JPH023275B2 - - Google Patents

Info

Publication number
JPH023275B2
JPH023275B2 JP29446986A JP29446986A JPH023275B2 JP H023275 B2 JPH023275 B2 JP H023275B2 JP 29446986 A JP29446986 A JP 29446986A JP 29446986 A JP29446986 A JP 29446986A JP H023275 B2 JPH023275 B2 JP H023275B2
Authority
JP
Japan
Prior art keywords
steel
cold
metal shell
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29446986A
Other languages
Japanese (ja)
Other versions
JPS63148585A (en
Inventor
Takafumi Ooshima
Shinzo Ashida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nippon Tokushu Togyo KK
Original Assignee
Kobe Steel Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nippon Tokushu Togyo KK filed Critical Kobe Steel Ltd
Priority to JP29446986A priority Critical patent/JPS63148585A/en
Publication of JPS63148585A publication Critical patent/JPS63148585A/en
Publication of JPH023275B2 publication Critical patent/JPH023275B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は内燃機関に用いる小型点火プラグのう
ち特に機関取付ねじ径が8mmφ、ピツチ1.0mmの
主体金具の材料として高破断トルクを有し、熱加
締性と冷間加締性に優れた合金鋼を用いた小型点
火プラグに関する。 〔従来の技術及びその問題点〕 従来、内燃機関のシリンダーヘツドに螺着する
点火プラグの主体金具の材料としてはS10C〜
S20Cの機械構造用低炭素鋼が主に使用されてい
る。一方近年自動車用エンジンにおいては低燃
費、軽量化、高出力化に伴つて点火プラグの取付
スペースが狭小となり、このため点火プラグの取
付ねじ径が極小のM8mmφ、ピツチ1.0mmの小型点
火プラグの適用が種々検討されている。かかるプ
ラグの主体金具においては第1図に示すように主
体金具1の径大胴部1aと取付ねじ部1bの間の
ねじ首1cはその肉厚が約0.86mmと必然的に薄肉
となる。従つてS10C〜S20Cの低炭素鋼を用いた
場合、プラグ締付けに際し、このねじ首部分で破
断Aが生じる問題があつた。またねじ首の破断を
防止するため肉厚を厚くすることが有効である
が、内部に配設した絶縁体径及び中心電極径を更
に縮小化することは絶縁体の構造的強度並びに耐
電圧性能が低下し、また中心電極の軸方向の熱伝
導性の低下による耐消耗性及び耐熱性が劣化する
ため、かかる手法は採用し難い。 そこで主体金具のねじ首破断強度を向上させる
ため炭素含有量の多いS30C、S35Cの使用を検討
した結果、新たな問題が生じることがわかつた。
すなわち第1図に示すように点火プラグは中心電
極2を保持した絶縁体3を主体金具1の内腔内に
挿入してその段座1dに絶縁体径大部3aに続く
段部3bをパツキン4を介して係止し、絶縁体の
上部径小部3cと前記主体金具内腔との間にシー
ル材5およびパツキン6を配し、前記主体金具胴
部1aと六角等の締結部1eとの間の薄肉の加熱
部1fに電流を流し、或いは高周波誘導加熱によ
つて加熱するとともに、主体金具の上端周縁1g
を加締めるいわゆる通常の熱加締めの方法が施さ
れて絶縁体が固定されている。 しかし上記S30C、S35Cの鋼を用いると前記加
熱部1fは急冷されてマルテンサイト組織とな
り、亀裂、割れBが生じて製品たり得なくなる欠
点があつた。 他方、加締め方法には、上記した熱加締め以外
に、熱を加えない冷間加締も知られており、熱加
締に代えて、冷間加締によつて、主体金具を絶縁
体に固定することもできる。前記したS10Cや
S20C鋼は、何ら問題なしに冷間加締することが
できるが、前述したように、ねじ首部分で破断が
生じやすい。S30CやS35C鋼のような高炭素鋼を
用いるときは、これらが靭性が十分でないと共
に、ねじ首部が薄肉であるところから冷間加締時
に亀裂や割れが生じる。 さらにこれらの問題を解消するため、ねじ首
部、加熱部に主体金具成形後熱処理を行なうこと
も検討したが、製造コストが高くなり、また各部
が狭小のため熱処理に困難さが伴う問題があつ
た。このようなことからM8プラグの主体金具材
料として後熱処理することなく、高破断トルクを
有し熱加締性と冷間加締性に優れた鋼材の開発が
強く要求されるに至つた。 〔発明の目的〕 本発明は上記情況に鑑みてなされたもので、機
関取付ねじ径が8mmφ、ピツチ1.0mmの主体金具
材料として、高破断強度を有するのみならず、熱
加締性と冷間加締性にも優れた合金鋼を用いるこ
とで安定した性能を有する小型点火プラグの提供
を目的とする。 〔問題点を解決するための手段〕 本発明は機関取付ねじ径8mmφ、ピツチ1.0mm
の主体金具の材料に重量%でC0.03〜2.0%、
Si0.35%以下、Mn0.1〜2.0%、P0.025%以下、
S0.025%以下、Al0.005〜0.080%を含有し、かつ
Zr0.005〜0.25%、Nb0.005〜0.10%、V0.03〜0.25
%、Ti0.005〜0.25%、Cr0.05〜0.50%、Ni0.05〜
0.50%のうち少なくとも1種を含有し、残部鉄及
び不可避的不純物から成る合金鋼を用いて成る小
型プラグである。 先ず本発明において用いる合金鋼の化学成分に
ついて説明する。 Cは固溶強化によつて鋼に所要の強度を与える
ために必要であり、0.03%よりも少ないときは鋼
材の強度が不足すると共にリン酸亜鉛潤滑剤が十
分に付着しない場合があるため冷間鍛造加工の際
に工具と被加工材とが焼付きを生じて工具寿命を
著しく短縮する。しかし0.20%を超えて過多に添
加するときは熱加締時にビツカース硬さ(Hv)
で450以上のマルテンサイト組織となり熱加締部
に亀裂が生じることになる。また0.2%を超えて
過多に添加するときは、鋼材自体の靭性の低下を
招くので、かかる鋼材から点火プラグ主体金具を
製造し、前述したように、絶縁体に冷間加締した
ときに、このかしめ部に亀裂が生じることとな
る。好ましくは、C量は0.05〜0.20%の範囲であ
る。 Siは、一般には、鋼中に固溶して強度を高める
が、本発明鋼においては、0.35%を越えるとき
は、熱かしめ部の靭性を劣化させ、或いは鋼材自
体の靭性を低下させて、冷間加締性を劣化させる
ので、上限を0.35%とする。 Mnは、熱間圧延及び冷間鍛造の際の割れ発生
の主原因たる不純物元素SをMnSとして固定し、
無害化する効果を有すると共に、本発明における
ように、比較的低炭素鋼において、所定の強度と
すぐれた靭性とを共に鋼に具備させるために有効
な元素である。かかる効果を有効に得るためには
0.1%以上を添加することが必要であるが、しか
し過多に添加するときは、点火プラグ主体金具の
成形時の加工性を劣化させ、また、主体金具の靭
性を劣化させる。更に、鋼の焼入れ性を増大せし
めて熱加締性及び冷間加締性のいずれをも劣化さ
せるので、添加量の上限を2.0%とする。 Pは加工硬化を助長して冷間加締性を劣化させ
ると共に熱加締部の靭性を劣化させるので低い程
好ましいが、あまり低くしても効果はなく鋼製造
の経済的負担を増すだけである。本発明の目的・
用途から0.025%以下であれば十分である。 Sは、硫化物系介在物を形成して、熱加締時の
割れの起点となり、また主体金具の製造に際して
冷間鍛造時の変形能を劣化させるので、その含有
量は0.025%以下とすれば十分である。しかし所
要の熱加締加工度や冷間加締加工度、冷間加工
度、被削性等の要求特性に応じて、一層低く設定
することもでき、好ましくは上限を0.015%とす
る。 Alは鋼溶製時の脱酸剤としての役割のほかに
熱加締時に結晶粒の微細化効果を有し、これによ
つて熱加締部の靭性を向上させる効果を有する。
更に窒素(N)と結合し、AlNとして析出する
ことにより固溶Nを固定し、ひずみ時効および青
熱脆性を抑制する働きを有する。しかし含有量が
0.005%より少ないときには上記効果は十分では
なく、一方0.080%を越えるとB系介在物の増加
とそれに伴う主体金具の成形時の冷鍛割れや熱加
締割れ、冷間加締割れを生じ易くなるので添加量
を0.005〜0.080%とする。 更に、本発明による鋼は、上記した元素に加え
てZr、Nb、V、Ti、Cr及びNiよりなる群から選
ばれる少なくとも1種を含有する。これらの元素
は鋼の強度及び靭性を向上させるために有効であ
る。Zr、Nb、V及びTiは、圧延中乃至は圧延後
の鋼の冷却過程において、微細な炭窒化物の析出
による結晶粒の微細化及び析出効果によつて強度
を向上させる。また、結晶粒の微細化は、冷間鍛
造時の加工性をも向上させ、更に熱加締時にその
部分の靭性を向上させ、冷間加締を行なうときは
優れた冷間加締性を得ることができる。これらの
効果を有効に得るためには、それぞれ次の範囲で
添加される。即ち、Zr0.005〜0.25%、Nb0.005〜
0.10%、V0.03〜0.25%、及びTi0.005〜0.25%の
範囲である。それぞれの元素について、上記上限
値を越えて過多に添加しても効果が飽和し鋼製造
の経済性の点からも好ましくない。 Crは焼入れ性を向上させて強度を高める。こ
の効果を有効に得るためには0.05%以上を添加す
ることが必要である。しかし過多に添加するとき
は焼入れ性を過度に大きくして熱加締性を劣化さ
せ、また鋼材自体の靭性の低下に伴つて冷間加締
性を劣化させるので0.50%以下の範囲で添加され
る。 Niは強度、冷間加工性を向上させると共に熱
加締部の靭性を向上させ、また冷間加熱性を向上
させるために0.05%以上を添加することが必要で
あるが、過多に添加しても効果が飽和すると共に
鋼製造の経済性を損なうので添加量の上限を0.50
%とする。 次に本発明に係る合金鋼の好適な製造方法とし
ては950〜1150℃に加熱後熱間圧延を行なう。析
出物を母相に固溶させた後、微細な炭、窒化物を
析出させて結晶粒の微細化、析出硬化を図りある
いは初期の結晶粒の微細化を図るためには1150℃
で十分であり、また950℃未満になると熱間圧延
に際して変形低抗が高くなり生産性が低下するた
め950℃を下限とする。 本発明においては熱間圧延後、水冷を行ない所
定の冷却速度での冷却開始温度を800〜950℃の温
度範囲とし、この温度範囲から平均冷却速度10
℃/sec以下にて500℃以下の温度範囲まで冷却す
る。冷却開始温度が950℃を超える高温であると
きは結晶粒が大きくなり、靭性及び延性が劣化
し、冷鍛時の加工性、ねじ転造性、冷間加締性な
ど加工性が低下する。一方冷却開始温度が800℃
よりも低いときは得られる製品品質のバラツキが
大きく品質を一定に保つことが困難となる。 この温度範囲から500℃以下の温度範囲まで平
均冷却速度10℃/sec以下に冷却するが、これに
より組織を緻密なフエライト・パーライト組織と
し、所定の強度と靭延性を得るとともに冷鍛時の
歪時効を防止し、工具寿命の短命化を抑制するが
冷却速度が10℃/secを超えるとベイナイト組織
が混在し、所望の強度より高くなり、あるいは強
度ばらつきが大きくなり、さらには靭延性が低下
し、ねじ転造時にねじ山に折れ込みが発生し易
く、また冷間加締性を低下させる。更に工具寿命
が劣化する。 尚本発明の合金鋼は熱間圧延と冷間引抜き加工
によつて引張強さ75Kg/mm2以上に向上せしめた六
角棒鋼に成形し、これを切削加工によつて所定形
状に削り出してM8型の主体金具を製作する。 〔実施例〕 以下本発明の実施例を比較例を挙げて説明す
る。 第1表に示す化学組成を有する鋼を真空溶解炉
にて溶製し第1表に示す圧延条件にて熱間圧延
し、その後減面率20〜30%の冷間伸線加工を施
し、これら鋼線から切削加工にて取付けねじ径が
M8の主体金具を作成し、ねじ首部分の破断トル
クを測定した。第1表中、番号1、2、3は市販
の機械構造用低炭素鋼である。なお破断トルクは
治工具および主体金具の表面状態(摩擦の程度)
で著しく影響を受けるので主体金具および治工具
ともに潤滑油を塗布(摩擦係数μ=0.15)した一
定の状態で比較評価を行なつた。また破断トルク
は比較品S17Cの値を100%として示した。 第1表より明らかなように本実施例に係る鋼材
により切削成形した主体金具は十分な強度を有し
ねじ破断トルクはS17Cの約50%増と向上し小型
点火プラグの主体金具に用いても全く問題はな
い。 次に成形した主体金具の第1図に示す薄肉の加
熱部1fを通電加熱後加締を行ない、その後該部
の割れ発生有無を調べたが第14、15項の第1表に
示すように本実施例に係る鋼材により成形した主
体金具には割れは全く認められなかつた。 上記加締に代えて、熱を加えない冷間加締によ
つて絶縁体を主体金具に固定した。この冷間加締
による場合も、結果を第1表に示すように、主体
金具の薄肉部分(第1図において、加熱部1fに
相当する。)に割れは全く生じなかつた。
[Industrial Field of Application] The present invention has high breaking torque as a material for the metal shell of small spark plugs used in internal combustion engines, especially those with an engine mounting thread diameter of 8 mmφ and pitch of 1.0 mm, and has excellent hot formability and cold formability. This article relates to a small spark plug made of alloy steel with excellent tightening properties. [Prior art and its problems] Conventionally, the metal shell of the spark plug that is screwed onto the cylinder head of an internal combustion engine has been made of S10C~
S20C low carbon steel for mechanical structure is mainly used. On the other hand, in recent years, as automotive engines have become more fuel efficient, lighter, and more powerful, the installation space for spark plugs has become narrower, and for this reason, small spark plugs with an extremely small installation screw diameter of M8mmφ and a pitch of 1.0mm have been adopted. Various methods are being considered. In the metal shell of such a plug, as shown in FIG. 1, the screw neck 1c between the large-diameter body portion 1a of the metal shell 1 and the mounting screw portion 1b is necessarily thin, with a wall thickness of about 0.86 mm. Therefore, when low carbon steel of S10C to S20C is used, there is a problem that fracture A occurs at this screw neck portion when tightening the plug. In addition, it is effective to increase the wall thickness in order to prevent the screw neck from breaking, but further reducing the diameter of the insulator and center electrode arranged inside will improve the structural strength and withstand voltage performance of the insulator. It is difficult to adopt such a method because the wear resistance and heat resistance deteriorate due to the decrease in the thermal conductivity of the center electrode in the axial direction. Therefore, as a result of considering the use of S30C and S35C, which have a high carbon content, in order to improve the fracture strength of the screw neck of the metal shell, it was discovered that a new problem occurred.
That is, as shown in FIG. 1, in the spark plug, the insulator 3 holding the center electrode 2 is inserted into the inner cavity of the metal shell 1, and the step part 3b that continues from the large diameter part 3a of the insulator is attached to the step seat 1d. 4, a sealing material 5 and a packing 6 are disposed between the upper small diameter portion 3c of the insulator and the inner cavity of the metal shell, and the metal shell body 1a and the fastening portion 1e, such as a hexagonal A current is passed through the thin heating portion 1f between the two, or heating is performed by high-frequency induction heating, and the upper end periphery 1g of the metal shell is heated.
The insulator is fixed using the so-called normal heat crimping method. However, when the steels S30C and S35C are used, the heated portion 1f is rapidly cooled to become a martensitic structure, which causes cracks and fractures B, which results in the disadvantage that the product cannot be manufactured. On the other hand, in addition to the above-mentioned hot caulking, cold caulking, which does not apply heat, is also known as a caulking method. It can also be fixed to The above-mentioned S10C and
S20C steel can be cold-forged without any problems, but as mentioned above, it tends to break at the screw neck. When using high carbon steels such as S30C and S35C steels, they do not have sufficient toughness and the screw necks are thin, which causes cracks and cracks during cold forging. Furthermore, in order to solve these problems, we considered applying heat treatment to the screw neck and heated part after forming the metal shell, but this resulted in problems such as higher manufacturing costs and difficulty in heat treatment as each part was narrow. . For this reason, there has been a strong demand for the development of a steel material that has high breaking torque and excellent hot and cold formability without post-heat treatment as a material for the main metal fittings of M8 plugs. [Object of the Invention] The present invention has been made in view of the above circumstances, and is a main metal material with an engine mounting screw diameter of 8 mmφ and a pitch of 1.0 mm. The purpose is to provide a small spark plug with stable performance by using alloy steel with excellent caulking properties. [Means for solving the problem] The present invention has an engine mounting screw diameter of 8 mmφ and a pitch of 1.0 mm.
C0.03~2.0% by weight in the material of the main metal fittings,
Si0.35% or less, Mn0.1~2.0%, P0.025% or less,
Contains S0.025% or less, Al0.005-0.080%, and
Zr0.005~0.25%, Nb0.005~0.10%, V0.03~0.25
%, Ti0.005~0.25%, Cr0.05~0.50%, Ni0.05~
This is a small plug made of alloy steel containing at least one of the following: 0.50%, with the balance consisting of iron and unavoidable impurities. First, the chemical composition of the alloy steel used in the present invention will be explained. C is necessary to give the steel the required strength through solid solution strengthening, and if it is less than 0.03%, the strength of the steel will be insufficient and the zinc phosphate lubricant may not adhere sufficiently, so it should not be cooled. Seizing occurs between the tool and the workpiece during forging, which significantly shortens tool life. However, when adding too much (more than 0.20%), the Vickers hardness (Hv)
This results in a martensitic structure of 450 or more, and cracks occur in the heat-sealed part. Furthermore, when adding too much of more than 0.2%, the toughness of the steel material itself decreases, so when the spark plug main metal fitting is manufactured from such steel material and cold-stamped into the insulator as described above, Cracks will occur in this caulked portion. Preferably, the amount of C is in the range of 0.05-0.20%. Generally, Si dissolves in steel to increase its strength, but in the steel of the present invention, when it exceeds 0.35%, it deteriorates the toughness of the hot caulked part or the toughness of the steel material itself. Since it deteriorates cold forming properties, the upper limit is set at 0.35%. Mn fixes the impurity element S, which is the main cause of cracking during hot rolling and cold forging, as MnS,
It has the effect of making it harmless, and is an effective element for imparting both a predetermined strength and excellent toughness to relatively low-carbon steel, as in the present invention. In order to effectively obtain such effects,
It is necessary to add 0.1% or more, but when added in excess, the workability during molding of the spark plug main metal fitting is deteriorated, and the toughness of the metal main fitting is also deteriorated. Furthermore, since it increases the hardenability of steel and deteriorates both hot and cold formability, the upper limit of the amount added is set at 2.0%. Since P promotes work hardening and deteriorates cold formability as well as the toughness of hot-stamped parts, it is preferable to have it as low as possible, but if it is too low, it will not be effective and will only increase the economic burden of steel manufacturing. be. Purpose of the present invention
Considering the intended use, a content of 0.025% or less is sufficient. S forms sulfide-based inclusions, which become the starting point for cracks during hot forging, and also deteriorates the deformability during cold forging when manufacturing the metal shell, so its content should be kept at 0.025% or less. It is sufficient. However, it can be set even lower depending on the required properties such as the required degree of hot swaging, cold swaging, cold working, machinability, etc., and preferably the upper limit is 0.015%. In addition to its role as a deoxidizing agent during steel melting, Al has the effect of refining crystal grains during heat-stamping, thereby improving the toughness of the heat-stamped part.
Furthermore, it binds with nitrogen (N) and precipitates as AlN, thereby fixing solid solution N and having the function of suppressing strain aging and blue brittleness. However, the content
When it is less than 0.005%, the above effects are not sufficient, while when it exceeds 0.080%, B-based inclusions increase and associated cold forging cracks, hot forging cracks, and cold forging cracks are likely to occur during forming of the metal shell. Therefore, the amount added should be 0.005 to 0.080%. Further, the steel according to the present invention contains at least one member selected from the group consisting of Zr, Nb, V, Ti, Cr, and Ni in addition to the above-mentioned elements. These elements are effective in improving the strength and toughness of steel. Zr, Nb, V, and Ti improve strength through grain refinement and precipitation effects caused by the precipitation of fine carbonitrides during rolling or during the cooling process of the steel after rolling. In addition, grain refinement also improves workability during cold forging, and also improves the toughness of the part during hot forging, and provides excellent cold forging performance when cold forging is performed. Obtainable. In order to effectively obtain these effects, they should be added in the following ranges. That is, Zr0.005~0.25%, Nb0.005~
0.10%, V0.03~0.25%, and Ti0.005~0.25%. If each element is added in excess of the above upper limit, the effect will be saturated and this is not preferable from the economic point of view of steel production. Cr improves hardenability and increases strength. In order to effectively obtain this effect, it is necessary to add 0.05% or more. However, if too much is added, the hardenability will be excessively increased and the hot formability will deteriorate, and the toughness of the steel itself will decrease, resulting in a deterioration of the cold formability, so it should be added within a range of 0.50% or less. Ru. Ni improves the strength and cold workability as well as the toughness of hot-stamped parts, and it is necessary to add 0.05% or more to improve cold heatability. The upper limit of the amount added was set at 0.50 because the effect saturates and the economic efficiency of steel manufacturing is impaired.
%. Next, as a preferred method for manufacturing the alloy steel according to the present invention, hot rolling is performed after heating to 950 to 1150°C. After dissolving the precipitates in the matrix, fine carbon and nitrides are precipitated to refine the crystal grains and precipitation harden them, or to refine the initial grains at 1150°C.
Furthermore, if the temperature is less than 950°C, the deformation resistance increases during hot rolling and productivity decreases, so 950°C is set as the lower limit. In the present invention, after hot rolling, water cooling is performed to set the cooling start temperature at a predetermined cooling rate in the temperature range of 800 to 950°C, and from this temperature range, the average cooling rate is 10
Cool to a temperature range of 500℃ or less at ℃/sec or less. When the cooling start temperature is a high temperature exceeding 950°C, crystal grains become large, toughness and ductility deteriorate, and workability such as cold forging workability, thread rolling property, and cold forging property decreases. On the other hand, the cooling start temperature is 800℃
When it is lower than , the resulting product quality varies greatly and it becomes difficult to maintain constant quality. Cooling is carried out at an average cooling rate of 10°C/sec or less from this temperature range to a temperature range of 500°C or less, which creates a dense ferrite/pearlite structure and achieves the desired strength and toughness, as well as distortion during cold forging. Prevents aging and reduces tool life shortening, but if the cooling rate exceeds 10℃/sec, bainite structure will be present, resulting in higher than desired strength or greater strength variation, and furthermore, toughness and ductility will decrease. However, folding of the threads is likely to occur during thread rolling, and cold forming properties are reduced. Furthermore, the tool life deteriorates. The alloy steel of the present invention is formed into a hexagonal steel bar with a tensile strength of 75 kg/mm 2 or more by hot rolling and cold drawing, and then cut into a predetermined shape by cutting. Manufacture the main metal fittings for the mold. [Example] Examples of the present invention will be described below with reference to comparative examples. Steel having the chemical composition shown in Table 1 is melted in a vacuum melting furnace, hot rolled under the rolling conditions shown in Table 1, and then subjected to cold wire drawing with an area reduction of 20 to 30%. The diameter of the mounting screw is adjusted by cutting these steel wires.
We created an M8 metal shell and measured the breaking torque at the screw neck. In Table 1, numbers 1, 2, and 3 are commercially available low carbon steels for mechanical structures. The breaking torque depends on the surface condition (degree of friction) of the jig and the metal shell.
Since this is significantly affected by friction, a comparative evaluation was conducted under a constant state in which both the main metal fittings and jigs were coated with lubricating oil (friction coefficient μ = 0.15). Furthermore, the breaking torque is shown with the value of the comparative product S17C as 100%. As is clear from Table 1, the metal shell cut and formed from the steel material according to this example has sufficient strength, and the thread breaking torque is approximately 50% higher than that of S17C, making it suitable for use in the metal shell of small spark plugs. No problem at all. Next, the thin heated part 1f of the formed metal shell shown in Fig. 1 was energized and heated, and then caulked, and the presence or absence of cracks in this part was examined. No cracks were observed in the metal shell formed from the steel material according to this example. Instead of the above caulking, the insulator was fixed to the metal shell by cold caulking without applying heat. Even in the case of this cold caulking, as shown in Table 1, no cracks were generated in the thin wall portion of the metal shell (corresponding to the heated portion 1f in FIG. 1).

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に係る合金鋼を用いて取
付ねじ径がM8、ピツチ1.0mmの主体金具に成形し
た小型点火プラグは後熱処理がなされなくても従
来材より引張強さが高く主体金具ねじ部のねじ首
破断が防止でき、かつ熱加締めあるいは熱をかけ
ない冷間加締めにおいても割れ発生を防止できる
効果を有し、更には従来と同じ設計が配慮できる
ため絶縁体の強度及び耐電圧性能の低下がなく、
また耐熱性が劣化しなくて安定した性能を小型点
火プラグに具備することができるなどの優れた効
果を奏する。
As described above, a small ignition plug formed using the alloy steel of the present invention into a metal shell with a mounting screw diameter of M8 and a pitch of 1.0 mm has a higher tensile strength than conventional materials even without post-heat treatment. It has the effect of preventing the screw neck of the threaded part from breaking, and also prevents cracking during hot caulking or cold caulking without applying heat.Furthermore, since the same design as conventional ones can be considered, the strength of the insulator and No deterioration in withstand voltage performance,
Further, it has excellent effects such as being able to provide a small spark plug with stable performance without deterioration of heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はねじ首破断部分Aおよび加熱部の割れ
Bを示す小型点火プラグの要部断面、第2図は本
発明の他の実施例を示す小型点火プラグの要部断
面図である。 1……主体金具、1b……取付ねじ部、1c…
…ねじ首部、1f……加熱部。
FIG. 1 is a sectional view of a main part of a small ignition plug showing a broken screw neck part A and a crack B in a heating part, and FIG. 2 is a sectional view of a main part of a small ignition plug showing another embodiment of the present invention. 1... Main metal fitting, 1b... Mounting screw part, 1c...
...Screw neck, 1f...Heating part.

Claims (1)

【特許請求の範囲】[Claims] 1 機関取付ねじ径8mmφ、ピツチ1.0mmの主体
金具の材料として、重量%でC0.03〜0.20%、
Si0.35%以下、Mn0.1〜2.0%、P0.025%以下、
S0.025%以下、Al0.005〜0.080%を含有し、かつ
Zr0.005〜0.25%、Nb0.005〜0.10%、V0.03〜0.25
%、Ti0.005〜0.25%、Cr0.05〜0.50%、Ni0.05〜
0.50%の内少なくとも1種を含有し、残部鉄及び
不可避的不純物からなる合金鋼を用いて成ること
を特徴とする小型点火プラグ。
1 As a material for the main metal fittings with an engine mounting screw diameter of 8 mmφ and a pitch of 1.0 mm, C0.03 to 0.20% by weight,
Si0.35% or less, Mn0.1~2.0%, P0.025% or less,
Contains S0.025% or less, Al0.005-0.080%, and
Zr0.005~0.25%, Nb0.005~0.10%, V0.03~0.25
%, Ti0.005~0.25%, Cr0.05~0.50%, Ni0.05~
A small ignition plug characterized in that it is made of alloy steel containing at least one of the above 0.50%, with the balance consisting of iron and inevitable impurities.
JP29446986A 1986-12-10 1986-12-10 Small size ignition plug Granted JPS63148585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29446986A JPS63148585A (en) 1986-12-10 1986-12-10 Small size ignition plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29446986A JPS63148585A (en) 1986-12-10 1986-12-10 Small size ignition plug

Publications (2)

Publication Number Publication Date
JPS63148585A JPS63148585A (en) 1988-06-21
JPH023275B2 true JPH023275B2 (en) 1990-01-23

Family

ID=17808179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29446986A Granted JPS63148585A (en) 1986-12-10 1986-12-10 Small size ignition plug

Country Status (1)

Country Link
JP (1) JPS63148585A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60223225T2 (en) 2001-12-28 2008-07-31 NGK Spark Plug Co., Ltd., Nagoya Spark plug and method of manufacturing the spark plug
US8237343B2 (en) 2005-08-22 2012-08-07 Ngk Spark Plug Co., Ltd. Spark plug having a metal fitting portion for holding an insulator at a portion opposite a tip end
JP4685817B2 (en) * 2006-03-13 2011-05-18 日本特殊陶業株式会社 Spark plug and manufacturing method thereof
JP6345214B2 (en) 2016-10-20 2018-06-20 日本特殊陶業株式会社 Spark plug
JP7482913B2 (en) * 2022-01-11 2024-05-14 日本特殊陶業株式会社 Spark plug

Also Published As

Publication number Publication date
JPS63148585A (en) 1988-06-21

Similar Documents

Publication Publication Date Title
JP6031022B2 (en) Steel wire for bolt excellent in delayed fracture resistance, high-strength bolt, and method for producing them
WO2005116284A1 (en) Seamless steel pipe and method for production thereof
US6224686B1 (en) High-strength valve spring and it's manufacturing method
WO2004083475A1 (en) Non-quenched/tempered connecting rod and method of producing the same
JP2002155344A (en) High strength screw steel and high strength screw
KR101789944B1 (en) Coil spring, and method for manufacturing same
JPH023275B2 (en)
US5985044A (en) Forged, non-heat treated, nitrided steel parts and process of making
JP3235442B2 (en) High strength, low ductility non-heat treated steel
JP4801485B2 (en) Cold forged parts, manufacturing method for obtaining the same, and steel materials
JPH0525942B2 (en)
JP2739713B2 (en) High strength bolt
JP2003193184A (en) Broken-split type connecting rod and steel therefor
JPH0270019A (en) Production of steel for ignition plug body fitting
JPS63145754A (en) Metallic fitting for ignition plug body and its production
JP4255861B2 (en) Non-tempered connecting rod and method for manufacturing the same
JPH09176786A (en) Non-heat treated steel with high strength and low ductility
JP4422924B2 (en) Steel for high-strength tapping bolt, high-strength tapping bolt and method for producing high-strength tapping bolt
JP2656831B2 (en) Manufacturing method of high strength weld nut
JPH0248607B2 (en)
JPH0254416B2 (en)
US3286704A (en) Engine valve
JP3236756B2 (en) B-containing steel excellent in workability and strength and method for producing forged part made of the B-containing steel
JP3713806B2 (en) Manufacturing method of high-strength connecting rod made of non-tempered steel and easy to break and separate
JP2001049337A (en) Production of high strength spring excellent in fatigue strength

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees