) Next, an example of the present invention will be shown. Examples A, B, C, and D in Table 2 are examples of the present invention, and although the variation in yield strength is inferior to E in the conventional method, the variation range is sufficient for practical use.

【表】【table】

【表】 アツプセツト部肉厚
拡管率=
[Table] Wall thickness of setup section Expansion rate =

Claims (1)

【特許請求の範囲】[Claims] 1 重量で、C≦0.30%、Si:0.10〜1.00%、
Mn:1.5〜3.0%、Nb:0.01〜0.15%、Al:0.005
〜0.10%、さらに、Cr≦1.0%、Ni≦2.0%、Mo
≦0.5%、B≦0.002%、Cu≦1.0%、V≦0.15%、
Ti≦0.10%の1種または2種以上を含有し、残
部:Feおよび不可避的不純物からなる鋼の素管
を、熱間でアツプセツトした後、500℃以下の温
度域で焼戻すことを特徴とする油井用アツプセツ
ト鋼管の製造法。
1 By weight, C≦0.30%, Si: 0.10-1.00%,
Mn: 1.5-3.0%, Nb: 0.01-0.15%, Al: 0.005
~0.10%, additionally Cr≦1.0%, Ni≦2.0%, Mo
≦0.5%, B≦0.002%, Cu≦1.0%, V≦0.15%,
A steel tube containing one or more Ti≦0.10%, the balance consisting of Fe and unavoidable impurities, is hot upset and then tempered in a temperature range of 500℃ or less. A manufacturing method for oil well setup steel pipes.
JP6291084A 1984-03-30 1984-03-30 YUSEIYOATSUPUSETSUTOKOKANNOSEIZOHO Expired - Lifetime JPH0233773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6291084A JPH0233773B2 (en) 1984-03-30 1984-03-30 YUSEIYOATSUPUSETSUTOKOKANNOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6291084A JPH0233773B2 (en) 1984-03-30 1984-03-30 YUSEIYOATSUPUSETSUTOKOKANNOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS60208415A JPS60208415A (en) 1985-10-21
JPH0233773B2 true JPH0233773B2 (en) 1990-07-30

Family

ID=13213879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6291084A Expired - Lifetime JPH0233773B2 (en) 1984-03-30 1984-03-30 YUSEIYOATSUPUSETSUTOKOKANNOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0233773B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA06003714A (en) * 2003-10-20 2006-06-23 Jfe Steel Corp Expansible seamless steel pipe for use in oil well and method for production thereof.
DE102014102452A1 (en) * 2014-02-25 2015-08-27 Vallourec Deutschland Gmbh Process for the production of hot rolled, seamless tubes of transformable steel, in particular for pipelines for deep water applications and related pipes
CN104388835A (en) * 2014-10-17 2015-03-04 邯郸新兴特种管材有限公司 Steel tube for high-density crude oil exploitation and manufacturing process thereof
CN104878307A (en) * 2015-04-30 2015-09-02 内蒙古包钢钢联股份有限公司 Production method of bainite wear-resistance hot-rolled seamless steel pipe
CN104846261A (en) * 2015-05-28 2015-08-19 攀钢集团成都钢钒有限公司 Steel tube and manufacturing method thereof

Also Published As

Publication number Publication date
JPS60208415A (en) 1985-10-21

Similar Documents

Publication Publication Date Title
EP0092815B1 (en) A car stabilizer and a manufacturing method therefor
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JPH0112816B2 (en)
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
JPH0233773B2 (en) YUSEIYOATSUPUSETSUTOKOKANNOSEIZOHO
JPH1180903A (en) High strength steel member excellent in delayed fracture characteristic, and its production
JPS589921A (en) Manufacture of seamless steel pipe for petroleum industry
JPH0545651B2 (en)
JPS60238418A (en) Manufacture of sucker rod for wet environment containing gaseous carbon dioxide
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
KR101757754B1 (en) Method of manufacturing cold forging steel capable of being carburized at high temperature
JPH0741855A (en) Production of low yield radio and high toughness seamless steel pipe showing metallic structure essentially consisting of fine-grained ferrite
US3196053A (en) Production of heat-treated sheets
KR100435461B1 (en) A method for manufacturing steel material for cold forging with low property deviation
JP2564425B2 (en) Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance
JPS63210236A (en) Manufacture of high-collapse oil well pipe having sour resistance
JP3339795B2 (en) Method for manufacturing linear motion bearing member
JPS63303036A (en) High-strength steel wire
JPS63310920A (en) Production of high-toughness 9% ni steel pipe
JPS58117832A (en) Production of seamless steel pipe of low-carbon equivalent component type having high strength and toughness
JPS59150019A (en) Production of seamless steel pipe having high toughness
JPS6160894B2 (en)
JPH027368B2 (en)
JP2961666B2 (en) Manufacturing method of spring steel with excellent resistance to warm set