JPH0233693B2 - - Google Patents

Info

Publication number
JPH0233693B2
JPH0233693B2 JP58018573A JP1857383A JPH0233693B2 JP H0233693 B2 JPH0233693 B2 JP H0233693B2 JP 58018573 A JP58018573 A JP 58018573A JP 1857383 A JP1857383 A JP 1857383A JP H0233693 B2 JPH0233693 B2 JP H0233693B2
Authority
JP
Japan
Prior art keywords
catalyst
phenol
particle size
reaction
orthocresol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58018573A
Other languages
Japanese (ja)
Other versions
JPS59144726A (en
Inventor
Tsutomu Katsumata
Masahisa Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58018573A priority Critical patent/JPS59144726A/en
Priority to US06/521,205 priority patent/US4517389A/en
Priority to DE8383201181T priority patent/DE3367586D1/en
Priority to EP83201181A priority patent/EP0101138B1/en
Publication of JPS59144726A publication Critical patent/JPS59144726A/en
Publication of JPH0233693B2 publication Critical patent/JPH0233693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、フエノールまたは/およびオルトク
レゾールとメタノールとをシリカに担持された金
属酸化物触媒の存在下に、流動床反応器を用いて
気相接触させオルト位メチル化フエノール化合物
を製造する方法に関するものである。 本発明の方法により製造されるオルト位メチル
化フエノール化合物、例えば2,6キシレノール
はポリフエニレンオキサイドの原料であり、オル
トクレゾールは医農薬品等の原料であり、いずれ
も工業原料として重要である。 フエノールまたは/およびオルトクレゾールと
メタノールとを気相で接触させてオルト位メチル
化フエノール化合物を製造する方法は公知であ
り、酸化アルミニウムを触媒とする方法(英国特
許第717588号)、酸化マグネシウムを触媒とする
方法(米国特許第3446856号)酸化鉄と酸化バナ
ジウムを含む触媒を用いる方法(特公昭47―
37943号)などが提案されているが、いずれも固
定床反応器を用いて実施されている。 一般に、発熱を伴う反応を固定床反応装置を用
いて行うと局部過熱を生じ易く、特に工業的規模
の固定反応装置においては局部過熱を防ぐことは
極めて困難であり、目的とする生成物の収率・選
択率の低下や触媒寿命の短縮という事態になりか
ねない。 またフエノール類のオルトメチル化反応におい
ては、メタノールの分解反応が必ず生じる。この
メタノールの分解は反応温度が高いと加速的に増
大する特徴があるため、オルトメチル化反応にお
いては特に反応温度の均一性が要求される。 これに対して、流動床反応装置を用いた場合に
は、装置内の温度を均一に保つことが容易であ
る。しかし、流動床反応装置にも解決すべき問題
点がある。例えば、流動層内のガスは触媒粒子の
懸濁相内を主として気泡を形成しながら上昇し、
その上昇の途中で合体、再分散を繰返している
が、この気泡が合体成長するといわゆる濃厚相
(触媒粒子密度の大きい相)と希薄相(粒子密度
の小さい相)との間の物質の交換や各相内でのガ
ス混合の悪化、および気固間の接触効率が低下
し、極端な場合にはガスの貫流現象が生じ、転化
率及び選択率が大きく低下する。また、触媒粒子
の流動が悪い場合には、温度分布の不均斉(局部
過熱)を生じ前記流動床の長所を損なう結果とな
る。 また、従来のフエノール類のオルトメチル化反
応の問題点は、Fe,V,Mn,Mg,Cr,In等の
酸化物のいずれの触媒でも割れ、粉化が極めて生
じ易い点にある。この原因は炭素析出による膨潤
―割れ―粉化や、反応時の触媒の強い還元による
もの、あるいは空気酸化による触媒の再生時の熱
的、化学的影響などが考えられる。このため固定
床用の触媒においても触媒の粉化を防止するため
種々の提案がなされてきた。 例えば特公昭51―42092号、特公昭53―17584
号、特開昭49―36705号等に提案がなされている。 しかしながら流動床で使用される触媒の強度は
固定床触媒に要求される強度の比ではない。何故
なら触媒が静止している固定床と異なり触媒粒子
が他の触媒粒子または反応器器壁等と激しく衝突
しており、これに耐える耐摩耗強度を有すること
が必須である。 つまりフエノール類のオルトメチル化反応は反
応器全体の反応温度の均一性が得られる点から流
動床は極めて優れた反応式であるにも拘わらず、
本反応特有の触媒の割れ、粉化が生じることよ
り、これまで工業的流動床反応器に充分耐えうる
触媒が得られず流動床が見送られてきたものであ
る。 これまでフエノール類のオルトメチル化反応に
流動床を適用した例として、特公昭52―46930号
にアルミナ触媒を用いた例が知られているが、ア
ニソールの生成が極めて多く、フエノール選択率
が悪くしかも耐摩耗強度が悪く工業的に実施する
上で問題である。 本発明者等は、前記の流動床反応の問題点を克
服し、しかも活性、選択性が良好で寿命の長い触
媒を開発し工業的に有利な製造方法を確立すべく
鋭意検討の結果本発明に到達した。 本発明に使用する触媒は、シリカを担体とする
ことが必須である。これ以外の担体、例えばアル
ミナやシリカ・アルミナを用いた場合には、耐摩
耗強度も低い上に蒸留では2,6―キシレノール
と分離が不可能なm―,p―クレゾールの生成が
激増し、アニソールの生成も非常に多いなど、フ
エノール選択率が著しく低下する。また、けい藻
土、シリコンカーバイド、ジルコニアを担体に用
いた場合、フエノールの選択率も悪い上に、担体
としてのバインデイング効果が弱いため、触媒の
耐摩耗強度が小さく、短期間のうちに触媒の摩耗
が起こり、流動床用の触媒として不適当である。 これに対してシリカを担体に選び、かつシリカ
の量が本発明の範囲である10〜80重量%、かつ
500℃以上900℃以下の温度で焼成した触媒を用い
れば、触媒の強度が工業的規模の生産をするのに
耐えうるものである。シリカの量が10%未満の場
合、触媒の強度が充分ではない。一方、シリカの
担持量が80%以上の場合、触媒の活性及び選択性
ばかりでなく触媒の強度も低下するので、工業的
に実施する上で不利となる。 触媒の焼成温度は金属成分により異なるが、通
常500℃〜900℃の範囲である。500℃未満では触
媒に充分な活性を付与できない。好ましい焼成温
度は、シリカが実質的に非晶質の状態で活性成分
を担持している温度であることが好ましい。この
ため触媒焼成温度の上限は、この非晶質の状態を
保つ領域から選択される。一般には最高900℃で
あるが、金属成分との関係により上限温度は900
℃より低い場合もある。900℃以上となると担体
であるシリカの結晶化が進み、触媒強度の低下を
もたらし、流動床用触媒として用い耐摩耗強度が
不充分となり好ましくない。 さらに局部過熱を防止し、かつ良好な接触効率
を保つためには触媒の形状が球に近いことに加え
平均粒径および粒径分布が極めて重要であること
を見出した。すなわち本発明者等の実験によれば
平均粒径と粒径分布を以下のように限定すること
により初めて良好な流動状態と接触効率が保た
れ、長期間良好な活性、選択性を発現させること
ができる。触媒の平均粒径として40〜100μであ
り、かつ平均粒径の0.2〜0.7倍、1.5〜2.0倍、お
よび2.0倍を越える各粒径範囲内にある粒子の各
総重量が全触媒重量に対して各々5〜50%、5〜
30%、10%以下の粒径分布を有する触媒を用いて
反応を行なうことにより、良好な活性、選択性を
うることができる。粒径分布の測定法としては標
準フルイを用いる方法、沈降テンビンを用いる方
法、アンドレアゼンビペツトを用いる方法、顕微
鏡法などがある。またここでいう平均粒径とは50
%粒径(重量分布でちようど粗粒と細粒とを50%
づつに分割する粒径)のことで、例えば平均粒径
が60μならば、60μ未満の粒子の総重量と60μ以上
の粒子の総重量が等しい事になる。 触媒が本発明に規定された分布より狭い分布を
有する場合、及び逆に粒径分布が本発明の規定よ
り広い場合のいずれも触媒とガスとの接触効率が
悪くなり原料のフエノール類の転化率と選択率が
悪化し、また局部過熱を生じメタノールの選択率
が低下すると共に触媒の寿命にも悪影響をもたら
すことがわかつた。さらに良好な流動状態を保つ
には、ガス線速度が0.5〜100cm/秒に規定する範
囲であることが望ましく、より好ましくは2〜80
cm/秒の範囲である。 本発明に適用される触媒の金属成分としては
鉄、バナジウム、マンガン、マグネシウム、クロ
ムの単独または組合せ(但し、鉄とバナジウムを
ともに含有する場合を除く)が用いられる。 本発明の場合、供給原料中のフエノールまた
は/およびオルトクレゾールに対するメタノール
のモル比は触媒種により異なるが、1:1〜20で
ある。また、水蒸気または不活性ガスは必要に応
じて導入できるが、水蒸気の場合フエノールまた
は/およびオルトクレゾールに対するモル比は
1:0〜15が好ましい。 反応温度は触媒種により異なるが250〜600℃の
範囲が好ましい。 反応の圧力は常圧でもよいが必要に応じて減圧
または加圧下でも実施できる。 以下実施例により本発明をさらに詳細に説明す
る。 実施例中のフエノール転化率、選択率及びメタ
ノール選択率は次式によつて定義される。なお、
オルトクレゾールの場合も同様である。 フエノール転化率(%) =(1−未反応のフエノールのモル数/供給したフエ
ノールのモル数)×100 フエノール選択率(%) =(生成した目的生成物のモル数/供給したフエノー
ルのモル数―未反応のフエノールのモル数)×100 メタノール選択率(%) =(生成したオルトクレゾール―のモル数+生成した
2,6キシレノールのモル数×2/供給したメタノール
のモル数―未反応のメタノールのモル数)×100 参考例 1 メタバナジン酸アンモニウム(NH4VO3)585
gを90℃に加温した純水12400grに溶かし、十分
攪拌しながら硝酸第二鉄(Fe(NO33・9H2O)
2020grおよび30重量%のSiO2を含むシリカゾル
(日産化学製スノーテツクスN)2850gを加える。
シリカコロイドゾルに均一に分散した微粒懸濁質
のスラリーが得られる。これを並流式の噴霧乾燥
器にて乾燥した。 原料スラリーの噴霧化は、通常工業的実施に用
いられる遠心方式、二流体ノズル方式あるいは高
圧ノズル方式のいずれによつても行いうるが、特
に遠心方式が好適である。粒子径は遠心方式にお
いてはデイスクの回転速度およびスラリーの供給
速度に調節することによつて、流動層反応器に用
いるに適した10〜150ミクロンの間に分布させる
ことができる。 得られた乾燥粉末を、トンネル型キルンを用
い、350℃で2時間予備焼成したのち、750℃で3
時間焼成を行なつた。この触媒の表面積をBET
法で測定すると20.5m2/grであり、電子顕微鏡の
観察により流動床に適した球状を有していた。 その粒径分布は次の通りであつた。 粒径範囲 20〜200μ 平均粒径 60μ 粒径分布 平均粒径の0.2〜0.7倍のもの 35重量% 〃 1.5〜2.0 〃 16重量% 本方法で製造した触媒300gを直径1.5インチの
流動床反応器に投入し反応温度を320〜330℃、圧
力を大気圧に保ち、フエノールとメタノールと水
の比が1:5:3の原料液を蒸発器を通して反応
器に導入した。このとき、原料ガスの線速度を
4.6cm/秒となるように調節した。 反応器から流出するガスを全量凝縮器に通して
凝縮した液をガスクロマトグラフイーで分析し
た。 この結果を表―1に示す。 また反応前及び反応後の触媒について、耐摩耗
試験を行なつた。 耐摩耗試験とは、通常FCC触媒の試験方法と
して行なわれているように底部に1/64インチの
3つのオリフイスを有する有孔円板を備えた、内
径1.5インチの垂直チユーブに触媒約50gを精秤
後投入し、有孔円板を通して毎時15立方フイート
の速度で空気を流し激しく流動させた。触媒の摩
耗度を5〜20時間の間に微細化して、垂直チユー
ブの上部から逸散した触媒の重量の初期投入量に
対する割合として求めた。 結果は表―1に示すように反応前の触媒及び反
応後の触媒共摩耗した触媒は1%前後であり流動
床触媒として充分に使用に耐えるものである。 参考例2〜6、比較例1〜5 参考例1と同様の方法で、シリカ担持量と焼成
温度を変えた触媒を調製し、参考例1と同様の装
置を用いて反応および触媒の耐摩耗試験を行なつ
た。反応は24〜120時間継続した。反応成績およ
び反応前後の触媒の耐摩耗試験の結果を表―1に
示す。 なお、ここで用いた触媒は全て粒径及び粒径分
布は本発明の範囲のものであつた。また、比較例
5の1000℃で焼成した触媒はX線回析によりシリ
カが結晶化としていることが解つた。 参考例 7〜8 参考例1と同様の方法で、実施例1の組成にカ
リウム、マグネシウムを加えた触媒を調製し、同
様に反応、耐摩耗耗試験を行なつた。結果を表―
1に示す。なお、ここで用いた触媒は全て粒径及
び粒径分布は本発明の範囲内であつた。
The present invention relates to a method for producing ortho-methylated phenol compounds by bringing phenol or/or ortho-cresol into gas phase contact with methanol in the presence of a metal oxide catalyst supported on silica using a fluidized bed reactor. It is something. Ortho-methylated phenol compounds produced by the method of the present invention, such as 2,6 xylenol, are raw materials for polyphenylene oxide, and ortho-cresol is a raw material for pharmaceutical and agricultural products, and both are important as industrial raw materials. . Methods for producing ortho-methylated phenolic compounds by contacting phenol or/and ortho-cresol with methanol in the gas phase are known, such as a method using aluminum oxide as a catalyst (British Patent No. 717588), a method using magnesium oxide as a catalyst, etc. A method using a catalyst containing iron oxide and vanadium oxide (US Patent No. 3,446,856)
37943), but all of them are implemented using a fixed bed reactor. In general, when an exothermic reaction is carried out using a fixed bed reactor, local overheating tends to occur, and it is extremely difficult to prevent local overheating, especially in an industrial scale fixed reactor, and it is difficult to obtain the desired product. This may lead to a decrease in efficiency and selectivity and shorten the life of the catalyst. Furthermore, in the orthomethylation reaction of phenols, a decomposition reaction of methanol always occurs. Since the decomposition of methanol is characterized by increasing at an accelerated rate when the reaction temperature is high, uniformity of the reaction temperature is particularly required in the orthomethylation reaction. On the other hand, when a fluidized bed reactor is used, it is easy to maintain a uniform temperature within the reactor. However, fluidized bed reactors also have problems that need to be resolved. For example, gas in a fluidized bed rises within the suspended phase of catalyst particles while mainly forming bubbles.
As they rise, they repeat coalescence and redispersion, and when these bubbles coalesce and grow, substances are exchanged between the so-called dense phase (phase with high catalyst particle density) and dilute phase (phase with low particle density). The gas mixing within each phase deteriorates, the gas-solid contact efficiency decreases, and in extreme cases gas flow-through phenomenon occurs, resulting in a significant decrease in conversion and selectivity. Furthermore, if the flow of the catalyst particles is poor, the temperature distribution will be asymmetry (localized overheating), which will impair the advantages of the fluidized bed. A problem with the conventional orthomethylation reaction of phenols is that any catalyst made of oxides such as Fe, V, Mn, Mg, Cr, In, etc. is extremely susceptible to cracking and powdering. Possible causes of this include swelling, cracking, and pulverization due to carbon deposition, strong reduction of the catalyst during the reaction, or thermal and chemical effects during catalyst regeneration due to air oxidation. For this reason, various proposals have been made to prevent catalyst pulverization in fixed bed catalysts. For example, Special Publication No. 51-42092, Special Publication No. 53-17584
Proposals have been made in JP-A-49-36705, etc. However, the strength of catalysts used in fluidized beds is not comparable to the strength required for fixed bed catalysts. This is because, unlike a fixed bed in which the catalyst is stationary, the catalyst particles collide violently with other catalyst particles or the walls of the reactor, etc., and it is essential that the catalyst has abrasion-resistant strength that can withstand this. In other words, although the fluidized bed has an extremely superior reaction formula for the orthomethylation reaction of phenols because it allows uniformity of the reaction temperature throughout the reactor,
Due to the cracking and pulverization of the catalyst peculiar to this reaction, it has not been possible to obtain a catalyst that can sufficiently withstand industrial fluidized bed reactors, and fluidized beds have been abandoned. Until now, a known example of applying a fluidized bed to the orthomethylation reaction of phenols was the use of an alumina catalyst in Japanese Patent Publication No. 52-46930, but this produced an extremely large amount of anisole and resulted in poor phenol selectivity. It has poor abrasion resistance and is a problem in industrial implementation. The present inventors overcame the problems of the fluidized bed reaction described above, developed a catalyst with good activity and selectivity, and had a long life.As a result of intensive studies, the present invention was developed in order to establish an industrially advantageous production method. reached. It is essential that the catalyst used in the present invention uses silica as a carrier. When using other carriers, such as alumina or silica/alumina, the abrasion resistance is low and the production of m-, p-cresol, which cannot be separated from 2,6-xylenol by distillation, increases dramatically. Phenol selectivity decreases significantly, such as a very large amount of anisole being produced. In addition, when diatomaceous earth, silicon carbide, or zirconia is used as a carrier, the selectivity of phenol is poor and the binding effect as a carrier is weak, so the wear resistance of the catalyst is low and the catalyst is Attrition occurs, making it unsuitable as a catalyst for fluidized beds. On the other hand, silica is selected as a carrier, and the amount of silica is 10 to 80% by weight, which is within the range of the present invention, and
If a catalyst calcined at a temperature of 500°C or more and 900°C or less is used, the strength of the catalyst will be sufficient to withstand industrial scale production. If the amount of silica is less than 10%, the strength of the catalyst is not sufficient. On the other hand, when the supported amount of silica is 80% or more, not only the activity and selectivity of the catalyst but also the strength of the catalyst are reduced, which is disadvantageous for industrial implementation. The firing temperature of the catalyst varies depending on the metal component, but is usually in the range of 500°C to 900°C. At temperatures below 500°C, sufficient activity cannot be imparted to the catalyst. The preferred firing temperature is preferably a temperature at which the silica supports the active ingredient in a substantially amorphous state. Therefore, the upper limit of the catalyst calcination temperature is selected from the range in which this amorphous state is maintained. Generally, the maximum temperature is 900℃, but the upper limit temperature is 900℃ due to the relationship with the metal components.
It may be lower than ℃. If the temperature exceeds 900°C, the crystallization of silica as a support will proceed, resulting in a decrease in catalyst strength, and the abrasion resistance will be insufficient when used as a catalyst for a fluidized bed, which is not preferable. Furthermore, in order to prevent local overheating and maintain good contact efficiency, we found that the average particle size and particle size distribution, in addition to the shape of the catalyst being close to a sphere, are extremely important. In other words, according to the experiments of the present inventors, by limiting the average particle size and particle size distribution as shown below, a good fluidity state and contact efficiency can be maintained, and good activity and selectivity can be achieved for a long period of time. Can be done. The average particle size of the catalyst is 40 to 100 μ, and the total weight of particles within each particle size range of 0.2 to 0.7 times, 1.5 to 2.0 times, and more than 2.0 times the average particle size is calculated based on the total catalyst weight. 5~50%, 5~
Good activity and selectivity can be obtained by carrying out the reaction using a catalyst having a particle size distribution of 30% or 10% or less. Methods for measuring particle size distribution include a method using a standard sieve, a method using a precipitated Tenbin, a method using an Andreasembipette, and a microscopy method. Also, the average particle size here is 50
% particle size (50% of coarse particles and fine particles in weight distribution)
For example, if the average particle size is 60μ, the total weight of particles smaller than 60μ is equal to the total weight of particles larger than 60μ. If the catalyst has a distribution narrower than the distribution specified by the present invention, or conversely if the particle size distribution is wider than the distribution specified by the present invention, the efficiency of contact between the catalyst and the gas will deteriorate, and the conversion rate of the raw material phenols will decrease. It was found that the selectivity deteriorated and the methanol selectivity decreased due to local overheating, which also had an adverse effect on the life of the catalyst. Furthermore, in order to maintain a good fluidity state, it is desirable that the gas linear velocity is in the range of 0.5 to 100 cm/sec, more preferably 2 to 80 cm/sec.
It is in the cm/second range. As the metal component of the catalyst applied to the present invention, iron, vanadium, manganese, magnesium, and chromium may be used alone or in combination (excluding cases containing both iron and vanadium). In the case of the present invention, the molar ratio of methanol to phenol or/and orthocresol in the feedstock varies depending on the catalyst species, but ranges from 1:1 to 20. Further, water vapor or an inert gas can be introduced as necessary, but in the case of water vapor, the molar ratio to phenol and/or orthocresol is preferably 1:0 to 15. The reaction temperature varies depending on the catalyst species, but is preferably in the range of 250 to 600°C. The reaction pressure may be normal pressure, but it can also be carried out under reduced pressure or increased pressure if necessary. The present invention will be explained in more detail with reference to Examples below. The phenol conversion rate, selectivity and methanol selectivity in the examples are defined by the following equations. In addition,
The same applies to orthocresol. Phenol conversion rate (%) = (1 - number of moles of unreacted phenol / number of moles of supplied phenol) × 100 Phenol selectivity (%) = (number of moles of target product produced / number of moles of supplied phenol -Number of moles of unreacted phenol) x 100 Methanol selectivity (%) = (Number of moles of orthocresol produced + Number of moles of 2,6-xylenol produced x 2/Number of moles of methanol supplied - Number of moles of unreacted Number of moles of methanol) x 100 Reference example 1 Ammonium metavanadate (NH 4 VO 3 ) 585
Dissolve g in 12400g of pure water heated to 90℃, and stir well to dissolve ferric nitrate (Fe(NO 3 ) 3・9H 2 O).
2020gr and 2850g of silica sol (Snowtex N manufactured by Nissan Chemical) containing 30% by weight of SiO2 are added.
A slurry of fine suspended solids uniformly dispersed in a silica colloid sol is obtained. This was dried in a co-current spray dryer. Atomization of the raw material slurry can be carried out by any of the centrifugal, two-fluid nozzle, or high-pressure nozzle methods commonly used in industrial practice, but the centrifugal method is particularly preferred. In the centrifugal system, the particle size can be distributed between 10 and 150 microns, which is suitable for use in a fluidized bed reactor, by adjusting the rotation speed of the disk and the feed rate of the slurry. The obtained dry powder was pre-calcined at 350℃ for 2 hours using a tunnel kiln, and then heated at 750℃ for 3 hours.
Time firing was performed. BET the surface area of this catalyst
The surface area was 20.5 m 2 /gr when measured using a method, and it was found to have a spherical shape suitable for a fluidized bed when observed using an electron microscope. The particle size distribution was as follows. Particle size range 20~200μ Average particle size 60μ Particle size distribution 0.2~0.7 times the average particle size 35% by weight 〃 1.5~2.0 〃 16% by weight 300g of the catalyst produced by this method was placed in a fluidized bed reactor with a diameter of 1.5 inches. The reaction temperature was maintained at 320 to 330°C and the pressure was maintained at atmospheric pressure, and a raw material liquid having a ratio of phenol, methanol, and water of 1:5:3 was introduced into the reactor through the evaporator. At this time, the linear velocity of the raw material gas is
The speed was adjusted to 4.6 cm/sec. All of the gas flowing out from the reactor was passed through a condenser, and the condensed liquid was analyzed by gas chromatography. The results are shown in Table-1. A wear resistance test was also conducted on the catalyst before and after the reaction. The abrasion test is a typical test method for FCC catalysts, in which approximately 50 g of catalyst is placed in a vertical tube with an inner diameter of 1.5 inches and a perforated disc with three 1/64 inch orifices at the bottom. After being accurately weighed, it was poured into the container, and air was forced through the perforated disk at a rate of 15 cubic feet per hour to create a vigorous flow. The degree of catalyst wear was determined as the ratio of the weight of catalyst lost from the top of the vertical tube to the initial input amount, refined over a period of 5 to 20 hours. As shown in Table 1, the amount of the catalyst co-worn out before the reaction and after the reaction was around 1%, which is sufficient to withstand use as a fluidized bed catalyst. Reference Examples 2 to 6, Comparative Examples 1 to 5 Catalysts with different supported silica amounts and calcination temperatures were prepared in the same manner as in Reference Example 1, and the reaction and wear resistance of the catalysts were tested using the same equipment as in Reference Example 1. I conducted a test. The reaction lasted for 24-120 hours. Table 1 shows the reaction results and the results of the abrasion resistance test of the catalyst before and after the reaction. The particle size and particle size distribution of all the catalysts used here were within the range of the present invention. Furthermore, X-ray diffraction revealed that the silica of the catalyst calcined at 1000° C. in Comparative Example 5 was crystallized. Reference Examples 7-8 Catalysts were prepared by adding potassium and magnesium to the composition of Example 1 in the same manner as in Reference Example 1, and the reaction and abrasion resistance tests were conducted in the same manner. Display the results.
Shown in 1. The particle size and particle size distribution of all the catalysts used here were within the range of the present invention.

【表】 実施例1〜3、比較例6〜7 参考例1と同様の方法で、触媒の組成を変えた
触媒を調製し参考例1の同様の装置を用いて反応
および触媒の耐摩耗試験を行なつた。反応は24時
間継続した。反応成績および反応前後の触媒の結
果を表―2に示す。 なお、ここで用いた触媒はすべて粒径および粒
径分布は本発明の範囲内であつた。
[Table] Examples 1 to 3, Comparative Examples 6 to 7 Catalysts with different catalyst compositions were prepared in the same manner as in Reference Example 1, and reactions and wear resistance tests of the catalysts were conducted using the same apparatus as in Reference Example 1. I did this. The reaction continued for 24 hours. Table 2 shows the reaction results and the results of the catalyst before and after the reaction. The particle size and particle size distribution of all the catalysts used here were within the range of the present invention.

【表】 比較例 8 市販のアルミナゾル(Al2O3として10wt%)に
硝酸マンガンを溶解し、実施例1と同様に噴霧乾
燥し、700℃3hr焼成した。この触媒につき耐摩耗
試験を行なつた。この結果を表―3に示す。 比較例 9 市販の100〜200メツシユのけい藻土に硝酸マン
ガンを含浸せしめ、これを700℃で3hr焼成した。
この触媒について耐摩耗試験を行なつた。この結
果を表―3に示す。
[Table] Comparative Example 8 Manganese nitrate was dissolved in commercially available alumina sol (10 wt% as Al 2 O 3 ), spray-dried in the same manner as in Example 1, and calcined at 700°C for 3 hours. A wear resistance test was conducted on this catalyst. The results are shown in Table 3. Comparative Example 9 100 to 200 meshes of commercially available diatomaceous earth were impregnated with manganese nitrate and fired at 700°C for 3 hours.
A wear resistance test was conducted on this catalyst. The results are shown in Table 3.

【表】 参考例 9 参考例1で用いた触媒を用いて、実施例と同一
の反応装置によつて、オルトクレゾールとメタノ
ールの反応を行なつた。この時反応温度は320℃、
オルトクレゾールとメタノールと水のモル比を
1:3:3とし、ガス線速度を4.6cm/秒に保つ
た。24時間反応を継続後の成績は、オルトクレゾ
ールの転化率は99.5%であり、2,6―キシレノ
ールの選択率は98.5%であつた。
[Table] Reference Example 9 Using the catalyst used in Reference Example 1, ortho-cresol and methanol were reacted in the same reaction apparatus as in the example. At this time, the reaction temperature was 320℃,
The molar ratio of orthocresol, methanol, and water was 1:3:3, and the gas linear velocity was maintained at 4.6 cm/sec. After continuing the reaction for 24 hours, the conversion rate of orthocresol was 99.5% and the selectivity of 2,6-xylenol was 98.5%.

Claims (1)

【特許請求の範囲】 1 フエノールまたは/およびオルトクレゾール
とメタノールを気相で接触させてオルト位メチル
化フエノール化合物を製造するにあたり、10〜80
重量%のシリカに担持され、金属成分として鉄、
バナジウム、マンガン、マグネシウム、クロムの
単独又は組合せ(但し、鉄とバナジウムをともに
含む場合を除く)からなる金属酸化物触媒であつ
て500〜900℃で焼成されてなる触媒を用い、流動
床で反応せしめることを特徴とするフエノールま
たは/およびオルトクレゾールのオルトメチル化
方法。 2 触媒は平均粒径が40〜100μであり、かつ平
均粒径の0.2〜0.7倍、1.5〜2.0倍および2.0倍をこ
える各粒径範囲にある粒子の総重量が全触媒重量
に対して、それぞれ5〜50%、5〜30%および10
%以下の粒径分布であることを特徴とする特許請
求の範囲第1項記載のフエノールまたは/および
オルトクレゾールのオルトメチル化方法。 3 フエノールまたは/およびオルトクレゾール
とメタノールとの反応ガスの接触時の線速度が
0.5〜100cm/秒とすることを特徴とする特許請求
の範囲第1項記載のフエノールまたは/およびオ
ルトクレゾールのオルトメチル化方法。
[Claims] 1. In producing an ortho-methylated phenol compound by contacting phenol or/and ortho-cresol with methanol in the gas phase, 10 to 80
% by weight supported on silica, with iron as the metal component,
The reaction is carried out in a fluidized bed using a metal oxide catalyst consisting of vanadium, manganese, magnesium, and chromium alone or in combination (excluding cases containing both iron and vanadium) and calcined at 500 to 900°C. 1. A method for orthomethylating phenol or/and orthocresol. 2. The catalyst has an average particle size of 40 to 100μ, and the total weight of particles in each particle size range of 0.2 to 0.7 times, 1.5 to 2.0 times, and over 2.0 times the average particle size is relative to the total catalyst weight, 5-50%, 5-30% and 10 respectively
The method for orthomethylating phenol and/or orthocresol according to claim 1, characterized in that the particle size distribution is less than or equal to %. 3 The linear velocity when the reaction gas of phenol or/and orthocresol and methanol contacts is
The method for orthomethylating phenol and/or orthocresol according to claim 1, characterized in that the rate is 0.5 to 100 cm/sec.
JP58018573A 1982-08-10 1983-02-07 Orthomethylation of phenol and/or orthocresol Granted JPS59144726A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58018573A JPS59144726A (en) 1983-02-07 1983-02-07 Orthomethylation of phenol and/or orthocresol
US06/521,205 US4517389A (en) 1982-08-10 1983-08-08 Process for methylating the ortho position of a phenol
DE8383201181T DE3367586D1 (en) 1982-08-10 1983-08-10 A process for methylating the ortho position of a phenol
EP83201181A EP0101138B1 (en) 1982-08-10 1983-08-10 A process for methylating the ortho position of a phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58018573A JPS59144726A (en) 1983-02-07 1983-02-07 Orthomethylation of phenol and/or orthocresol

Publications (2)

Publication Number Publication Date
JPS59144726A JPS59144726A (en) 1984-08-18
JPH0233693B2 true JPH0233693B2 (en) 1990-07-30

Family

ID=11975357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58018573A Granted JPS59144726A (en) 1982-08-10 1983-02-07 Orthomethylation of phenol and/or orthocresol

Country Status (1)

Country Link
JP (1) JPS59144726A (en)

Also Published As

Publication number Publication date
JPS59144726A (en) 1984-08-18

Similar Documents

Publication Publication Date Title
US9079840B2 (en) Process for producing geometric shaped catalyst bodies
US6169214B1 (en) Catalyst consisting of a hollow cylindrical carrier having a catalytically active oxide material applied to the outer surface of the carrier, and process for using said catalyst
US5885922A (en) Multimetal oxide materials
US8426335B2 (en) Catalyst and process for production of acrylic acid
JP5628930B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JPS6112488B2 (en)
JP4800948B2 (en) Process for producing a catalyst for gas phase oxidation by coating a support material in a fluidized bed apparatus
US8242306B2 (en) Oxide catalyst, process for producing acrolein or acrylic acid and process for producing water-absorbent resin
CN110709163A (en) Catalyst and process for preparing same
JP3009646B2 (en) Shell-type catalyst for gas-phase oxidation of C-C4 hydrocarbons to maleic anhydride, method for producing the same, and gas-phase oxidation of C-C4 hydrocarbons
JP5388897B2 (en) Catalyst for producing unsaturated aldehyde and / or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and / or unsaturated carboxylic acid using the catalyst
JPH08141401A (en) Catalyst for production of nitrile
JPH067924B2 (en) Propylene oxidation catalyst and method for producing the same with excellent reproducibility
US4517389A (en) Process for methylating the ortho position of a phenol
EP0107274B1 (en) Attrition resistant microspheroidal fluid bed catalysts containing the mixed oxides of vanadium and phosphorus
JPH0134222B2 (en)
US4525471A (en) Attrition resistant microspheroidal fluid bed catalysts containing the mixed oxides of vanadium and phosphorus
JP5628936B2 (en) Unsaturated carboxylic acid production catalyst and method for producing unsaturated carboxylic acid using the catalyst
JPH0233693B2 (en)
US4647673A (en) Maleic anhydride process
JPS63315148A (en) Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility
JPS6041666B2 (en) How to produce methacrylonitrile
JP2004000936A (en) Method for regenerating deteriorated catalyst
RU2806328C2 (en) Method of producing catalyst for synthesis of unsaturated carboxylic acid
JP2005029518A (en) Method for producing orthoalkylated hydroxyaromatic compound