JPH0233313A - Ultrafine hollow fiber and nonwoven fabric - Google Patents

Ultrafine hollow fiber and nonwoven fabric

Info

Publication number
JPH0233313A
JPH0233313A JP63184226A JP18422688A JPH0233313A JP H0233313 A JPH0233313 A JP H0233313A JP 63184226 A JP63184226 A JP 63184226A JP 18422688 A JP18422688 A JP 18422688A JP H0233313 A JPH0233313 A JP H0233313A
Authority
JP
Japan
Prior art keywords
ultrafine
hollow
hollow fiber
nonwoven fabric
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63184226A
Other languages
Japanese (ja)
Inventor
Hideo Isoda
英夫 磯田
Hideaki Ishihara
石原 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP63184226A priority Critical patent/JPH0233313A/en
Publication of JPH0233313A publication Critical patent/JPH0233313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain an inexpensive ultrafine hollow fiber for heat insulation material consisting of a thermoplastic high polymer having specific single fiber area and hollow ratio and having bulkiness regardless ultrafine string and excellent heat retaining property as well as softness, waterproofing property, permeability, etc. CONSTITUTION:The ultrafine hollow fiber obtained by spinning a thermoplastic high polymer having <=40mum<2> single fiber cross section and >=3% hollow ratio using a nozzle 1 having 60-120 deg.theta widening angle of nozzle tip, 0.2-2.0mm distance L of nozzle tip and 0.03-0.1mm tip flat part 4 as well as trapezoid cross section according to melt blow method. The above-mentioned hollow fiber is used, preferably at amount of >=50%, more preferably >=100% to provide the nonwoven fabric.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、保温性、嵩高性の優れた極細中空糸及び該中
空糸を含有する不織布に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to ultrafine hollow fibers with excellent heat retention and bulkiness, and nonwoven fabrics containing the hollow fibers.

(従来の技術) メルトブロー法により得られる極細繊維がら成る不織布
は、透湿防水性を存し、しなやがで、糸表面績は大きく
なるが、極細化により嵩高性が劣るため静止空気召が減
少し、断熱効果は減少する。
(Prior art) Nonwoven fabrics made of ultrafine fibers obtained by the melt-blowing method are moisture permeable and waterproof, pliable, and have a large yarn surface, but their ultrafineness reduces bulk, making them difficult to breathe in still air. decreases, and the insulation effect decreases.

嵩高性改良方法として特公昭50−10992号公報が
提案されているが、マトリックス溶解−水洗−乾燥等の
煩雑な操作が必要で且つこのような後加工工程により、
不織布は嵩高性が低下してしまうため今だ充分な嵩高で
保温性の優れたものとはなり得ない。
Japanese Patent Publication No. 50-10992 has proposed a method for improving bulkiness, but it requires complicated operations such as matrix dissolution, water washing, and drying, and such post-processing steps
Since non-woven fabrics have reduced bulk, they cannot yet be bulky enough and have excellent heat retention properties.

他方中空糸は、弾発性が良好で且つ嵩高で中空部を有す
るため比較的断熱効果は良好といわれているが、特公昭
44−20497、特公昭53−10169、特開昭5
3−35026、米国特許第299929E3号明細書
等に例示されるごとく1デニール以下の極細化は成され
ておらず、薄くて、軽くて保温性良好という面では極細
糸に数段劣るものでしかない。又、極細保温材としては
特公昭83−31581号公報に繊度0.1〜30デニ
ール、断面形状は、円形、異形、中空等各種断面形状を
とり得るとの記載はあるが、0.5デニール以下の極細
中空糸に関する性能及び技術的開示は全くなされていな
い。
On the other hand, hollow fibers have good elasticity, are bulky, and have hollow parts, so they are said to have a relatively good heat insulating effect.
As exemplified in U.S. Pat. No. 3-35026 and US Pat. No. 299929E3, ultrafine yarns of less than 1 denier have not been achieved, and are only several steps inferior to ultrafine yarns in terms of thinness, lightness, and good heat retention. do not have. In addition, as for ultra-fine heat insulating materials, it is stated in Japanese Patent Publication No. 83-31581 that the fineness is 0.1 to 30 denier and that the cross-sectional shape can be various shapes such as circular, irregular shape, hollow, etc., but 0.5 denier. No performance or technical disclosure regarding the following ultrafine hollow fibers has been made.

(発明が解決しようとする課題) 本発明は、従来品の前述欠点を解消し、薄くて、軽くて
保温性に優れ、透湿防水性を有し、しなやかな保温材を
安価に提供することを課題とする。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned drawbacks of conventional products, and to provide a thin, light, excellent heat retaining material, moisture permeable and waterproof, and flexible heat insulating material at a low cost. The task is to

(課題を解決するための手段) 本発明は、単繊維断面積が40μノ以下かつ、中空率が
3%以上の熱可塑性高分子重合体から成ることを特徴と
する極細中空糸及び該極細中空糸を含有する不織布によ
り上記課題を解決するものである。以下に本発明の詳細
な説明する。
(Means for Solving the Problems) The present invention provides an ultra-fine hollow fiber characterized by being made of a thermoplastic polymer having a single fiber cross-sectional area of 40 μm or less and a hollowness ratio of 3% or more, and the ultra-fine hollow fiber. The above problem is solved by a nonwoven fabric containing yarn. The present invention will be explained in detail below.

本発明の極細中空糸の単繊維断面積は40μm2以下で
ある。
The single fiber cross-sectional area of the ultrafine hollow fiber of the present invention is 40 μm 2 or less.

40μm2をこえる太いものは、不織布として薄くした
ときの被覆性、透湿防水性、保温性及び柔軟性に劣るの
で好ましくない。なお、ポリエステル繊維の場合には4
0μノの断面積の単繊維は0.5dに相当する。
If the thickness exceeds 40 μm2, it is not preferable because it is inferior in coverage, moisture permeability and waterproofness, heat retention, and flexibility when made into a thin nonwoven fabric. In addition, in the case of polyester fiber, 4
A single fiber with a cross-sectional area of 0μ corresponds to 0.5d.

好ましい単繊維断面積は20μm2以下、0.01μm
2以上、より好ましくは、10μm2以下、0.05μ
m2以上であり、0.01μぜより小さいと中空の嵩高
さ、形態保持性、適度の弾力性に劣るので好ましくない
Preferable single fiber cross-sectional area is 20 μm or less, 0.01 μm
2 or more, more preferably 10μm or less, 0.05μ
m2 or more, and if it is smaller than 0.01 μm, it is not preferable because the hollow bulk, shape retention, and appropriate elasticity are poor.

本発明の極細中空糸の中空率は3%以上である。The hollowness ratio of the ultrafine hollow fibers of the present invention is 3% or more.

3%未溝では不織布としたとき含気率、嵩高性適度の弾
力性が低下し、保温性も劣るので好ましくない。好まし
い中空率は5%以上50%以下であり、中空率が高過ぎ
ると中空部分がつぶれやすくなり扁平化してしまい嵩高
性が劣るので好ましくない。より好ましくは8%以上4
0%以下である。
3% ungrooved fabric is not preferable because when it is made into a non-woven fabric, air content, bulkiness and appropriate elasticity are lowered, and heat retention is also poor. The preferred hollowness ratio is 5% or more and 50% or less, and if the hollowness ratio is too high, the hollow portion will be easily crushed and flattened, resulting in poor bulkiness, which is not preferable. More preferably 8% or more4
It is 0% or less.

本発明の極細中空糸は不織布としたとき極細糸の特徴と
中空糸の特徴を相乗効果として発揮すると考えられる。
It is thought that the ultrafine hollow fibers of the present invention, when made into a nonwoven fabric, exhibit the characteristics of ultrafine fibers and hollow fibers as a synergistic effect.

すなわちその理由は明らかではないが、雰囲気の気流の
流速が著しく高い場合でも中空部は確実に保持でき、加
えて極細化しても断面二次モーメントが高くなり、外力
に対して最密光てんされにくくなり嵩高さを保てること
及び極細のため極細による表面積増大と構成本数増大に
よる境界面の増加で、高速気流の通気抵抗が増すことで
、集合体中の静止空気層が多く保持できるため嵩高性、
保温性が共に向上するものと思われる。加えて、被覆性
、耐水性も向上し、多孔構造で嵩高性のため透湿性を保
持できるものと思われる。本発明の極細中空糸を構成す
る組成は、熱可塑性高分子重合体から成る。この理由は
、後述するが溶融ポリマーをメルトブロー法で極細中空
化するためである。本発明の極細中空糸の組成として好
ましいものとしては、ポリエステル、ポリアミド、ポリ
オレフィン、ポリアクリルニトリル、ポリ塩化ビニール
及びそれらの共重合体、ブレンド体などが例示できる。
In other words, although the reason for this is not clear, the hollow part can be reliably maintained even when the airflow velocity in the atmosphere is extremely high, and in addition, even if it is made extremely thin, the moment of inertia of area is high, and it is difficult to maintain close-packed light against external forces. Because it is extremely thin, the surface area increases due to the ultra-fine structure, and the boundary surface increases due to the increase in the number of constituent pieces, which increases the ventilation resistance of high-speed airflow and maintains a large still air layer in the aggregate, resulting in bulkiness. ,
It is thought that heat retention will also improve. In addition, coverage and water resistance are improved, and the porous structure and bulkiness make it possible to maintain moisture permeability. The composition constituting the ultrafine hollow fiber of the present invention consists of a thermoplastic polymer. The reason for this is that the molten polymer is made into ultra-fine hollows by the melt blowing method, which will be described later. Preferred examples of the composition of the ultrafine hollow fiber of the present invention include polyester, polyamide, polyolefin, polyacrylonitrile, polyvinyl chloride, and copolymers and blends thereof.

それらの高分子重合体中に10%以内の改質剤、艶消剤
、不純物等を含有していてもよい、但し粒子状となって
いるものは、0.3μm以下とするのが好ましい。
These high molecular weight polymers may contain up to 10% of modifiers, matting agents, impurities, etc. However, if they are in the form of particles, the particle size is preferably 0.3 μm or less.

本発明の極細中空糸は従来知られている方法では得られ
ておらず、メルトブロー法でのみ可能となった。特に従
来公知のノズルオリフィス形状では中空糸とならないよ
うなノズルオリフィス形状例えば×型、と型、二型、ン
型などにおいて中空断面としてCつ()  、Qo  
、@などの極細中空糸が得られる。C型などでは、押し
つぶされたGり断面となる。
The ultrafine hollow fibers of the present invention have not been obtained by conventionally known methods, and have only been made possible by melt blowing. In particular, in the case of nozzle orifice shapes that do not form hollow fibers in conventionally known nozzle orifice shapes, such as x-shape, to-shape, 2-shape, n-shape, etc., the hollow cross section is C (), Qo.
, @, etc. are obtained. In the C type, etc., it becomes a crushed G cross section.

この理由は明らかではないが、第1図に示す台形断面ノ
ズルを用いたときの例として、牽引流体が最も圧縮され
、気体では亜音速又は音速となる側壁面で流体の流線方
向の力(F)の横向きの分力(Fi)が作用して、オリ
フィスから出た溶解高分子流れが側壁面からノズルオリ
フィス中心部へ押し込まれ中空部が形成されるのではな
いかと推測される。又、このとき、牽引流体と接する溶
融高分子流れの接触面積も大きいため通常紡糸及び従来
公知の丸断面でのメルトブロー法では考えられないドラ
フト比が可能となり、極細中空糸を得ることができるの
ではないかと推測される。極細中空化に適したノズルデ
イメンジョンの1例としてノズル先端法がり角θは、4
5°以上、好ましくは60’ 以上〜120°以下、ノ
ズル先端キヨIJ Lは、01冒以上、好ましくは0.
2■■以上2.0m@以下、先端フラット部Wは0.2
1以下好ましくは0.1■l以下〜0.03.■以上、
オリフィス巾Dは、所望の巾を取れるが好ましくは牽引
流体のユーティリティーコストから2■l以下でありリ
ップ開口巾Wはオリフィス巾りとの間で0.8D≦Wを
満たすのが好ましい。0.8D>Wでは糸切れすること
がある。
The reason for this is not clear, but as an example when using the trapezoidal cross-section nozzle shown in Figure 1, the force in the streamline direction of the fluid ( It is presumed that the lateral component force (Fi) of F) acts to push the dissolved polymer flow exiting the orifice from the side wall surface into the center of the nozzle orifice, forming a hollow portion. In addition, at this time, since the contact area of the molten polymer flow in contact with the pulling fluid is large, it is possible to achieve a draft ratio that would be unimaginable in normal spinning or the conventionally known melt blowing method with a round cross section, making it possible to obtain ultra-fine hollow fibers. It is assumed that this is the case. As an example of a nozzle dimension suitable for ultra-fine hollow formation, the nozzle tip angle θ is 4.
5 degrees or more, preferably 60' or more and 120 degrees or less, and the nozzle tip angle IJL is 0.01 degrees or more, preferably 0.
2■■ or more and 2.0m or less, flat end W is 0.2
1 or less, preferably 0.1 μl or less to 0.03. ■ Above,
The orifice width D can be any desired width, but is preferably 2 liters or less in view of the utility cost of the traction fluid, and the lip opening width W preferably satisfies 0.8D≦W with the orifice width. If 0.8D>W, thread breakage may occur.

紡糸温度は用いる高分子重合体の融点より20℃以上1
50℃以下が好ましいが、滞留時間を短縮できれば、更
に高い温度でも可能である。T m +15°C以下で
は中空糸とならない場合がある。
The spinning temperature is 20°C or higher than the melting point of the polymer used1.
The temperature is preferably 50°C or lower, but even higher temperatures are possible if the residence time can be shortened. Hollow fibers may not be formed at temperatures below T m +15°C.

オリフィスの形状は、フラット部中心で対称形となるよ
うに開孔されておれば3%以上の中空が形成されるもの
なら特に制限はないが、より好ましくは前述の形状がよ
い。
The shape of the orifice is not particularly limited as long as it is symmetrical with respect to the center of the flat portion and a hollow space of 3% or more is formed, but the shape described above is more preferable.

牽引流体の温度は特に制限されないが、10μm2以下
の極細化を目的とする場合紡糸温度以上とするのが好ま
しい。
Although the temperature of the traction fluid is not particularly limited, it is preferably at least the spinning temperature when the purpose is to obtain ultrafine particles of 10 μm 2 or less.

牽引流体の流速は、所望の繊維面積を得るときには、他
の条件及び吐出量とのバランスで適時音速〜亜音速の範
囲域に設定すればよい。音速を超えると糸切れを生じる
ことがある。但し50m/秒未溝になると糸断面が40
μI以下とならない場合もあるので少なくとも50m/
秒以上とするのが好ましい。牽引流体は空気、蒸気、窒
素などが適当である。
When obtaining a desired fiber area, the flow velocity of the traction fluid may be appropriately set in the sonic to subsonic range in balance with other conditions and discharge amount. Exceeding the speed of sound may cause thread breakage. However, if the thread is not grooved at 50 m/s, the thread cross section will be 40 m/s.
It may not be less than μI, so at least 50m/
It is preferable to set it to more than a second. Suitable traction fluids include air, steam, nitrogen, and the like.

吐出量は個々の紡糸条件、重合体特性、ノズル等により
大きく変るが、例えばポリエチレンテレフタレートでは
、紡糸温度290℃、牽引流体として空気を用い、温度
290℃では、単孔当り吐出量は少なくとも4g/分孔
以下好ましくは2g/分孔以下である。
The discharge amount varies greatly depending on the individual spinning conditions, polymer properties, nozzle, etc., but for example, in the case of polyethylene terephthalate, at a spinning temperature of 290°C, using air as the traction fluid, and at a temperature of 290°C, the discharge amount per single hole is at least 4g/. It is preferably 2 g/pore or less.

2μノ以下を所望するには第1図ノズルオリフィス形状
を用いた場合0.3〜0.8g/分孔が適当である。得
られた繊維断面形状はC9形であった。
If the nozzle orifice shape shown in Fig. 1 is used, 0.3 to 0.8 g/minute hole is suitable for desiring 2 μm or less. The cross-sectional shape of the obtained fiber was C9.

以上の条件で得られる極細中空糸を不織布化するにはサ
クシロン機能を有するネットなどにより積属シート化す
る公知の引取方法が適用できる。引取り位置は、必要に
応じ、固化が完了した意思前又は以後とすることができ
るが、嵩高で被覆性、透湿防水性、保温性及び柔軟性と
適度の弾力性を有する不織布とするには、単繊維同志が
接着していないのが好ましいのでポリエチレンテレフタ
レートでは固化点以下に冷却されるに十分な距離でかつ
、失速によりヒモ状交絡グ糸の少ない条件として、30
〜60cm程度に設定される。引取られた不織布は、必
要により加熱ローラ等で軽くプレスしたり、エンボス加
工を施すことで見掛けの嵩密度を調整できるが、好まし
くはシート状に引取り、続いて非接触加熱によりセット
し、嵩高性を保つのが望ましい。
In order to make the ultrafine hollow fibers obtained under the above conditions into a non-woven fabric, a known method for making a sheet by stacking them with a net having a succilon function or the like can be applied. The pick-up position can be before or after solidification is completed, if necessary. Since it is preferable that the single fibers are not bonded to each other, in the case of polyethylene terephthalate, the distance is sufficient to cool down to below the solidification point, and the condition is that 30
It is set to about 60 cm. The apparent bulk density of the taken-up nonwoven fabric can be adjusted by lightly pressing it with a heating roller or by embossing it if necessary, but it is preferable to take it up in the form of a sheet and then set it by non-contact heating to increase its bulk. It is desirable to maintain gender.

このようにして得られた極細中空糸を含有する不織布は
前述の極細化と中空化の特徴とを兼備することになる。
The nonwoven fabric containing ultrafine hollow fibers thus obtained has both the characteristics of ultrafine fibers and hollow fibers described above.

なお、本発明に関する不織布が含有する極細中空糸の含
を率は、少なくとも30%、好ましくは50%以上、よ
り好ましくは100%である。30%以下では効果が劣
るのが好ましくない。
The content of ultrafine hollow fibers contained in the nonwoven fabric of the present invention is at least 30%, preferably 50% or more, and more preferably 100%. If it is less than 30%, the effect is undesirably poor.

(実施例) 以下実施例を挙げて本発明の効果を更に明確にする。(Example) Examples are given below to further clarify the effects of the present invention.

なお、本発明で定義される繊維の特性等は下記の方法で
測定した値を言う。
Note that the characteristics of fibers defined in the present invention refer to values measured by the following method.

■ 単繊維断面積(S) 得られた繊維又は不織布より、300本以上取り出した
ものをアクリル樹脂で包埋し、切片を作成後一端を溶出
させた切片を電子顕微鏡で2000〜5000倍で撮影
し拡大写真(1万〜2万倍)から100本をランダムに
選択し、その断面積(St)を測定し、100本の平均
値(μm2)として示す。
■ Single fiber cross-sectional area (S) From the obtained fibers or nonwoven fabric, embed 300 or more fibers in acrylic resin, create a section, and then elute one end and photograph the section with an electron microscope at 2000 to 5000 times. 100 pieces were randomly selected from the enlarged photograph (10,000 to 20,000 times), the cross-sectional area (St) was measured, and the average value (μm2) of the 100 pieces was shown.

■ 中空率(HV) 上記の100本から中空率(HVi)を測定し、100
本の平均値(%)として示す。
■ Hollowness ratio (HV) Measure the hollowness ratio (HVi) from the 100 pieces above, and
Shown as average value (%) of books.

■ 極細中空糸含有率 不織布をアクリル包埋して片切片を溶出した切片を電子
顕微鏡で2000〜5000倍で撮影し、拡大写真から
、ランダムに200本選択し中空糸含有率(%)を求め
る。
■ Ultra-fine hollow fiber content A non-woven fabric is embedded in acrylic and one section is eluted. The section is photographed at 2000 to 5000 times magnification using an electron microscope. 200 fibers are randomly selected from the enlarged photograph and the hollow fiber content (%) is determined. .

実施例1〜5、比較例1〜6 高分子重合体としてポリエチレンテレフタレート(極限
粘度0.80)及びポリプロピレン(メルトインデック
ス40)を用いて第1表に示す条件にてメルトブローに
より、第1表のシートを製造した。
Examples 1 to 5, Comparative Examples 1 to 6 Polyethylene terephthalate (intrinsic viscosity 0.80) and polypropylene (melt index 40) were used as polymers by melt blowing under the conditions shown in Table 1. The sheet was manufactured.

得られた単繊維特性及びシートの評価結果を第1表に併
記する。本発明のものは極細でも嵩高、柔かでかつ保温
性に優れている。なおシートの性能評価の嵩高性は、荷
重0.2g/eJ下の嵩、熱抵抗値は、ASTM−D−
1518に準拠、柔軟性は20人にタッチさせ硬いをX
〜非常に柔かいを◎のランクづけで評価、防水性は、水
圧0.2kg/cJでモレなしを◎〜完全に透水を×の
ランクづけ、透湿性は20℃×20%RH室内で100
0ccの箱内RH99%の箱の1面(10c*X 10
cm)をシートとして平衡になる時間5分以内を0〜6
0分以上をXとしてランクづけで評価したものである。
The obtained single fiber properties and sheet evaluation results are also listed in Table 1. Although the material of the present invention is extremely thin, it is bulky, soft, and has excellent heat retention. The bulkiness of the sheet performance evaluation is the bulk under a load of 0.2 g/eJ, and the thermal resistance value is ASTM-D-
Compliant with 1518, flexible enough to touch 20 people
~Very soft is ranked as ◎.Waterproofness is ranked as ◎ with no leakage at water pressure of 0.2kg/cJ~Completely water permeable as ×, and moisture permeability is rated as 100 in a room at 20℃ x 20% RH.
One side of the box with RH99% inside the box of 0cc (10c*X 10
cm) as a sheet and the time to equilibrium is 0 to 6 within 5 minutes.
It is evaluated by ranking with 0 minutes or more as X.

(発明の効果) 本発明の極細中空糸を含存する不織布は、極細にもかか
わらず嵩高かつ保温性に優れており、かつ、極細糸の特
徴である柔かさ、防水性、透湿性等を兼備した機能性保
温材特に衣料保温材に最適の素材を提供し得ることにな
った。
(Effect of the invention) The nonwoven fabric containing the ultra-fine hollow fibers of the present invention is bulky and has excellent heat retention despite being ultra-fine, and also has the characteristics of ultra-fine fibers such as softness, waterproofness, and moisture permeability. This makes it possible to provide a material that is ideal for functional heat insulating materials, especially clothing heat insulating materials.

また各種産業用断熱材、各種フィルター材、衝打、一体
成形材、防音材、メディカル用材等としても巾広く活用
することができる。
It can also be widely used as various industrial insulation materials, various filter materials, impact materials, integral molding materials, soundproofing materials, medical materials, etc.

【図面の簡単な説明】 第1図は本発明の極細中空糸を得るためのノズル断面図
及び下方から見た平面の組立部分概念図である。 1・・−ノズル、2−・・リップ、3・・・−オリフィ
ス4・−・・先端フラット部、5−・・−リップ面。 特許出願人  東洋紡績株式会社 第1@ 1 ・・ノズ゛II/ 2゛° シッフ0 3・・ オリフィ人
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a nozzle for obtaining ultrafine hollow fibers of the present invention, and a conceptual diagram of an assembled part viewed from below. 1...-nozzle, 2--lip, 3...-orifice 4--tip flat portion, 5--lip surface. Patent applicant: Toyobo Co., Ltd. No. 1 @ 1 ... Nozu II / 2 ° Schiff 0 3 ... Orifi person

Claims (2)

【特許請求の範囲】[Claims] 1. 単繊維断面積40μm^2以下、中空率3%以上
の熱可塑性高分子重合体からなることを特徴とする極細
中空糸。
1. An ultrafine hollow fiber characterized by being made of a thermoplastic polymer having a single fiber cross-sectional area of 40 μm^2 or less and a hollowness ratio of 3% or more.
2. 請求項1に記載の極細中空糸を含有することを特
徴とする不織布。
2. A nonwoven fabric comprising the ultrafine hollow fibers according to claim 1.
JP63184226A 1988-07-22 1988-07-22 Ultrafine hollow fiber and nonwoven fabric Pending JPH0233313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184226A JPH0233313A (en) 1988-07-22 1988-07-22 Ultrafine hollow fiber and nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184226A JPH0233313A (en) 1988-07-22 1988-07-22 Ultrafine hollow fiber and nonwoven fabric

Publications (1)

Publication Number Publication Date
JPH0233313A true JPH0233313A (en) 1990-02-02

Family

ID=16149579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184226A Pending JPH0233313A (en) 1988-07-22 1988-07-22 Ultrafine hollow fiber and nonwoven fabric

Country Status (1)

Country Link
JP (1) JPH0233313A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582144B1 (en) 1999-07-19 2003-06-24 Mitsubishi Pencil Kabushikikaisha Writing implement
CN108589043A (en) * 2018-04-09 2018-09-28 中原工学院 A kind of ultrasonic wave for sound-absorbing sound-insulating and heat-insulating gets non-woven cloth ready
CN109402779A (en) * 2018-10-08 2019-03-01 烟台泰和新材料股份有限公司 A kind of skin-core structure noctilucence meta-aramid fibers and its preparation method and application
CN112111858A (en) * 2020-09-24 2020-12-22 中原工学院 Energy-saving micro-nano melt-blowing production equipment and working principle thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310169A (en) * 1976-07-14 1978-01-30 Frenkel Ag C D Continuous kneading machine
JPS60259662A (en) * 1984-06-01 1985-12-21 帝人株式会社 Production of nonwoven fabric

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310169A (en) * 1976-07-14 1978-01-30 Frenkel Ag C D Continuous kneading machine
JPS60259662A (en) * 1984-06-01 1985-12-21 帝人株式会社 Production of nonwoven fabric

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582144B1 (en) 1999-07-19 2003-06-24 Mitsubishi Pencil Kabushikikaisha Writing implement
CN108589043A (en) * 2018-04-09 2018-09-28 中原工学院 A kind of ultrasonic wave for sound-absorbing sound-insulating and heat-insulating gets non-woven cloth ready
CN109402779A (en) * 2018-10-08 2019-03-01 烟台泰和新材料股份有限公司 A kind of skin-core structure noctilucence meta-aramid fibers and its preparation method and application
CN112111858A (en) * 2020-09-24 2020-12-22 中原工学院 Energy-saving micro-nano melt-blowing production equipment and working principle thereof

Similar Documents

Publication Publication Date Title
TWI649476B (en) Temperature-regulated cellulosic fiber and its application
Lee et al. Structure and filtration properties of melt blown polypropylene webs
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
TW201546341A (en) Polyester binder fiber
JP5096203B2 (en) Method for producing polypropylene fiber having excellent heat resistance and strength
JPH0233313A (en) Ultrafine hollow fiber and nonwoven fabric
JP2004263344A (en) Nonwoven fabric for simple mask and simple mask
JP3110566B2 (en) Method for producing polypropylene-based nonwoven fabric
JP3573612B2 (en) Biodegradable weed control sheet
JPH0995849A (en) Nonwoven fabric of polylactate-based filament and its production
KR100715203B1 (en) Polyester spunbonded nonwoven fabrics for air filter and preparation method thereof
JPS63243324A (en) Heat bonding fiber and nonwoven fabric thereof
JP3391934B2 (en) Splittable fiber and fiber sheet using the same
JPH0233368A (en) Production of ultrafine non-woven fabric and melt blow nozzle
KR20050062134A (en) Polyester spunbonded nonwovens for air filter support, and preparation method thereof
JP4582886B2 (en) Weatherproof long fiber nonwoven fabric
JP3150218B2 (en) Biodegradable short fiber non-woven fabric
JP2682874B2 (en) Bulky melt blown nonwoven fabric
JPH01201567A (en) Production of bulky spun-bond nonwoven fabric
JPS63182462A (en) Opening nonwoven fabric
JP3650505B2 (en) Melt blown nonwoven fabric
JP4992108B2 (en) Process for producing substantially C-shaped cross section thermoplastic fiber
JPH01201566A (en) Bulky spun-bond nonwoven fabric
JP2005113278A (en) Biodegradable nonwoven fabric and filter using the same
JPH0941223A (en) Biodegradable conjugated fiber convertible into fine fiber and fiber sheet using the same