JPH0232344B2 - - Google Patents

Info

Publication number
JPH0232344B2
JPH0232344B2 JP56213865A JP21386581A JPH0232344B2 JP H0232344 B2 JPH0232344 B2 JP H0232344B2 JP 56213865 A JP56213865 A JP 56213865A JP 21386581 A JP21386581 A JP 21386581A JP H0232344 B2 JPH0232344 B2 JP H0232344B2
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
present
corrosion
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56213865A
Other languages
Japanese (ja)
Other versions
JPS58117859A (en
Inventor
Chikanobu Shintani
Yoshiaki Yamagami
Hisashi Hiraishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21386581A priority Critical patent/JPS58117859A/en
Publication of JPS58117859A publication Critical patent/JPS58117859A/en
Publication of JPH0232344B2 publication Critical patent/JPH0232344B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、溶融亜鉛に対する耐食性にすぐれた
合金に関する。 従来、溶融亜鉛と接触する条件で使用される部
材、代表的には溶融亜鉛めつき設備におけるシン
クロール、ロールフレーム、あるいはめつき浴槽
などの材料としては、純鉄、高Cr−高Ni合金、
低C−13Cr合金が汎用されている。 しかしながら、これらの材料はいづれも溶融亜
鉛に対する耐食性が十分でなく、早期に溶食が進
行する。特に、シンクロールは、溶食とこれに接
触する被めつき鋼板による摩耗が重なるため、表
面の劣化が著しく、高Cr−高Ni合金製のもので
約10〜14日、低C−13Cr合金製でも約10〜14日
で取替えなければならず、その耐用寿命は、めつ
きラインの高速化にともない一そう低下する。ま
た、溶食・摩耗によりシンクロール表面の平滑さ
が損なわるにつれて、鋼板表面に形成されるめつ
き層の品質が低下する。 このほか、純鉄製ロールフレームの耐用寿命
も、せいぜい1〜3ケ月程度にすぎない。 めつきラインの高速化・連続操業の安定化、め
つき層品質の安定・向上等の点から、耐食性にす
ぐれた新たな合金が要請されるゆえんである。 一方、最近圧延用鋼塊に占める連続鋳造材の生
産比率が増加し、被めつき鋼板がリムド鋼から高
Siキルド鋼に変わるにともなつて、得られる亜鉛
めつき鋼板の素地とめつき層の界面におけるFe
−Zn合金の層厚が厚くなる傾向がある。この合
金生成抑制策として、めつき浴に少量のAlを添
加することが有効なことが最近知られている。か
かる浴組成の変化に対し、シンクロール材などと
して前記従来材をそのまゝ用いたのでは十分に対
応することができない。これに対処するために
も、耐食性にすぐれた新たな合金の開発が望まれ
る。 本発明は上記要請に応えるためになされたもの
である。 本発明の溶融亜鉛用耐食合金は、C:0.5〜2.5
%、Si:0.4〜3.0%、Mn:2.0%以下、Ni:2.5%
以下、Cr:11.5〜14.5%、およびCo:0.15%、
V:0.05〜0.15%、Nb:0.05〜0.15%から選ばれ
る1種もしくは2種以上の元素、残部実質的に
Feからなる。また、本発明合金は、所望により
上記諸元素と共に、W:0.05〜0.15%を含有する
化学組成が与えられる。なお、「%」はすべて
「重量%」である。 本発明合金は、溶融亜鉛に対しすぐれた耐食性
を有するとともに、熱処理硬化も可能であり、目
的とする部材の用途に応じて機械的性質を付与す
ることができる。 本発明の成分限定理由は次のとおりである。 C:0.5〜2.5% Cは、Cr,Mo,Nb,V,Wなどと結合して
複合炭化物を形成し、残余は素地中に浸入型に固
溶してこれを強化するとともに耐食性を高める。
特に、本発明では多量のCを浸入させることによ
り脱鉄現象の抑制を図る。このため、その含有量
を0.5%以上とするが、可鋳性を考慮して2.5%を
上限とする。 Si:0.4〜3.0% Siは耐食性、可鋳性を付与するため0.4%以上
とする。但し、多量に含まれると素地を脆化させ
るので3.0%を上限とする。 Mn:2.0%以下、 Mnは可鋳性維持のため必要であるが、耐食性
の低下や脆化を招くので、2.0%以下とする。 Cr:11.5〜14.5% Crは素地中に固溶し、一部は炭化物を形成し
て耐食性、耐摩耗性を向上させる。本発明では、
前記のようにC含有量が高いので、Cr量は多く
なくても充分な炭化物の効果が得られる。このた
め11.5〜14.5%とする。 Ni:2.5%以下 Niは耐食性の向上に著効を有する。しかしな
がら2.5%をこえると、残留オーステナイトが増
加し、硬度も低下する。よつて2.5%以下とする。 Co:0.05〜0.15% CoはNiと同様に耐食性の向上に有効である。
しかし、あまり多いと、残留オーステナイト量が
増加し、また経済性も損う。よつて0.05〜0.15%
とする。 V:0.05〜0.15% Vは炭化物を形成して耐食性を高める。また、
結晶粒微細化作用により硬度向上に寄与する。
たゞし、多量になると耐衝撃性の低下を招くの
で、0.05〜0.15%とする。 Nb:0.05〜0.15% Nbは上記Moと同じく炭化物の形成による耐食
性の改善をもたらす。この効果と経済性を考慮し
て0.05〜0.15%とする。 W:0.05〜0.15% Wは所望により添加される。Wの添加により形
成される炭化物は極めて硬質であり合金の耐摩耗
性を高める。この効果を得るためには0.05%以上
の添加を必要とするが、0.15%をこえる必要はな
い。 実施例 第1表に掲示の各供試材について、溶融亜鉛に
対する耐食性試験を行なつた。供試材No.1〜14は
本発明材、No.15および16は従来材(No.15:高Cr
―高Ni合金鋼、No.16:低C―13Cr合金鋼)であ
る。 (i) 試験方法 各供試材から調製した第1図に示す形状の試
験片(直径15mmφ、長さ165mm、表面〓〓仕上
げを、黒鉛るつぼ内に溶融したZn浴またはZn
―Al浴(Al含有量0.2〜0.8%、浴温470℃)中
に、吊下げ孔(h)にて懸垂し5日間浸漬し
た。 (ii) 耐食性の評価 上記試験ののち、各供試材をA(吊り下げ孔
からの距離40mm)、B(同80mm)およびC(同120
mm)の3個所(第1図参照)において、イ,
ロおよびハの3方向(同図参照)の直径を測
定し、それらの平均値から得た断面積減少率に
て耐食性を評価した。その結果を第2表に示
す。
The present invention relates to an alloy with excellent corrosion resistance against molten zinc. Conventionally, materials used in contact with molten zinc, typically sink rolls, roll frames, or plating baths in hot-dip galvanizing equipment, include pure iron, high Cr-high Ni alloys,
Low C-13Cr alloys are widely used. However, none of these materials has sufficient corrosion resistance against molten zinc, and corrosion progresses at an early stage. In particular, the surface of sink rolls deteriorates significantly due to the combination of corrosion corrosion and abrasion caused by the overlying steel plate that comes into contact with the sink roll. Even if the plating line is manufactured, it must be replaced every 10 to 14 days, and its useful life will be further reduced as plating lines become faster. Furthermore, as the smoothness of the sink roll surface is impaired due to corrosion and wear, the quality of the plating layer formed on the surface of the steel sheet deteriorates. In addition, the useful life of pure iron roll frames is only about 1 to 3 months at most. This is why a new alloy with excellent corrosion resistance is required from the viewpoint of increasing the speed of plating lines, stabilizing continuous operation, and stabilizing and improving the quality of the plating layer. On the other hand, recently, the production ratio of continuous casting materials in steel ingots for rolling has increased, and coated steel sheets are becoming more popular than rimmed steel.
With the change to Si-killed steel, Fe at the interface between the base material and the plating layer of the resulting galvanized steel sheet
-The layer thickness of Zn alloy tends to become thicker. It has recently been known that adding a small amount of Al to the plating bath is effective as a measure to suppress this alloy formation. Such changes in bath composition cannot be adequately addressed by using the conventional materials as they are as sink roll materials. In order to cope with this problem, it is desired to develop a new alloy with excellent corrosion resistance. The present invention has been made to meet the above requirements. The corrosion-resistant alloy for molten zinc of the present invention has a C: 0.5 to 2.5.
%, Si: 0.4-3.0%, Mn: 2.0% or less, Ni: 2.5%
Below, Cr: 11.5-14.5%, and Co: 0.15%,
One or more elements selected from V: 0.05 to 0.15%, Nb: 0.05 to 0.15%, the remainder substantially
Consists of Fe. Further, the alloy of the present invention is given a chemical composition containing 0.05 to 0.15% W in addition to the above-mentioned elements as desired. Note that all "%" are "% by weight". The alloy of the present invention has excellent corrosion resistance against molten zinc, and can also be hardened by heat treatment, and can be imparted with mechanical properties depending on the intended use of the member. The reasons for limiting the components of the present invention are as follows. C: 0.5 to 2.5% C combines with Cr, Mo, Nb, V, W, etc. to form a composite carbide, and the remainder solidly dissolves in the matrix to strengthen it and improve corrosion resistance.
In particular, in the present invention, the deironation phenomenon is suppressed by infiltrating a large amount of C. Therefore, its content is set at 0.5% or more, but the upper limit is set at 2.5% in consideration of castability. Si: 0.4 to 3.0% Si should be 0.4% or more to provide corrosion resistance and castability. However, the upper limit is set at 3.0% as it will make the base material brittle if it is included in large amounts. Mn: 2.0% or less, Mn is necessary to maintain castability, but it causes a decrease in corrosion resistance and embrittlement, so it should be kept at 2.0% or less. Cr: 11.5-14.5% Cr dissolves in solid solution in the base material, and some of it forms carbides to improve corrosion resistance and wear resistance. In the present invention,
As mentioned above, since the C content is high, sufficient carbide effects can be obtained even if the Cr content is not large. Therefore, it is set at 11.5 to 14.5%. Ni: 2.5% or less Ni has a significant effect on improving corrosion resistance. However, if it exceeds 2.5%, retained austenite increases and hardness decreases. Therefore, it should be 2.5% or less. Co: 0.05-0.15% Co is effective in improving corrosion resistance like Ni.
However, if it is too large, the amount of retained austenite increases and economic efficiency is also impaired. 0.05~0.15%
shall be. V: 0.05-0.15% V forms carbide and improves corrosion resistance. Also,
Contributes to improving hardness by refining grains.
However, if the amount is too large, the impact resistance will deteriorate, so the content is set at 0.05 to 0.15%. Nb: 0.05 to 0.15% Nb improves corrosion resistance by forming carbides, similar to the above Mo. Considering this effect and economy, it is set at 0.05 to 0.15%. W: 0.05-0.15% W is added as desired. The carbide formed by the addition of W is extremely hard and increases the wear resistance of the alloy. To obtain this effect, it is necessary to add 0.05% or more, but it is not necessary to exceed 0.15%. Examples Corrosion resistance tests against molten zinc were conducted for each of the test materials shown in Table 1. Test materials No. 1 to 14 are inventive materials, and No. 15 and 16 are conventional materials (No. 15: high Cr
- High Ni alloy steel, No. 16: Low C-13Cr alloy steel). (i) Test method A test piece of the shape shown in Figure 1 prepared from each sample material (diameter 15 mmφ, length 165 mm, surface finish) was placed in a graphite crucible in a molten Zn bath or Zn bath.
- It was suspended in an Al bath (Al content 0.2 to 0.8%, bath temperature 470°C) through the hanging hole (h) and immersed for 5 days. (ii) Evaluation of corrosion resistance After the above test, test materials A (40 mm from the hanging hole), B (80 mm) and C (120 mm)
mm) at three locations (see Figure 1), a,
The diameters in three directions (b) and c (see the same figure) were measured, and the corrosion resistance was evaluated based on the cross-sectional area reduction rate obtained from the average value. The results are shown in Table 2.

【表】【table】

【表】【table】

【表】 第2表に示されるように、本発明合金は、亜鉛
浴および少量のAlを含む亜鉛浴ののいづれにお
いても溶食されにくく、従来材である高Cr―高
Ni合金、低C―13合金に比し、すぐれた耐食性
を有することがわかる。 また、本発明合金は、熱処理を施して炭化物等
を析出させることにより硬度を高めることができ
るので、目的とする部材に応じて、適宜熱処理を
行えば、耐食性と併せて、良好な耐摩耗性を発揮
する。 以上のように、本発明合金は、溶融亜鉛に対す
る耐食性にすぐれるので、溶融亜鉛めつき設備の
シンクロール、サポートロール、ロールフレー
ム、あるいは浴槽などの材料として好適であり、
従来材に比し安定した耐用寿命が得られる。ま
た、シンクロールなどの場合には、例えば高周波
焼入れにより表面のみ硬化させれば、内部の靭性
を損なわずに、表面の耐摩耗性を高めることがで
きるので、長期にわたり良好な表面性状(平滑
さ)が保持され、寿命の延長とめつき層品質の安
定向上をもたらし、かつラインスピードの高速化
にもよく対処できる。むろん、本発明合金は、上
記めつき関係に限らず、溶融亜鉛と接触する条件
で使用される各種部材として用いれば、耐食性と
耐摩耗性等の材料特性によつて同様の効果が得ら
れる。
[Table] As shown in Table 2, the alloy of the present invention is resistant to corrosion in both zinc baths and zinc baths containing a small amount of Al, and the alloy of the present invention is resistant to corrosion in both zinc baths and zinc baths containing a small amount of Al.
It can be seen that it has superior corrosion resistance compared to Ni alloy and low C-13 alloy. In addition, the hardness of the alloy of the present invention can be increased by heat treatment to precipitate carbides, etc., so if appropriate heat treatment is performed depending on the intended member, it will have good wear resistance as well as corrosion resistance. demonstrate. As described above, the alloy of the present invention has excellent corrosion resistance against molten zinc, so it is suitable as a material for sink rolls, support rolls, roll frames, bathtubs, etc. of hot-dip galvanizing equipment.
A more stable service life can be obtained compared to conventional materials. In addition, in the case of sink rolls, for example, by hardening only the surface by induction hardening, it is possible to increase the wear resistance of the surface without impairing the internal toughness, so it will maintain good surface quality (smoothness) for a long time. ) is maintained, resulting in extended service life and stable improvements in the quality of the plated layer, and can also cope well with increased line speeds. Of course, the alloy of the present invention is not limited to the above-mentioned plating relationship, but when used in various parts that come into contact with molten zinc, similar effects can be obtained due to the material properties such as corrosion resistance and abrasion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図およびは実施例関係の試験片形状説
明図である。
FIG. 1 and FIG. 1 are explanatory diagrams of test piece shapes related to Examples.

Claims (1)

【特許請求の範囲】 1 C0.5〜2.5%、Si0.4〜3.0%、Mn2.0%以下、
Ni2.5%以下、Cr11.5〜14.5%、およびCo0.05〜
0.15%、V0.05〜0.15%、Nb0.05〜0.15%から選
ばれる1種もしくは2種以上の元素、残部実質的
にFeからなる溶融亜鉛用耐食合金。 2 C0.5〜2.5%、Si0.4〜3.0%、Mn2.0%以下、
Ni2.5%以下、Cr11.5〜14.5%、およびCo0.05〜
0.15%、V0.05〜0.15%、Nb0.05〜0.15%から選
ばれる1種もしくは2種以上の元素、W:0.05〜
0.15%、残部実質的にFeからなる溶融亜鉛用耐食
合金。
[Claims] 1 C0.5-2.5%, Si0.4-3.0%, Mn2.0% or less,
Ni2.5% or less, Cr11.5~14.5%, and Co0.05~
A corrosion-resistant alloy for molten zinc consisting of one or more elements selected from 0.15%, V0.05 to 0.15%, and Nb0.05 to 0.15%, with the remainder substantially Fe. 2 C0.5-2.5%, Si0.4-3.0%, Mn2.0% or less,
Ni2.5% or less, Cr11.5~14.5%, and Co0.05~
One or more elements selected from 0.15%, V0.05~0.15%, Nb0.05~0.15%, W: 0.05~
Corrosion-resistant alloy for molten zinc consisting of 0.15% and the remainder substantially Fe.
JP21386581A 1981-12-30 1981-12-30 Corrosion resistant alloy for molten zinc Granted JPS58117859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21386581A JPS58117859A (en) 1981-12-30 1981-12-30 Corrosion resistant alloy for molten zinc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21386581A JPS58117859A (en) 1981-12-30 1981-12-30 Corrosion resistant alloy for molten zinc

Publications (2)

Publication Number Publication Date
JPS58117859A JPS58117859A (en) 1983-07-13
JPH0232344B2 true JPH0232344B2 (en) 1990-07-19

Family

ID=16646293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21386581A Granted JPS58117859A (en) 1981-12-30 1981-12-30 Corrosion resistant alloy for molten zinc

Country Status (1)

Country Link
JP (1) JPS58117859A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998319A (en) * 1973-01-27 1974-09-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4998319A (en) * 1973-01-27 1974-09-18

Also Published As

Publication number Publication date
JPS58117859A (en) 1983-07-13

Similar Documents

Publication Publication Date Title
JP4959161B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility
WO2006030795A1 (en) Centrifugally cast external layer for rolling roll and method for manufacture thereof
JP7217353B2 (en) Seawater corrosion resistant steel and its manufacturing method
JP2000051912A (en) Roll for hot-rolling
JPH04141553A (en) Composite roll for hot rolling
US2565768A (en) Aluminum coating of ferrous metal and resulting product
JPH0232344B2 (en)
JPH0230374B2 (en)
JPH0317887B2 (en)
JP2002194477A (en) Member for molten nonferrous metal
JP2001321807A (en) Outer layer of rolling roll
JP4123903B2 (en) Hot roll outer layer material and hot roll composite roll
JPS59129757A (en) Material for composite roll with superior heat crack resistance and wear resistance
US3553004A (en) Method of galvanizing employing rolls of an air hardening die steel
JP2005082834A (en) Highly corrosion-resistant hot-dip plating steel sheet and manufacturing method therefor
JPS59123744A (en) Roll for galvanization
JPH03162551A (en) Corrosion-resistant alloy for nonferrous hot dip metal and roll for the above hot dip metal coating
JPS5855226B2 (en) Corrosion resistant alloy for molten zinc
CN112410619B (en) Niobium and nitrogen added modified cobalt-based casting alloy and application thereof
JP2005169422A (en) Composite rolling roll
JP2002275575A (en) High strength spheroidal graphite cast iron and production method therefor
JPS5855225B2 (en) Corrosion resistant alloy for molten zinc
JP2005169426A (en) Composite rolling roll
JPS63157828A (en) Electrifying roll for electroplating
KR100236163B1 (en) Manufacturing method of galvanized steelsheets