JPH0231857B2 - - Google Patents

Info

Publication number
JPH0231857B2
JPH0231857B2 JP61138276A JP13827686A JPH0231857B2 JP H0231857 B2 JPH0231857 B2 JP H0231857B2 JP 61138276 A JP61138276 A JP 61138276A JP 13827686 A JP13827686 A JP 13827686A JP H0231857 B2 JPH0231857 B2 JP H0231857B2
Authority
JP
Japan
Prior art keywords
temperature
photoresist
heat resistance
processing table
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61138276A
Other languages
Japanese (ja)
Other versions
JPS62295418A (en
Inventor
Shinji Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP61138276A priority Critical patent/JPS62295418A/en
Publication of JPS62295418A publication Critical patent/JPS62295418A/en
Publication of JPH0231857B2 publication Critical patent/JPH0231857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウエハに塗布されたフオトレ
ジストの処理方法に係り、特に、フオトレジスト
の耐熱性や耐プラズマ性などを向上させるために
加熱処理と紫外線照射処理とを組合せた処理方法
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for processing photoresist coated on a semiconductor wafer, and in particular, to a method for processing photoresist coated on a semiconductor wafer. The present invention relates to a treatment method that combines treatment and ultraviolet irradiation treatment.

〔従来の技術〕[Conventional technology]

半導体素子の製造工程において、フオトレジス
トパターンの形成工程は大きく分けると、レジス
ト塗布、プレベーク、露光、現像、ポストベーク
の順に行われる。この後、このフオトレジストパ
ターンを用いて、イオン注入、あるいはレジスト
塗布前にあらかじめ半導体ウエハの表面に形成さ
れたシリコン酸化膜、シリコン窒化膜、アルミニ
ウム薄膜などのプラズマエツチングなどが行われ
る。このとき、イオン注入時にはフオトレジスト
が昇温するので耐熱性が高い方が良く、プラズマ
エツチング時では、「膜べり」が生じない耐久性
が要求される。ところが、近年は半導体素子の高
集積化、微細化などに伴い、フオトレジストがよ
り高分解能のものが使われるようになつたが、こ
の場合フオトレジストはポジ型であり、一般的に
ネガ型より耐熱性が悪い。
In the manufacturing process of semiconductor devices, the steps for forming a photoresist pattern can be roughly divided into the following order: resist coating, pre-baking, exposure, development, and post-baking. Thereafter, using this photoresist pattern, ion implantation or plasma etching of the silicon oxide film, silicon nitride film, aluminum thin film, etc. previously formed on the surface of the semiconductor wafer before applying the resist is performed. At this time, since the temperature of the photoresist increases during ion implantation, it is better to have high heat resistance, and during plasma etching, durability is required to prevent "film peeling" from occurring. However, in recent years, with the increasing integration and miniaturization of semiconductor devices, photoresists with higher resolution have come to be used, but in this case, photoresists are positive type, and are generally more sensitive than negative types. Poor heat resistance.

フオトレジストの耐熱性や耐プラズマ性を高め
る方法としてポストベークにおいて段階的に温度
を上げ、充分な時間加熱処理する方法や現像後の
フオトレジストパターンに紫外線を照射する方法
が検討されている。しかし、前者の方法では十分
な耐熱性や耐プラズマ性が得られず、また処理時
間が大巾に長くなるという欠点がある。そして、
後者の方法においては、紫外線照射により耐熱温
度は上昇するものの、フオトレジスト膜が厚い場
合には、紫外線が内部まで到達せず、フオトレジ
ストの内部まで十分に耐熱性が向上しなかつた
り、処理時間が長いという欠点がある。
As methods for increasing the heat resistance and plasma resistance of photoresists, methods are being considered, such as increasing the temperature stepwise during post-baking and performing heat treatment for a sufficient period of time, and irradiating the photoresist pattern with ultraviolet rays after development. However, the former method has the disadvantage that sufficient heat resistance and plasma resistance cannot be obtained and the processing time is significantly longer. and,
In the latter method, the heat resistance temperature increases due to ultraviolet irradiation, but if the photoresist film is thick, the ultraviolet rays will not reach the inside of the photoresist, and the heat resistance will not be sufficiently improved or the processing time will increase. The disadvantage is that it is long.

そのため最近は、例えば特開昭60−45247号
「フオトレジストの硬化方法及び硬化装置」に開
示されているように、「加熱」と「紫外線照射」
を組合せることが提案され、一部では実用化され
てそれなりの成果を上げている。しかしながら、
フオトレジストの種類や膜厚、更には、紫外線の
照射強度などに応じて硬化速度や硬化状態が微妙
に異なるものであり、殊に、厚い膜厚のフオトレ
ジストの内部まで十分に耐熱性を向上させるに
は、昇温方法を検討する必要があることが判明し
た。
Therefore, recently, "heating" and "ultraviolet irradiation" are being used, for example, as disclosed in JP-A No. 60-45247 "Photoresist curing method and curing device".
A combination of the two has been proposed, and some have put it into practical use with some success. however,
The curing speed and state of curing differ slightly depending on the type and thickness of the photoresist, as well as the intensity of ultraviolet irradiation, and in particular, the heat resistance is sufficiently improved to the inside of thick photoresists. In order to achieve this, it was found that it was necessary to consider a method of raising the temperature.

例えば、東京応化工業社製TSMR−8800を塗
布して成形したフオトレジストは、通常は1.7μm
程度の膜厚で使用するが、2.0μm程度の少し厚い
膜を作り、紫外線強度を大きくして高分子化を促
進し、それに応じて処理台の昇温速度を大きく
し、これによつて照射処理時間を短縮しようとす
ると次のような問題点が生じる。即ち、フオトレ
ジストはもともと紫外線の透過率は良い方ではな
いので、紫外線強度を大きくして照射処理時間を
短縮すると、膜の表層と内部とで到達する紫外線
強度に大きな差が生じるため高分子化の進行の程
度に差ができ、表層部は耐熱性や耐プラズマエツ
チング性が向上するが、内部は十分には向上しな
い。
For example, the photoresist formed by applying TSMR-8800 manufactured by Tokyo Ohka Kogyo Co., Ltd. is usually 1.7μm.
A slightly thicker film of about 2.0 μm is used, and the intensity of the ultraviolet rays is increased to promote polymerization, and the temperature rise rate of the processing table is increased accordingly. Attempting to shorten processing time causes the following problems. In other words, since photoresist does not originally have good UV transmittance, increasing the UV intensity and shortening the irradiation treatment time will result in a large difference in the UV intensity that reaches the surface layer and the inside of the film. There is a difference in the degree of progress of etching, and the heat resistance and plasma etching resistance of the surface layer improve, but the improvement does not improve sufficiently inside.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、従来のレジスト処理方法において
は、耐熱性や耐プラズマ性の若干の改良を達成す
ることができたとしても、殊に、フオトレジスト
膜が厚い場合はその内部において十分には耐熱性
が向上せず、結果としてフオトレジストの耐熱性
が低いという問題点が残つている。そして、耐熱
性を十分に向上させようとすると、処理時間が非
常に長くなるという問題が派生する。即ち、レジ
スト処理全体を有機的かつ効果的に遂行すること
ができないという問題点があつた。
In this way, with conventional resist processing methods, even if some improvement in heat resistance and plasma resistance can be achieved, especially when the photoresist film is thick, the heat resistance inside it is insufficient. However, as a result, the problem remains that the heat resistance of the photoresist is low. If an attempt is made to sufficiently improve heat resistance, a problem arises in that the processing time becomes extremely long. That is, there is a problem in that the entire resist process cannot be carried out organically and effectively.

この発明は、かかる事情に鑑みて、紫外線照射
に加熱処理を有機的に組み合わせ、フオトレジス
ト膜が厚い場合でもその内部まで十分に耐熱性が
向上し、生産性の優れたレジスト処理方法を提供
することを目的とするものである。
In view of these circumstances, the present invention provides a resist processing method that organically combines ultraviolet irradiation with heat treatment, sufficiently improves heat resistance to the inside of the photoresist film even if it is thick, and has excellent productivity. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では、温度制御手段を備えた処理
台に配置されたウエハに塗布されたフオトレジス
トに紫外線を照射して該フオトレジストのフロー
温度を上昇させ、その耐熱性や耐プラズマ性など
を向上させるレジスト処理方法において、 予めフオトレジストのフロー温度より少し高く
加熱された処理台にウエハを載置し、紫外線を照
射しながら該処理台をフオトレジスト温度が常に
フロー温度より少し高い状態になる第1の等速昇
温速度で第1の所定温度まで昇温する工程と、 該第1の所定温度に到達した後、同じく紫外線
を照射しながら該第1の等速昇温速度より遅い第
2の等速昇温速度で第2の所定温度まで昇温する
工程と、 を含むことにより、前述の目的を達成するもの
である。
Therefore, in the present invention, the photoresist coated on a wafer placed on a processing table equipped with a temperature control means is irradiated with ultraviolet rays to increase the flow temperature of the photoresist, thereby improving its heat resistance, plasma resistance, etc. In the resist processing method, the wafer is placed on a processing table that has been heated in advance to a temperature slightly higher than the flow temperature of the photoresist, and the processing table is heated while irradiating ultraviolet rays so that the photoresist temperature is always slightly higher than the flow temperature. a step of raising the temperature to a first predetermined temperature at a uniform temperature increase rate of 1; and after reaching the first predetermined temperature, a step of increasing the temperature to a second constant temperature increase rate slower than the first constant temperature increase rate while also irradiating ultraviolet rays; The above-mentioned object is achieved by including the steps of: heating up to a second predetermined temperature at a constant heating rate of .

〔作用〕[Effect]

この発明においては、強力な紫外線照射による
レジスト処理に、加熱を有機的に組み合わせるこ
とにより、フオトレジスト膜が厚い場合でもその
内部まで効果的に耐熱性を向上させることができ
る。更に詳細に説明すると、この発明は、第1段
階において、紫外線照射によりフオトレジストの
表層部のフロー温度が上昇するのに合わせて、フ
オトレジスト温度を第1の所定温度まで第1の等
速昇温速度で昇温させながら照射処理を行う。こ
こで、紫外線照射の経過につれてフロー温度は上
昇してゆくが、表層部と内部では紫外線照射の程
度に差があるので、フロー温度の上昇速度は表層
部と内部では異なる。つまり、表層部のフロー温
度上昇速度は大きいが、これに対応する大きい速
度で昇温させる第1段階の処理によつて表層部の
耐熱性や耐プラズマエツチング性は効率良く向上
する。しかし、もし、このままの速度で昇温を続
けて照射時間を短縮すると、前述のとおり、表層
部の高分子化が著しく進み、紫外線が内部まで透
過しにくいため、内部の耐熱性は十分に向上しな
いが、本発明では、第2段階において、第1の所
定温度に到達した後、第1の等速昇温速度より遅
い第2の等速昇温速度で第2の所定温度、即ち最
終処理温度まで昇温する。従つて、紫外線がフオ
トレジスト内を良く浸透し、内部のフロー温度の
上昇に伴つて処理温度を高くすることが可能なた
めに、フオトレジスト膜が厚い場合でもその内部
の耐熱性が十分に向上する。
In this invention, by organically combining resist treatment with strong ultraviolet irradiation and heating, heat resistance can be effectively improved to the inside even if the photoresist film is thick. More specifically, in the first step, as the flow temperature of the surface layer of the photoresist increases due to ultraviolet irradiation, the temperature of the photoresist is increased at a first constant rate to a first predetermined temperature. Irradiation treatment is performed while increasing the temperature at a rapid rate. Here, the flow temperature increases as the ultraviolet irradiation progresses, but since there is a difference in the degree of ultraviolet irradiation between the surface layer and the inside, the rate of increase in the flow temperature differs between the surface layer and the inside. In other words, although the rate of increase in flow temperature in the surface layer is high, the heat resistance and plasma etching resistance of the surface layer are efficiently improved by the first stage treatment in which the temperature is increased at a correspondingly high rate. However, if the temperature continues to rise at the same rate and the irradiation time is shortened, as mentioned above, the polymerization of the surface layer will progress significantly and it will be difficult for ultraviolet rays to penetrate inside, so the internal heat resistance will not improve sufficiently. However, in the present invention, in the second stage, after reaching the first predetermined temperature, the temperature is increased to the second predetermined temperature at a second constant temperature increase rate that is slower than the first constant temperature increase rate, that is, the final treatment. Heat up to temperature. Therefore, ultraviolet rays can penetrate well into the photoresist, and as the internal flow temperature increases, the processing temperature can be raised, so even if the photoresist film is thick, its internal heat resistance is sufficiently improved. do.

〔実施例〕 第1図は、この発明によるレジスト処理方法を
実施するための装置の一例を示す。
[Example] FIG. 1 shows an example of an apparatus for carrying out the resist processing method according to the present invention.

パターン化されたフオトレジスト4が半導体ウ
エハ5の上に形成されており、半導体ウエハ5は
ウエハ処理台6に載置される。ウエハ処理台6
は、ヒータリード線9より通電することによりヒ
ータ10で加熱され、あるいは冷却孔11に冷却
水を流すことによつて冷却される。この加熱およ
び冷却機構により半導体ウエハ5の温度制御が行
われる。温度の検出は、温度センサー12によつ
て行われ、この温度センサー12の出力が、例え
ば、ヒータ10への供給電力の制御信号として使
用される。また、ウエハ処理台6には、真空吸着
孔7が付加されており、真空ポンプによつて連通
孔8を通して真空引きすることにより、半導体ウ
エハ5をウエハ処理台6上に密着して固定する機
能をも有する。照射部は、高圧水銀灯1、凹面ミ
ラー2、開閉可能なシヤツター3から構成されて
おり、高圧水銀灯1から発光された紫外線を含む
放射光は、凹面ミラー2などにより反射されて、
半導体ウエハ5に塗布されたフオトレジスト4上
に照射される。
A patterned photoresist 4 is formed on a semiconductor wafer 5 , and the semiconductor wafer 5 is placed on a wafer processing table 6 . Wafer processing table 6
is heated by the heater 10 by supplying electricity through the heater lead wire 9, or cooled by flowing cooling water through the cooling hole 11. The temperature of the semiconductor wafer 5 is controlled by this heating and cooling mechanism. Temperature detection is performed by a temperature sensor 12, and the output of this temperature sensor 12 is used, for example, as a control signal for power supply to the heater 10. Further, the wafer processing table 6 is provided with a vacuum suction hole 7, which has the function of tightly fixing the semiconductor wafer 5 on the wafer processing table 6 by drawing a vacuum through the communication hole 8 with a vacuum pump. It also has The irradiation unit is composed of a high-pressure mercury lamp 1, a concave mirror 2, and a shutter 3 that can be opened and closed, and the radiation including ultraviolet rays emitted from the high-pressure mercury lamp 1 is reflected by the concave mirror 2, etc.
The photoresist 4 coated on the semiconductor wafer 5 is irradiated with light.

次に、このレジスト処理装置を用いてレジスト
処理する方法について説明する。フオトレジスト
4が塗布された半導体ウエハ5を、予めフオトレ
ジスト4の耐熱温度であるフロー温度より少し高
く加熱されたウエハ処理台6上に載置する。そし
て、真空吸着孔7を真空引きすることにより、半
導体ウエハ5をウエハ処理台6上に密着させる。
この状態でシヤツター3を開き、フオトレジスト
4に高圧水銀灯1から発光される紫外線を含む光
を照射する。この照射によりフオトレジスト4の
フロー温度が上昇するが、これに合わせてウエハ
処理台6のヒータ電力を制御し、フオトレジスト
温度を常にフロー温度より少し高い状態になるよ
うにウエハ処理台6を一定の昇温速度で第1の所
定温度まで上昇させる。しかる後、例えば、ヒー
タ10への供給電力をやゝ弱めるか、もしくは冷
却を強めるかして昇温速度を抑制した第2の等速
昇温速度で第2の所定温度まで昇温する。制御精
度としてはヒータ10への供給電力を下げた方が
実行しやすい。処理が終了すると加熱を停止し、
シヤツター3を閉じて放射光照射を停止させる。
そして、冷却孔11に冷却水を流して半導体ウエ
ハ5を所定の温度まで冷却し、真空吸着を解除し
て半導体ウエハ5をウエハ処理台6から取り去
る。処理が完了すると以上の操作を繰り返して順
次レジスト処理を実施すれば良い。
Next, a method of resist processing using this resist processing apparatus will be explained. A semiconductor wafer 5 coated with a photoresist 4 is placed on a wafer processing table 6 that has been heated in advance to a temperature slightly higher than the flow temperature, which is the allowable temperature limit of the photoresist 4. Then, by evacuating the vacuum suction hole 7, the semiconductor wafer 5 is brought into close contact with the wafer processing table 6.
In this state, the shutter 3 is opened and the photoresist 4 is irradiated with light containing ultraviolet light emitted from the high-pressure mercury lamp 1. This irradiation causes the flow temperature of the photoresist 4 to rise, but the heater power of the wafer processing table 6 is controlled accordingly, and the wafer processing table 6 is kept constant so that the photoresist temperature is always slightly higher than the flow temperature. The temperature is raised to the first predetermined temperature at a heating rate of . Thereafter, the temperature is increased to a second predetermined temperature at a second constant temperature increase rate in which the temperature increase rate is suppressed by, for example, slightly weakening the power supplied to the heater 10 or increasing cooling. In terms of control accuracy, it is easier to execute by lowering the power supplied to the heater 10. When the process is finished, stop heating,
Close the shutter 3 to stop synchrotron radiation.
Then, cooling water is allowed to flow through the cooling holes 11 to cool the semiconductor wafer 5 to a predetermined temperature, the vacuum suction is released, and the semiconductor wafer 5 is removed from the wafer processing table 6 . Once the processing is completed, the above operations may be repeated to sequentially perform the registration processing.

以下に更に具体的に説明する。 This will be explained in more detail below.

前述の装置を使用して、東京応化工業社製の
TSMR−8800を塗布して成形した厚さが2.0μmの
フオトレジストを第2図に示すタイムチヤートに
基ずいて紫外線の照射処理を行つた。即ち、先
ず、100℃に保持した処理台にウエハを載置し、
0.78℃/secの一定の昇温速度で170℃まで昇温
し、しかる後、0.25℃/secの一定の昇温速度で
220℃まで昇温した。この結果、処理前は130℃で
あつたフオトレジストの耐熱温度は300℃まで向
上した。従つて、イオン注入やプラズマエツチン
グに対する耐久性が著しく向上するので、線巾の
小さいパターンを製作するのに好適である。因
に、従来は、耐熱温度を300℃まで向上させた例
は殆どなく、もしこの温度まで耐熱性を向上させ
るとしても非常に長時間処理する必要があるとさ
れていた。
Using the aforementioned equipment, the Tokyo Ohka Kogyo Co., Ltd.
A 2.0 μm thick photoresist coated with TSMR-8800 and molded was subjected to ultraviolet irradiation treatment based on the time chart shown in FIG. That is, first, a wafer is placed on a processing table maintained at 100°C,
The temperature was raised to 170℃ at a constant temperature increase rate of 0.78℃/sec, and then at a constant temperature increase rate of 0.25℃/sec.
The temperature was raised to 220℃. As a result, the heat resistance temperature of the photoresist, which was 130°C before treatment, increased to 300°C. Therefore, durability against ion implantation and plasma etching is significantly improved, making it suitable for producing patterns with small line widths. Incidentally, in the past, there were almost no examples of increasing the heat resistance temperature to 300°C, and even if heat resistance were to be improved to this temperature, it was thought that it would be necessary to process for a very long time.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、温度制御手段を備えた処
理台に載置されたウエハに塗布されたフオトレジ
ストを紫外線を照射して該フオトレジストのフロ
ー温度を上昇させ、その耐熱性や耐プラズマ性な
どを向上させるレジスト処理方法において、予め
フオトレジストのフロー温度より少し高く加熱さ
れた処理台にウエハを載置し、紫外線を照射しな
がら処理台をフオトレジスト温度が常にフロー温
度より少し高い状態になる第1の等速昇温速度で
第1の所定温度まで昇温する工程と、第1の所定
温度に到達した後、同じく紫外線を照射しながら
第1の等速昇温速度より遅い第2の等速昇温速度
で第2の所定温度まで昇温する工程とを含むよう
にしたので、フオトレジスト膜が厚い場合でもそ
の内部まで十分に耐熱性を向上させることが可能
であり、短時間の加熱と紫外線照射で耐熱性と耐
プラズマ性をともに向上させることができ、生産
性が著しく向上する。
As explained above, a photoresist coated on a wafer placed on a processing table equipped with a temperature control means is irradiated with ultraviolet rays to increase the flow temperature of the photoresist, thereby improving its heat resistance and plasma resistance. In a resist processing method that improves the photoresist flow temperature, the wafer is placed on a processing table that is preheated to a temperature slightly higher than the flow temperature of the photoresist, and the processing table is heated while irradiating ultraviolet rays until the photoresist temperature is always slightly higher than the flow temperature. A step of increasing the temperature to a first predetermined temperature at a first uniform temperature increase rate, and after reaching the first predetermined temperature, a second step of increasing the temperature at a rate slower than the first constant temperature increase rate while also irradiating ultraviolet rays. This method includes the step of raising the temperature to the second predetermined temperature at a constant temperature increase rate, so even if the photoresist film is thick, it is possible to sufficiently improve the heat resistance to the inside of the photoresist film, and it can be done in a short time. Both heat resistance and plasma resistance can be improved by heating and ultraviolet irradiation, which significantly improves productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるレジスト処理方法を実
施するための装置の一例の説明図、第2図は処理
方法のタイムチヤートである。 1…高圧水銀灯、2…凹面ミラー、3…シヤツ
ター、4…フオトレジスト、5…半導体ウエハ、
6…ウエハ処理台、7…真空吸着孔、8…連通
孔、9…ヒータリード線、10…ヒータ、11…
冷却孔、12…温度センサー。
FIG. 1 is an explanatory diagram of an example of an apparatus for implementing the resist processing method according to the present invention, and FIG. 2 is a time chart of the processing method. 1...High-pressure mercury lamp, 2...Concave mirror, 3...Shutter, 4...Photoresist, 5...Semiconductor wafer,
6... Wafer processing table, 7... Vacuum suction hole, 8... Communication hole, 9... Heater lead wire, 10... Heater, 11...
Cooling hole, 12...Temperature sensor.

Claims (1)

【特許請求の範囲】 1 温度制御手段を備えた処理台に載置されたウ
エハに塗布されたフオトレジストに紫外線を照射
して該フオトレジストのフロー温度を上昇させ、
その耐熱性や耐プラズマ性などを向上させるレジ
スト処理方法において、 予めフオトレジストのフロー温度より少し高く
加熱された処理台にウエハを載置し、紫外線を照
射しながら該処理台をフオトレジスト温度が常に
フロー温度より少し高い状態になる第1の等速昇
温速度で第1の所定温度まで昇温する工程と、 該第1の所定温度に到達した後、同じく紫外線
を照射しながら該第1の等速昇温速度より遅い第
2の等速昇温速度で第2の所定温度まで昇温する
工程と、 を含むことを特徴とするレジスト処理方法。
[Claims] 1. Irradiating ultraviolet rays to a photoresist coated on a wafer placed on a processing table equipped with a temperature control means to increase the flow temperature of the photoresist;
In a resist processing method for improving its heat resistance and plasma resistance, a wafer is placed on a processing table that has been heated in advance to a temperature slightly higher than the flow temperature of the photoresist, and the processing table is heated to a temperature of the photoresist while being irradiated with ultraviolet rays. a step of raising the temperature to a first predetermined temperature at a first constant temperature increase rate that is always slightly higher than the flow temperature; A resist processing method comprising the steps of: raising the temperature to a second predetermined temperature at a second constant temperature increase rate that is slower than the constant temperature increase rate of .
JP61138276A 1986-06-16 1986-06-16 Processing method for resist Granted JPS62295418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61138276A JPS62295418A (en) 1986-06-16 1986-06-16 Processing method for resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61138276A JPS62295418A (en) 1986-06-16 1986-06-16 Processing method for resist

Publications (2)

Publication Number Publication Date
JPS62295418A JPS62295418A (en) 1987-12-22
JPH0231857B2 true JPH0231857B2 (en) 1990-07-17

Family

ID=15218130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61138276A Granted JPS62295418A (en) 1986-06-16 1986-06-16 Processing method for resist

Country Status (1)

Country Link
JP (1) JPS62295418A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225601B1 (en) * 1998-07-13 2001-05-01 Applied Komatsu Technology, Inc. Heating a substrate support in a substrate handling chamber
US7875420B2 (en) 2003-06-06 2011-01-25 Tokyo Electron Limited Method for improving surface roughness of processed film of substrate and apparatus for processing substrate

Also Published As

Publication number Publication date
JPS62295418A (en) 1987-12-22

Similar Documents

Publication Publication Date Title
JPH02209724A (en) Method of hardening photoresist
JPS63234528A (en) Treatment of resist
US4826756A (en) Low temperature deep ultraviolet resist hardening process using zenon chloride laser
US5001039A (en) Method of manufacturing semiconductor device comprising step of patterning resist and light irradiation apparatus used by the manufacturing method
JPS62215265A (en) Treatment of photoresist
JPH0231857B2 (en)
US4035226A (en) Method of preparing portions of a semiconductor wafer surface for further processing
US4933263A (en) Forming method of resist pattern
US5370974A (en) Laser exposure of photosensitive polyimide for pattern formation
EP0233333B1 (en) Method of treating photoresists
JPS62101027A (en) Resist treating method
JPS62211646A (en) Resist processing method
US4868095A (en) Method of treating photoresists
JPS62296212A (en) Treatment stand temperature control method
JPH0452991Y2 (en)
JP3439488B2 (en) Method for manufacturing semiconductor device
JPS59161827A (en) Method for processing insulating film
JP2604934B2 (en) Method of forming resist pattern
JPS62111424A (en) Method for resist treatment
JPS62111425A (en) Method for resist treatment
JPS63232332A (en) Treatment of resist
JPS62162330A (en) Resist processing
KR100206923B1 (en) Method of manufacturing semiconductor device
KR100497197B1 (en) Exposing method of semiconductor wafer
JPS63215040A (en) Method of hardening resist

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term