JPH0231936B2 - - Google Patents

Info

Publication number
JPH0231936B2
JPH0231936B2 JP59060082A JP6008284A JPH0231936B2 JP H0231936 B2 JPH0231936 B2 JP H0231936B2 JP 59060082 A JP59060082 A JP 59060082A JP 6008284 A JP6008284 A JP 6008284A JP H0231936 B2 JPH0231936 B2 JP H0231936B2
Authority
JP
Japan
Prior art keywords
cyclodextrin
glutinous rice
gelatinization
rice
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59060082A
Other languages
Japanese (ja)
Other versions
JPS60203150A (en
Inventor
Takehiko Oofuji
Koichi Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59060082A priority Critical patent/JPS60203150A/en
Publication of JPS60203150A publication Critical patent/JPS60203150A/en
Priority to JP1292925A priority patent/JPH02231040A/en
Publication of JPH0231936B2 publication Critical patent/JPH0231936B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cereal-Derived Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は米の糊化方法に関し、更に詳しくは糯
米又は粳米の糊化を促進する方法に関するもので
ある。 〔従来技術と問題点〕 米を主原料とする食品に飯、おかき、せんべ
い、もち、団子等がある。これらは粳米や糯米等
を水蒸気等で加熱して糊化させ、必要に応じて冷
却、乾燥、焼成等を行ない、製品とする。糊化の
過程において、米に含まれるでんぷんは膨潤又は
溶解し、結晶性、複屈折性を失い消化酵素の作用
を受ける状態になる。この状態をα化したという
こともある。 一般に、糊化は水の存在下で行なわれ、でんぷ
んと水分子の相互作用である。液体の水は水素結
合により多数会合しているが、高温ほど単分子の
水の割合が増加する。この会合度の低い水分子が
でんぷんの微結晶の近くまで浸入し、高温で不安
定になつたでんぷん分子の水素結合の破壊をもた
らすものと考えられる。でんぷんの糊化時の状態
は、粒から溶け出したでんぷんの溶液に10数倍に
も水和膨潤した粒が浮遊した不均一な状態と考え
られている。でんぷんの糊化の特徴を表現するの
にもつとも重宝がられているのは、アミログラム
である。これは、でんぷん懸濁液を一定速度(通
常1.5℃/min)で加温したときの粘度と温度の
関係を示すものである。ここでいう粘度は膨潤し
たでんぷん粒が互いに接触しつつ動くことにもと
づき、でんぷん粒が膨潤するほど高くなるものと
経験的に解せられている。 でんぷんの糊化特性は種々の物質により影響を
うける。例えば馬鈴薯でんぷんに脂肪酸を添加す
ると糊化温度が高くなり最高粘度が低下する。即
ち、馬鈴薯でんぷん濃度4重量%の糊化温度64
℃、最高粘度850Bu(80℃)が、対でんぷん0.34
重量%のラウリン酸の添加により糊化温度が67℃
にあがり最高粘度が600Bu(98℃)に低下する。
これは脂肪酸がでんぷん構成分子中のアミロース
と複合体をつくり、でんぷん粒の膨潤を抑制する
ものと考えられている。同じ様な現象は脂肪酸の
モノグリセライド、脂肪酸に親水性基を導入した
界面活性剤でもみられる。脂肪酸誘導体の界面活
性剤は85〜90℃までは膨潤抑制作用が強いが、90
℃より高温になると逆に促進作用があらわれる場
合もあると報告されている。これは前述のアミロ
ースと脂肪酸基の複合体の安定性と関係すると報
告されている。 同じ脂質でもレシチンは小麦でんぷんの糊化を
促進する。小麦でんぷん濃度8.8重量%でレシチ
ンをでんぷんに対し0.1重量%加えると糊化温度
が78.3℃から63.5℃に低下し、4重量%加えると
45.6℃まで低下すると報告されている。又、最高
粘度も600Bu(92.5℃)が0.1重量%のレシチンの
添加で650Bu(92.5重量%)に、4重量%の添加
で935Bu(88℃)に増加すると報告されている。
レシチンのとうもろこしでんぷん、米でんぷん、
甘藷でんぷんに対する作用は少ない。例えば粳米
でんぷんに対するレシチンの作用は対でんぷん10
重量%添加時で糊化温度が5%の低下、最高粘度
が対でんぷん2重量%の添加時で43%の増加、10
重量%の添加時で22%の増加にすぎない。また馬
鈴薯でんぷんに対してはレシチンの作用はほとん
どなく、逆に0.1重量%以上の添加で最高粘度が
低下してくる。 〔問題点を解決するための手段〕 本発明者らはでんぷんの糊化を促進する方法、
特に今まで効果的な糊化促進方法がなかつた粳
米、糯米の糊化を促進する方法を種々研究を重ね
た結果、本発明に到達したものである。 即ち、本発明は糯米にサイクロデキストリン及
び/又はサイクロデキストリン包接物を添加した
後に糊化させることを特徴とする米の糊化方法、
及び粳米にサイクロデキストリン包接物を添加し
た後に糊化させることを特徴とする米の糊化方法
を要旨とするものである。 本発明でいう粳米又は糯米は、水浸、乾燥、粉
砕、炒る等の処理を施した、例えばしん粉、白玉
粉、みじん粉、導明寺粉等を含む。又、粳米又は
糯米は単独で糊化して食品とする必要は必ずしも
なく、砂糖、あんや他のでんぷん類などと併用し
て用いる方が多い。本発明が適用される食品を列
挙すると限りがないが、大福餅、羽二重餅、桜も
ち、草もち、柏もち等の餅や団子、ちまき、うい
ろう、煎餅、あられ、米菓、スナツク食品、水あ
め、ビーフン、米麹などがある。 本発明の糊化の方法としては水分の存在下、粳
米又は糯米を加熱するものであればよく、例えば
水蒸気で蒸して糊化させる方法、水と適当な比率
で混ぜて加熱して糊化させる方法、加熱と同時に
圧力をかけて糊化・膨化させる方法などがある。
米菓、あられ、煎餅などを作る場合には糊化させ
た後、冷却、乾燥、焼成等の工程を経て製品とす
る。 サイクロデキストリンはシヤーデインガーデキ
ストリンあるいはサイクロアミローズともよばれ
る環状オリゴ糖同族体である。サイクロデキスト
リンにはα−サイクロデキストリン、β−サイク
ロデキストリン、γ−サイクロデキストリン、δ
−サイクロデキストリン、さらに高重合度のサイ
クロデキストリンの同族体である。 サイクロデキストリンの製法にバチルス・マセ
ランス(Bacillus macerans)のアミラーゼをで
んぷんに作用させる方法等があるが、この方法に
よりα−サイクロデキストリン、β−サイクロデ
キストリン、γ−サイクロデキストリンと少量の
より高重合度のサイクロデキストリンを含むでん
ぷん分解物が得られる。 本発明に用いるサイクロデキストリンは上記の
でんぷん分解物からα、β、γ−サイクロデキス
トリンを分離して用いてもよいが、マルトースや
その他のデキストリンを含有するでんぷん分解物
をそのまま使用してもよい。 サイクロデキストリン包接物はサイクロデキス
トリンと油脂、脂肪酸、モノグリセライド、ジグ
リセライド、レシチン等の包接対象物を適当な水
の存在のもと混合捏和して得られる。包接対象物
とサイクロデキストリンの比率などにより末包接
のものが残ることもあるが、その場合は溶剤洗浄
等の手段で未包接のものを除くことができる。な
お、上記の混合捏和物をそのまま使用しても本発
明の効果は変わることがない。 本発明のサイクロデキストリン、サイクロデキ
ストリン包接物の糯米への添加量、又はサイクロ
デキストリン包接物の粳米への添加量は目的とす
る食品にもよるが、一般に糯米又は粳米に対して
0.05重量%以上、好ましくは1.0重量%〜10重量
%でよい。 本発明の方法により糯米又は粳米の糊化が著し
く促進され、米を主原料とする食品の食感を改良
することが可能となる。 本発明により糯米又は粳米の糊化が促進される
理由は必ずしも明らかでない。本発明者らの実験
によると、サイクロデキストリン、サイクロデキ
ストリン包接物を小麦でんぷん、馬鈴薯でんぷ
ん、コーンスターチに添加しても糊化は促進され
なかつた(後記表3参照)。即ち、米類のでんぷ
んの組織状態とサイクロデキストリン、サイクロ
デキストリン包接物との親和性により本発明の糊
化特性の改善が達せられるものと考えられる。 〔実施例〕 以下、実施例を挙げて本発明を更に詳細に説明
するが、本発明はこれらに限定されるものでない
ことは勿論である。 実施例 1 市販の糯米にβ−サイクロデキストリン(三楽
オーシヤン(株)製、リングデツクス)を添加し、ア
ミログラフ(Brabender社製)を用いて糊化特性
を測定した。測定方法は60メツシユに粉砕した糯
米46.5g(水分14.0重量%)に水を加えて500g
とし〔糯米濃度8.0重量%(dry)〕、初温25℃から
92.5℃まで1.5℃/分の速度で加熱昇温し、粘度
を記録した。なおアダプターは700cm−gを使用
した。糊化特性の評価は転移温度(粘度が20Bu
の時の温度)、最高粘度、ピーク温度(最高粘度
に達した時の温度)、加熱後粘度(92.5℃で10分
間加熱した後の粘度)で行なつた。 実施例 2 実施例1のβ−サイクロデキストリンのかわり
にα−サイクロデキストリン〔塩水港精糖(株)製、
純度99%以上(液体クロマト分析による)〕を用
い、その他は実施例1と同様に行なつた。 実施例 3 β−サイクロデキストリン(実施例1に同じ)
5部(重量部、以下同じ)、レシチン(味の素(株)
製、大豆レシチン)5部を90部の水に分散・溶解
させ、ホモミキサーで混合・捏和した。この混合
捏和物を凍結乾燥により水をとばし、粉末を得
た。この粉末を実施例1のβ−サイクロデキスト
リンのかわりに用い、他は実施例1と同様とし
た。 実施例 4 β−サイクロデキストリン(実施例1に同じ)
1部、オレイン酸(半井化学製、一級)2部、水
4部をホモミキサーで混合捏和しペーストを得
た。このペーストを水洗し過剰のβ−サイクロデ
キストリンを除去した後、エタノールに分散させ
濾取した固型物をさらにエチルエーテルで洗浄
し、未包接のオレイン酸を除去してβ−サイクロ
デキストリン/オレイン酸包接物の粉末を得た。
このβ−サイクロデキストリン/オレイン酸包接
物を実施例1のβ−サイクロデキストリンのかわ
りに用い、他は実施例1と同様にした。 実施例 5 β−サイクロデキストリン(実施例1に同じ)
1部、サラダ油2部、水4部をホモミキサーで混
合・捏和しペーストを得た。このペーストから実
施例4と同様の操作によりβ−サイクロデキスト
リン/油脂包接物の粉末を得た。このβ−サイク
ロデキストリン/油脂包接物を実施例1のβ−サ
イクロデキストリンのかわりに用い、他は実施例
1と同様にした。 実施例 6 実施例5で得たβ−サイクロデキストリン/サ
ラダ油/水からなるペースト14部、さらにサラダ
油64部、水22部を加えホモミキサーで混合・捏和
し、油分約70重量%の水相を連続相とする油脂食
品を得た。これを実施例1のβ−サイクロデキス
トリンのかわりに用い、他は実施例1と同様にし
た。 比較例 1 本発明の効果を示すために実施例1においてβ
−サイクロデキストリンを添加せず、他は実施例
1と同様にして糯米の糊化特性を評価した。 比較例 2 実施例1においてβ−サイクロデキストリンの
かわりにレシチン(光洋商会、AY−A 81859
−1)をホモミキサーで水に分散させ、レシチン
濃度が対糯米(dry)1重量%になるように加え
た他は実施例1と同条件〔糯米濃度8.0重量%
(dry)〕で行なつた。 比較例 3 実施例1においてβ−サイクロデキストリンの
かわりに蔗糖脂肪酸エステル(第一工業製薬(株)
製、DKエステルF160)を用い、その他は実施例
1と同様に行なつた。 比較例 4 蔗糖脂肪酸エステル(比較例3に同じ)0.3部、
サラダ油50部、水50部をホモミキサーで混合・捏
和して油分50重量%のOW型エマルジヨンを得
た。このエマルジヨンを実施例1のβ−サイクロ
デキストリンのかわりに用いた他は実施例1と同
条件〔糯米濃度8.0重量%(dry)にて行なつた。 実施例1〜6及び比較例1〜4による糯米糊化
特性測定結果を表1に示した。 表1から明らかなようにサイクロデキストリ
ン、サイクロデキストリン包接物の少量の添加に
より糯米の糊化特性は大巾に改良される。即ち、
転移温度、ピーク温度に変化はないものの糊化時
の最高粘度が大巾に増加しており、糊化が促進さ
れていることがあきらかである。 なお、実施例1、2に示したようにα−サイク
ロデキストリンでもβ−サイクロデキストリンで
もほぼ同じ糊化促進効果がある。又、この糯米糊
化促進効果はサイクロデキストリン包接物の場合
に一層顕著で、レシチン、オレイン酸とサイクロ
デキストリンとの包接物は同一添加量でもサイク
ロデキストリン以上の糯米糊化促進効果がある。
なお、このサイクロデキストリン、サイクロデキ
ストリン包接物の糯米糊化促進効果は、実施例6
に示したように、油脂の存在下でも変わるもので
ない。
[Industrial Application Field] The present invention relates to a method for gelatinizing rice, and more particularly to a method for promoting gelatinization of glutinous rice or glutinous rice. [Prior art and problems] Foods that use rice as the main ingredient include rice, rice crackers, rice crackers, mochi, and dumplings. These products are made by heating glutinous rice, glutinous rice, etc. with steam to gelatinize it, and cooling, drying, baking, etc. as necessary. During the gelatinization process, the starch contained in rice swells or dissolves, loses its crystallinity and birefringence, and becomes susceptible to the action of digestive enzymes. This state may also be called alpha. Generally, gelatinization takes place in the presence of water and is an interaction between starch and water molecules. Liquid water has many molecules associated with each other due to hydrogen bonds, but the higher the temperature, the more the proportion of single molecules of water increases. It is thought that these water molecules with a low degree of association penetrate close to the starch microcrystals and break the hydrogen bonds in the starch molecules, which have become unstable at high temperatures. The state of starch during gelatinization is thought to be a non-uniform state in which grains that have swollen by hydration ten times more are suspended in a solution of starch that has dissolved from the grains. Amylograms are highly valued for expressing the characteristics of starch gelatinization. This shows the relationship between viscosity and temperature when a starch suspension is heated at a constant rate (usually 1.5°C/min). The viscosity referred to here is based on the fact that swollen starch granules move while coming into contact with each other, and it has been empirically understood that the more the starch granules swell, the higher the viscosity becomes. The gelatinizing properties of starch are influenced by various substances. For example, when fatty acids are added to potato starch, the gelatinization temperature increases and the maximum viscosity decreases. That is, the gelatinization temperature at a potato starch concentration of 4% by weight is 64
°C, maximum viscosity 850Bu (80 °C), starch 0.34
Addition of wt% lauric acid increases gelatinization temperature to 67℃
The maximum viscosity decreases to 600Bu (98℃).
This is thought to be due to fatty acids forming a complex with amylose in the starch constituent molecules, which suppresses the swelling of starch granules. A similar phenomenon is observed with fatty acid monoglycerides and surfactants with hydrophilic groups introduced into fatty acids. Fatty acid derivative surfactants have a strong swelling suppressing effect up to 85-90℃, but
It has been reported that when the temperature is higher than ℃, an accelerating effect may occur. This is reported to be related to the stability of the complex of amylose and fatty acid groups mentioned above. Lecithin promotes gelatinization of wheat starch even though it is the same lipid. When 0.1% by weight of lecithin was added to the starch at a wheat starch concentration of 8.8%, the gelatinization temperature decreased from 78.3℃ to 63.5℃, and when 4% by weight was added, the gelatinization temperature decreased from 78.3℃ to 63.5℃.
It is reported that the temperature drops to 45.6℃. It is also reported that the maximum viscosity increases from 600Bu (92.5°C) to 650Bu (92.5% by weight) with the addition of 0.1% by weight of lecithin, and to 935Bu (88°C) with the addition of 4% by weight.
lecithin corn starch, rice starch,
It has little effect on sweet potato starch. For example, the effect of lecithin on glutinous rice starch is 10
Gelatinization temperature decreased by 5% when adding % by weight, maximum viscosity increased by 43% when adding 2% by weight of starch, 10
There is only a 22% increase when adding % by weight. Furthermore, lecithin has almost no effect on potato starch, and on the contrary, the maximum viscosity decreases when 0.1% by weight or more is added. [Means for solving the problem] The present inventors have proposed a method for promoting gelatinization of starch,
In particular, the present invention was achieved as a result of various research into methods for promoting gelatinization of glutinous rice and glutinous rice, for which there has been no effective method for promoting gelatinization. That is, the present invention provides a method for gelatinizing rice, which comprises adding cyclodextrin and/or cyclodextrin clathrate to glutinous rice and then gelatinizing it.
and a method for gelatinizing rice, which is characterized by adding a cyclodextrin clathrate to glutinous rice and then gelatinizing it. The glutinous rice or glutinous rice referred to in the present invention includes, for example, starch flour, shiratama flour, mijin flour, doomyoji flour, etc. that have been subjected to treatments such as soaking in water, drying, pulverizing, and roasting. In addition, glutinous rice or glutinous rice does not necessarily need to be gelatinized alone to make food, but is often used in combination with sugar, bean paste, or other starches. The list of foods to which the present invention can be applied is endless, but includes mochi and dumplings such as daifuku mochi, habutae mochi, cherry mochi, kusa mochi, kashiwa mochi, chimaki, uiro, rice crackers, arare, rice crackers, snack foods, starch syrup, There are rice noodles, rice malt, etc. The gelatinization method of the present invention may be any method as long as it heats glutinous rice or glutinous rice in the presence of moisture, such as steaming it with steam to gelatinize it, or mixing it with water in an appropriate ratio and heating it to gelatinize it. There are several methods, including a method of gelatinizing and swelling by applying pressure at the same time as heating.
When making rice crackers, arare, rice crackers, etc., the products are gelatinized and then subjected to processes such as cooling, drying, and baking. Cyclodextrin is a cyclic oligosaccharide analog also called sheardingar dextrin or cycloamylose. Cyclodextrins include α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, δ
- Cyclodextrins, as well as homologues of cyclodextrins with a higher degree of polymerization. There is a method for producing cyclodextrin in which Bacillus macerans amylase acts on starch, but this method produces α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin and a small amount of higher polymerization degree. A starch decomposition product containing cyclodextrin is obtained. The cyclodextrin used in the present invention may be used by separating α, β, γ-cyclodextrin from the above starch decomposition product, but starch decomposition products containing maltose and other dextrins may be used as they are. Cyclodextrin clathrates are obtained by mixing and kneading cyclodextrin and clathrates such as fats and oils, fatty acids, monoglycerides, diglycerides, and lecithin in the presence of appropriate water. Depending on the ratio between the inclusion target and cyclodextrin, terminal inclusions may remain, but in that case, uninclusions can be removed by cleaning with a solvent or the like. Note that even if the above-mentioned mixed kneaded product is used as it is, the effects of the present invention will not change. The amount of cyclodextrin or cyclodextrin clathrate of the present invention to be added to glutinous rice, or the amount of cyclodextrin clathrate to be added to glutinous rice depends on the target food, but generally it is added to glutinous rice or glutinous rice.
It may be 0.05% by weight or more, preferably 1.0% to 10% by weight. By the method of the present invention, the gelatinization of glutinous rice or glutinous rice is significantly promoted, making it possible to improve the texture of foods whose main ingredient is rice. The reason why gelatinization of glutinous rice or glutinous rice is promoted by the present invention is not necessarily clear. According to experiments conducted by the present inventors, gelatinization was not promoted even when cyclodextrin or cyclodextrin clathrates were added to wheat starch, potato starch, or corn starch (see Table 3 below). That is, it is considered that the improvement in gelatinization properties of the present invention is achieved due to the affinity between the structure of rice starch and cyclodextrin and cyclodextrin clathrates. [Examples] The present invention will be described in more detail below with reference to Examples, but it goes without saying that the present invention is not limited thereto. Example 1 β-cyclodextrin (Ringdex, manufactured by Sanraku Ocean Co., Ltd.) was added to commercially available sticky rice, and the gelatinization properties were measured using an Amylograph (manufactured by Brabender). The measurement method is to add water to 46.5g of glutinous rice (moisture 14.0% by weight) crushed into 60 pieces to make 500g.
Toshi [glutinous rice concentration 8.0% by weight (dry)], from initial temperature 25℃
The temperature was increased to 92.5°C at a rate of 1.5°C/min and the viscosity was recorded. The adapter used was 700 cm-g. The evaluation of gelatinization properties is based on the transition temperature (viscosity is 20Bu).
), maximum viscosity, peak temperature (temperature when maximum viscosity is reached), and viscosity after heating (viscosity after heating at 92.5°C for 10 minutes). Example 2 α-cyclodextrin [manufactured by Shimizu Minato Seito Co., Ltd.] was used instead of β-cyclodextrin in Example 1.
Purity of 99% or higher (according to liquid chromatography analysis)] was used, and the other procedures were the same as in Example 1. Example 3 β-cyclodextrin (same as Example 1)
5 parts (by weight, same hereinafter), lecithin (Ajinomoto Co., Inc.)
5 parts of soybean lecithin (manufactured by Soybean Lecithin) were dispersed and dissolved in 90 parts of water, and mixed and kneaded using a homomixer. The water was removed from this mixed kneaded product by freeze-drying to obtain a powder. This powder was used in place of β-cyclodextrin in Example 1, and the other conditions were the same as in Example 1. Example 4 β-cyclodextrin (same as Example 1)
A paste was obtained by mixing and kneading 1 part of oleic acid (manufactured by Hanui Chemical Co., Ltd., first grade), 2 parts of oleic acid, and 4 parts of water using a homomixer. After washing this paste with water to remove excess β-cyclodextrin, it was dispersed in ethanol and the solid matter collected by filtration was further washed with ethyl ether to remove unclathrated oleic acid and form β-cyclodextrin/oleic acid. A powder of acid clathrates was obtained.
This β-cyclodextrin/oleic acid clathrate was used in place of the β-cyclodextrin in Example 1, and the other procedures were the same as in Example 1. Example 5 β-cyclodextrin (same as Example 1)
1 part, 2 parts of salad oil, and 4 parts of water were mixed and kneaded using a homomixer to obtain a paste. From this paste, a β-cyclodextrin/fat inclusion powder was obtained by the same operation as in Example 4. This β-cyclodextrin/oil/fat clathrate was used in place of the β-cyclodextrin in Example 1, and the other conditions were the same as in Example 1. Example 6 14 parts of the paste consisting of β-cyclodextrin/salad oil/water obtained in Example 5, 64 parts of salad oil, and 22 parts of water were added and mixed and kneaded with a homomixer to form an aqueous phase with an oil content of approximately 70% by weight. An oil and fat food product having a continuous phase of . This was used in place of β-cyclodextrin in Example 1, and the other procedures were the same as in Example 1. Comparative Example 1 In Example 1, β
- The gelatinization properties of glutinous rice were evaluated in the same manner as in Example 1 except that cyclodextrin was not added. Comparative Example 2 In Example 1, lecithin (Koyo Shokai, AY-A 81859) was used instead of β-cyclodextrin.
-1) was dispersed in water using a homomixer, and the conditions were the same as in Example 1, except that the lecithin concentration was 1% by weight based on dry rice (glutinous rice concentration: 8.0% by weight)
(dry)] Comparative Example 3 In Example 1, sucrose fatty acid ester (Daiichi Kogyo Seiyaku Co., Ltd.) was used instead of β-cyclodextrin.
The same procedure as in Example 1 was carried out except that DK Ester F160 (manufactured by DK Co., Ltd.) was used. Comparative example 4 0.3 part of sucrose fatty acid ester (same as comparative example 3),
50 parts of salad oil and 50 parts of water were mixed and kneaded using a homomixer to obtain an OW type emulsion with an oil content of 50% by weight. The experiment was carried out under the same conditions as in Example 1, except that this emulsion was used in place of the β-cyclodextrin in Example 1 (the glutinous rice concentration was 8.0% by weight (dry)). Table 1 shows the measurement results of glutinous rice gelatinization properties according to Examples 1 to 6 and Comparative Examples 1 to 4. As is clear from Table 1, the gelatinization properties of glutinous rice are greatly improved by the addition of small amounts of cyclodextrin and cyclodextrin clathrates. That is,
Although the transition temperature and peak temperature did not change, the maximum viscosity during gelatinization increased significantly, and it was clear that gelatinization was promoted. In addition, as shown in Examples 1 and 2, α-cyclodextrin and β-cyclodextrin have almost the same gelatinization promoting effect. Moreover, this glutinous rice gelatinization promoting effect is even more remarkable in the case of cyclodextrin clathrates, and cyclodextrin clathrates of lecithin, oleic acid, and cyclodextrin have a greater glutinous rice gelatinizing effect than cyclodextrin even when added in the same amount.
In addition, the effect of promoting glutinous rice gelatinization of this cyclodextrin and cyclodextrin clathrate was confirmed in Example 6.
As shown in Figure 2, it does not change even in the presence of fats and oils.

【表】【table】

【表】 実施例 7 市販の粳米粉(紫米の粉)にβ−サイクロデキ
ストリン/オレイン酸包接物(実施例4に同じ)
を添加し、アミログラフを用いて糊化特性を評価
した。測定方法は粳米粉46.5g(水分14.0重量
%)に水を加えて500gとし〔粳米濃度8.0重量%
(dry)〕、初温25℃から95℃まで1.5℃/分の速度
で加温昇温し、粘度を記録した。糊化特性評価は
加熱後粘度を95℃で10分間加熱した後の粘度とし
た以外は実施例1に準じた。 実施例 8 実施例7のβ−サイクロデキストリン/オレイ
ン酸包接物のかわりにβ−サイクロデキストリ
ン/レシチン混合捏和物凍結乾燥品(実施例3に
同じ)(包接物)を用い、その他は実施例7と同
様に行なつた。 比較例 5 本発明の効果を示すために実施例7において、
β−サイクロデキストリン/オレイン酸包接物を
添加せず、他は実施例7と同様にして粳米の糊化
特性を評価した。 比較例 6 実施例7のβ−サイクロデキストリン/オレイ
ン酸包接物のかわりにβ−サイクロデキストリン
(実施例1に同じ)を用い、その他は実施例7と
同様に行なつた。 比較例 7 実施例7のβ−サイクロデキストリン/オレイ
ン酸包接物のかわりにα−サイクロデキストリン
(実施例2に同じ)を用い、その他は実施例7と
同様に行なつた。 実施例7〜8、比較例5〜7による粳米糊化特
性測定結果を表2に示した。 表2から明らかなように、無添加の比較例5及
びサイクロデキストリンを添加した比較例6及び
7に比較し、サイクロデキストリン包接物を添加
した実施例7、8では粳米の糊化特性は大巾に改
良されている。即ち、転移温度、ピーク温度に変
化はないものの糊化時の最高粘度が大巾に増加し
ており、糊化が促進されていることが明らかであ
る。
[Table] Example 7 Adding β-cyclodextrin/oleic acid clathrate to commercially available glutinous rice flour (purple rice flour) (same as Example 4)
was added, and the gelatinization properties were evaluated using an amylograph. The measurement method is to add water to 46.5g of glutinous rice flour (moisture 14.0% by weight) to make 500g [glutinous rice concentration 8.0% by weight]
(dry)], the temperature was increased from an initial temperature of 25°C to 95°C at a rate of 1.5°C/min, and the viscosity was recorded. The gelatinization characteristics were evaluated in accordance with Example 1, except that the viscosity after heating was the viscosity after heating at 95° C. for 10 minutes. Example 8 A lyophilized β-cyclodextrin/lecithin mixture (same as in Example 3) (clathrate) was used instead of the β-cyclodextrin/oleic acid clathrate in Example 7, and the other The same procedure as in Example 7 was carried out. Comparative Example 5 In Example 7 to demonstrate the effect of the present invention,
The gelatinization properties of glutinous rice were evaluated in the same manner as in Example 7, except that the β-cyclodextrin/oleic acid clathrate was not added. Comparative Example 6 The same procedure as in Example 7 was carried out except that β-cyclodextrin (same as in Example 1) was used instead of the β-cyclodextrin/oleic acid clathrate in Example 7. Comparative Example 7 The same procedure as in Example 7 was carried out except that α-cyclodextrin (same as in Example 2) was used in place of the β-cyclodextrin/oleic acid clathrate in Example 7. Table 2 shows the measurement results of glutinous rice gelatinization properties in Examples 7 and 8 and Comparative Examples 5 and 7. As is clear from Table 2, compared to Comparative Example 5 without additives and Comparative Examples 6 and 7 with cyclodextrin added, in Examples 7 and 8 with cyclodextrin clathrate added, the gelatinization properties of glutinous rice were significantly higher. It has been greatly improved. That is, although the transition temperature and peak temperature did not change, the maximum viscosity during gelatinization increased significantly, and it is clear that gelatinization was promoted.

【表】【table】

【表】 参考として米以外の小麦でんぷん、コーンスタ
ーチ、馬鈴薯でんぷんの糊化特性に与えるサイク
ロデキストリンの効果を表3に示した。 測定条件は小麦でんぷん(ヤマヨ旭正)、コー
ンスターチ(市販品)、馬鈴薯でんぷん(和光純
薬、化学用)の各でんぷんの濃度を各々8.0%
〔重量%(dry)、以下同じ〕、7.8%、3.0%とし、
アミログラフの条件、添加物については実施例又
は比較例と同様とした。 表3から明らかなように米(糯米、粳米)の場
合の結果に反し、小麦でんぷん、コーンスター
チ、馬鈴薯でんぷんに対しては、サイクロデキス
トリンの糊化促進効果はほとんど認められなかつ
た。
[Table] For reference, Table 3 shows the effect of cyclodextrin on the gelatinization properties of wheat starch, corn starch, and potato starch other than rice. The measurement conditions were wheat starch (Yamayo Asahimasa), corn starch (commercially available), and potato starch (Wako Pure Chemical Industries, chemical grade), each with a concentration of 8.0%.
[Weight% (dry), same hereinafter], 7.8%, 3.0%,
Amylograph conditions and additives were the same as in Examples or Comparative Examples. As is clear from Table 3, contrary to the results for rice (glutinous rice, glutinous rice), almost no gelatinization promoting effect of cyclodextrin was observed for wheat starch, corn starch, and potato starch.

【表】 応用例 1 本発明のサイクロデキストリン、サイクロデキ
ストリン包接物の米糊化促進効果が食品の食感を
改良することを実証するため、糯米を主原料とし
て「おかき」を作成した。 糯米3Kgに水1.4Kgを加え、さらにβ−サイク
ロデキストリン30gを加えた後、蒸練機(品川工
業所(株)製)を用い撹拌しながら100℃で3分間蒸
した。さらにもち練り機((七)餅練製粉機)を用い
て水切りした後、5℃にて48時間冷却した。この
餅生地を厚み2mm、巾1.5cm、長さ2.0cmに切断
し、温度40℃、湿度88%の恒温機を用いて水分18
重量%にまで乾燥し、自社製のあられ焼成機を用
いて240℃で焼成し、おかきを得た。 応用例 2 応用例1のおかきの作成においてβ−サイクロ
デキストリンのかわりにβ−サイクロデキストリ
ン/油脂包接物(実施例5と同じ)を30g用い、
他は応用例1と同様にしておかきを得た。 比較応用例 1 応用例1のおかきの作成においてβ−サイクロ
デキストリンを添加せず、その他は応用例1と同
様にし糯米のみでおかきを作成した。 比較応用例 2 応用例1のおかきの作成においてβ−サイクロ
デキストリンを添加せず、かわりにOW型エマル
ジヨン(比較例4に同じ)420gを加え、その他
は応用例1と同様にしておかきを得た。 応用例1、2、比較応用例1、2により得られ
たおかきの食感を評価するため、テンシプレツサ
ー(タケモト電機(株)製)を用いておかきの硬度を
測定した。 測定には断面積0.05cm2のステンレス製円柱を用
い測定の初めにあらわれるピークの高さを硬さと
した。なお測定は30個のおかきを用い平均値をも
つてそのおかきの硬度とした。硬度測定結果を表
4に示した。
[Table] Application Example 1 In order to demonstrate that the rice gelatinization promoting effect of the cyclodextrin and cyclodextrin clathrate of the present invention improves the texture of foods, "Okaki" was prepared using glutinous rice as the main ingredient. After adding 1.4 kg of water to 3 kg of glutinous rice and further adding 30 g of β-cyclodextrin, the mixture was steamed at 100° C. for 3 minutes with stirring using a steamer (manufactured by Shinagawa Kogyosho Co., Ltd.). Furthermore, after draining using a mochi kneading machine ((7) Mochi kneading machine), the mixture was cooled at 5°C for 48 hours. This mochi dough was cut into pieces 2 mm thick, 1.5 cm wide, and 2.0 cm long, and heated to 18% moisture using a constant temperature machine at a temperature of 40°C and a humidity of 88%.
It was dried to % by weight and baked at 240°C using an in-house arare baking machine to obtain okaki. Application example 2 In the preparation of okaki in application example 1, 30 g of β-cyclodextrin/oil/fat clathrate (same as Example 5) was used instead of β-cyclodextrin.
Otherwise, rice oysters were obtained in the same manner as in Application Example 1. Comparative Application Example 1 In the preparation of okaki in Application Example 1, β-cyclodextrin was not added, and the other conditions were the same as in Application Example 1, and okaki was prepared using only glutinous rice. Comparative Application Example 2 In the preparation of okaki in Application Example 1, β-cyclodextrin was not added, and 420 g of OW type emulsion (same as in Comparative Example 4) was added instead, and the other procedures were the same as in Application Example 1 to obtain okaki. . In order to evaluate the texture of the rice crackers obtained in Application Examples 1 and 2 and Comparative Application Examples 1 and 2, the hardness of the rice crackers was measured using a tensi presser (manufactured by Takemoto Electric Co., Ltd.). A stainless steel cylinder with a cross-sectional area of 0.05 cm 2 was used for the measurement, and the height of the peak that appeared at the beginning of the measurement was defined as hardness. The hardness of 30 rice crackers was taken as the average value for the measurement. The hardness measurement results are shown in Table 4.

【表】【table】

〔作用・効果〕[Action/Effect]

叙上の通り、本発明によれば、糯米又は粳米の
糊化が顕著に促進され、このように糊化の促進し
た糯米や粳米を主原料として用いた食品は、例え
ばあられ菓子の場合には食感が非常にソフトにな
り、食生活を一層豊かにするものである。
As mentioned above, according to the present invention, the gelatinization of glutinous rice or glutinous rice is significantly promoted, and foods using glutinous rice or glutinous rice with accelerated gelatinization as the main ingredient, for example, in the case of arare sweets, It has a very soft texture and makes your diet even richer.

Claims (1)

【特許請求の範囲】 1 糯米にサイクロデキストリン及び/又はサイ
クロデキストリン包接物を添加した後に糊化させ
ることを特徴とする米の糊化方法。 2 サイクロデキストリン包接物が油脂、脂肪
酸、モノグリセライド、レシチン又はジグリセラ
イドとサイクロデキストリンとの包接物である特
許請求の範囲第1項記載の方法。 3 サイクロデキストリンがα−サイクロデキス
トリン、β−サイクロデキストリン及びγ−サイ
クロデキストリンから選ばれた1種もしくは2種
以上である特許請求の範囲第1項又は第2項記載
の方法。 4 粳米にサイクロデキストリン包接物を添加し
た後に糊化させることを特徴とする米の糊化方
法。 5 サイクロデキストリン包接物が油脂、脂肪
酸、モノグリセライド、レシチン又はジグリセラ
イドとサイクロデキストリンとの包接物である特
許請求の範囲第4項記載の方法。 6 サイクロデキストリンがα−サイクロデキス
トリン、β−サイクロデキストリン及びγ−サイ
クロデキストリンから選ばれた1種もしくは2種
以上である特許請求の範囲第4項又は第5項記載
の方法。
[Scope of Claims] 1. A method for gelatinizing rice, which comprises adding cyclodextrin and/or cyclodextrin clathrate to glutinous rice and then gelatinizing it. 2. The method according to claim 1, wherein the cyclodextrin clathrate is a cyclodextrin clathrate with oil or fat, fatty acid, monoglyceride, lecithin, or diglyceride. 3. The method according to claim 1 or 2, wherein the cyclodextrin is one or more selected from α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. 4. A method for gelatinizing rice, which comprises adding a cyclodextrin clathrate to glutinous rice and then gelatinizing it. 5. The method according to claim 4, wherein the cyclodextrin clathrate is a cyclodextrin clathrate with oil or fat, fatty acid, monoglyceride, lecithin, or diglyceride. 6. The method according to claim 4 or 5, wherein the cyclodextrin is one or more selected from α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin.
JP59060082A 1984-03-27 1984-03-27 Method for making rice into paste Granted JPS60203150A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59060082A JPS60203150A (en) 1984-03-27 1984-03-27 Method for making rice into paste
JP1292925A JPH02231040A (en) 1984-03-27 1989-11-10 Preparation of rice confections

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060082A JPS60203150A (en) 1984-03-27 1984-03-27 Method for making rice into paste

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1292925A Division JPH02231040A (en) 1984-03-27 1989-11-10 Preparation of rice confections

Publications (2)

Publication Number Publication Date
JPS60203150A JPS60203150A (en) 1985-10-14
JPH0231936B2 true JPH0231936B2 (en) 1990-07-17

Family

ID=13131801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060082A Granted JPS60203150A (en) 1984-03-27 1984-03-27 Method for making rice into paste

Country Status (1)

Country Link
JP (1) JPS60203150A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127058A (en) * 1980-03-13 1981-10-05 Takeda Chem Ind Ltd Quality improvement of boiled rice

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56127058A (en) * 1980-03-13 1981-10-05 Takeda Chem Ind Ltd Quality improvement of boiled rice

Also Published As

Publication number Publication date
JPS60203150A (en) 1985-10-14

Similar Documents

Publication Publication Date Title
KR970011773B1 (en) Processed starch and bakery foods utilizing the same
US20020152931A1 (en) Starch-emulsifier composition and method of making
US11896038B2 (en) Inhibited waxy starches and methods of using them
JP7478868B2 (en) Pregelatinized starch
WO2016111061A1 (en) Processed starch for bakery foods and mix for bakery foods
JPH10295253A (en) Bread and its producing method
JP3918078B2 (en) Dietary fiber-reinforced composition and dietary fiber-reinforced food using the same
JPH0361404B2 (en)
JP4061000B2 (en) Noodle quality improver and method for producing noodles
JP2005168499A (en) Method for producing food quality improving agent and food quality improving agent produced by the method
WO2020004506A1 (en) Waxy starch and production method therefor
JPH119173A (en) Improving agent for food
JP2915044B2 (en) Food compositions and methods for producing low calorie food products
JPH0231936B2 (en)
JP3618321B2 (en) Bakery product mix and bakery product using the same
JP2016026477A (en) Hardening accelerator for starch gelatinized dough
US20220275110A1 (en) Waxy Maize Starches and Methods of Making and Using Them
JP6756668B2 (en) Texture improver for bubble-containing foods and its manufacturing method, and manufacturing method of bubble-containing foods
JP2004121016A (en) Thin pastry sheet for harumaki and method for producing the same
JPH02231040A (en) Preparation of rice confections
JP6940973B2 (en) Modifiers for starch-containing foods and starch-containing foods
RU2775714C2 (en) Cross-linked wax starches and their application methods
JP6813171B2 (en) Breads and their manufacturing methods
JPH05211851A (en) Production of nonfried precooked noodle
JP2019154268A (en) Noodle skin additive agent, noodle skin and noodle skin food product