JPH02312165A - Cylindrical solid electrolyte fuel cell - Google Patents

Cylindrical solid electrolyte fuel cell

Info

Publication number
JPH02312165A
JPH02312165A JP1132036A JP13203689A JPH02312165A JP H02312165 A JPH02312165 A JP H02312165A JP 1132036 A JP1132036 A JP 1132036A JP 13203689 A JP13203689 A JP 13203689A JP H02312165 A JPH02312165 A JP H02312165A
Authority
JP
Japan
Prior art keywords
current collector
solid electrolyte
single cell
fuel cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1132036A
Other languages
Japanese (ja)
Other versions
JP2799877B2 (en
Inventor
Masayuki Tan
丹 正之
Ryuichi Okiayu
置鮎 隆一
Shotaro Yoshida
昭太郎 吉田
Shoichi Hasegawa
正一 長谷川
Hiroshi Yamanouchi
山之内 宏
Masakatsu Nagata
雅克 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1132036A priority Critical patent/JP2799877B2/en
Publication of JPH02312165A publication Critical patent/JPH02312165A/en
Application granted granted Critical
Publication of JP2799877B2 publication Critical patent/JP2799877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To absorb thermal expansion and prevent excessive thermal stress by elastically deforming either an inner current collector or outer current collector of a single cell which collectors sandwiches a power generating element between them. CONSTITUTION:While a solid electrolyte 8 is heated to raise its temperature, an oxidizing gas containing oxygen gas is caused to flow to the inner periphery side of each single cell 3, and also fuel gas such as hydrogen gas is caused to flow to the outer periphery side of each single cell 3. Then an electromotive force is generated by the difference in oxygen density between the inner and outer peripheries of the solid electrolyte 8, so that in each single cell 3 an oxygen electrode 6 becomes cathode and a fuel electrode 9 becomes anode. As the whole stack 23, an inner current collector 21 therefore becomes cathode and the outer current collector 22 anode. When the whole stack 23 is heated to the operating temperature of the fuel cell, the inner current collector 21 and the single cell 3 thermally expand, and also their amounts of expansion are different but a relative displacement caused by the difference is absorbed by elastic deformation of the inner current collector 21 or outer current collector 22. Excessive thermal stress is thereby prevented from occurring in each single cell 3.

Description

【発明の詳細な説明】 産業上の利用分野 □ この発明は複数の単電池を内部集電子の周囲に配置
してスタックを構成し、あるいは複数のスタックを内部
集電子の周囲に配置してモジュールを構成した円筒型の
固体電解質燃料電池に関するものである。
[Detailed Description of the Invention] Industrial Application Field □ This invention is a module in which a plurality of cells are arranged around an internal current collector to form a stack, or a plurality of stacks are arranged around an internal current collector to form a module. The present invention relates to a cylindrical solid electrolyte fuel cell comprising a cylindrical solid electrolyte fuel cell.

従来の技術 周知のように固体電解質燃料電池は、イツトリア安定化
ジルコニア(ysz>などの酸素イオン透過性のある固
体電解質を挟んで、ペロブスノjイト型複合酸化物など
からなる酸素電極とNiやNi−1r O2サーメツト
などからなる燃料電極とを設けて単電池を構成し、その
単電池を複数個直列もしくは並列に接続してスタックを
構成し、さらにそのスタックを複数個集合させてモジュ
ール化しており、このように多数の単電池を接続するこ
とにより必要とする出力を得ている。従来、この種の’
t’M池あるいはスタックとして円筒型のものと平板状
のモノリシック型とが知られているが、空気などの酸化
性ガスと水素ガスなどの燃料ガスとのシールの容易性や
製造の容易性などの点では円筒型のものが優れている。
As is well known in the art, a solid electrolyte fuel cell consists of an oxygen electrode made of a perovsnoite complex oxide, etc., and an oxygen electrode made of a perovsnoite type composite oxide, with a solid electrolyte such as yttria-stabilized zirconia (ysz) that is permeable to oxygen ions in between. -1r A fuel electrode made of O2 cermet etc. is provided to form a single cell, multiple cells are connected in series or in parallel to form a stack, and multiple stacks are assembled to form a module. , the required output is obtained by connecting a large number of single cells in this way. Conventionally, this type of '
Cylindrical and flat monolithic types of T'M ponds or stacks are known, but they are easy to seal between oxidizing gas such as air and fuel gas such as hydrogen gas, and are easy to manufacture. The cylindrical type is superior in this respect.

第4図は円筒型燃料電池を構成するスタックの一例を示
す断面図であり、また第5図はその単電池の一つを示ブ
断面°図であって、スタック1はNiなどの導電性材料
からなる筒状の内部集電子2の外周に複数N(図ではl
])の単電池3を配置し、さらにその外周をNiなどの
導電性材料からなる筒状の外部!J電子4で被った構造
となっている。ここで単電池3は第5図に示ずように、
アルミナ(^l!203)などで多孔構造に形成したセ
ラミック製支持管5の外周に酸素電極6を形成し、この
酸素電極6に導通したインターコネクタ7を半径方向に
突出させて設けるとともに酸素電極6の外周に固体電解
質8を設け、さらにインターコネクタ7に非導通状態の
燃料電極9を固体電解質8の外周に設けて構成されてい
る。この単電池3はインターコネクタ7の先端にNiフ
ェルトなどの導電性フェルト10を介在させて内部集電
子2に導通しており、また各単電池3の燃料電池9は導
電性フェルト11を介して外部集電子4に導通している
。なお、leW性フェルト10.11を介在させている
理由は、各集電子2,4およびインターコネク7が弾性
のない剛体であり、また各構成部材の熱膨張率が同一で
ないので、導通状態を確実にすると同時に熱膨張を吸収
する必要があるためである。
FIG. 4 is a cross-sectional view showing an example of a stack constituting a cylindrical fuel cell, and FIG. A plurality of N (in the figure, l
]) is arranged, and its outer periphery is a cylindrical exterior made of a conductive material such as Ni! It has a structure covered by J-electron 4. Here, the cell 3 is as shown in FIG.
An oxygen electrode 6 is formed on the outer periphery of a ceramic support tube 5 made of alumina (^l! 203) or the like to have a porous structure, and an interconnector 7 electrically connected to the oxygen electrode 6 is provided to protrude in the radial direction. A solid electrolyte 8 is provided on the outer periphery of the solid electrolyte 8 , and a fuel electrode 9 in a non-conducting state is further provided on the outer periphery of the solid electrolyte 8 in the interconnector 7 . This unit cell 3 is electrically connected to the internal current collector 2 by interposing a conductive felt 10 such as Ni felt at the tip of the interconnector 7, and the fuel cell 9 of each unit cell 3 is connected to the internal current collector 2 via a conductive felt 11. It is electrically connected to the external current collector 4. The reason for interposing the leW felt 10.11 is that the current collectors 2, 4 and the interconnect 7 are rigid bodies with no elasticity, and the coefficients of thermal expansion of the respective constituent members are not the same. This is because it is necessary to absorb thermal expansion while ensuring reliability.

発明が解決しようとげる課題 ところで上述した単電池3で得られる電圧は1ボルト以
下であり、また電流密度は1oo〜3001A程度であ
り、したがって必要な電力を得るには多数の単電池3を
直並列に接続しなければならず、それに伴って接続箇所
での抵抗、あるいは接続の良否が発電能力に大きく影響
することになる。
Problems to be Solved by the Invention By the way, the voltage obtained with the above-mentioned single cells 3 is 1 volt or less, and the current density is about 100 to 3001 A. Therefore, in order to obtain the necessary power, a large number of single cells 3 must be connected in series and parallel. Therefore, the resistance at the connection point or the quality of the connection will greatly affect the power generation capacity.

しかるに前記の構成の燃料電池では、内部集電子2と外
部集電子4とが実質的に剛体であるために導電性フェル
ト10.11のクッション性によって各ll1i電池3
と各集電子2,4との間の導通状態の確保を図っている
が、導電性フェルト10,11の充填量や充填の仕方は
設計上予め定めた量や方法に依らざるを得ないから、単
電池3の配列の偏りや単電池3もしくは各集電子2,4
に寸法誤差があった場合には、導電性フ〒ルト10.1
1を介した接触状態が不均一になり、あるいは部分的に
不充分となる。また単電池3や集電子2,4が繰り返し
熱膨張、熱収縮することによって導電性フェルト10.
11の弾性力が失われ、接触状態が不充分となる。その
ため前述した燃料電池の構造では単電池3と集電子2,
4との接続部分、あるいは1ti電池3を直列接続した
場合には単電池3同士の接続部分での抵抗が大きくなっ
て充分な光電効率を得られないおそれが多分にあった。
However, in the fuel cell configured as described above, since the internal current collector 2 and the external current collector 4 are substantially rigid bodies, each ll1i battery 3 is
Although attempts are made to ensure continuity between the conductive felts 10 and 11 and the respective collectors 2 and 4, the amount and method of filling the conductive felts 10 and 11 must be determined in advance by design. , bias in the arrangement of the cells 3 or each collector 2, 4
If there is a dimensional error, use conductive felt 10.1.
1 becomes uneven or partially insufficient. Further, due to repeated thermal expansion and contraction of the cell 3 and the current collectors 2 and 4, the conductive felt 10.
The elastic force of 11 is lost and the contact state becomes insufficient. Therefore, in the structure of the fuel cell described above, the single cell 3 and the current collector 2,
If the 1ti batteries 3 were connected in series, the resistance at the connection between the single cells 3 would increase, and there was a high possibility that sufficient photoelectric efficiency could not be obtained.

この発明は上記の事情に鑑みてなされたもので、単電池
やスタック同士もしくはこれらと集電子との接続を確実
にし、もって光電効率の向上を図ることのできる円筒型
固体電解質燃料電池を提供することを目的とするもので
ある。
This invention has been made in view of the above circumstances, and provides a cylindrical solid electrolyte fuel cell that can securely connect single cells or stacks to each other or to a current collector, thereby improving photoelectric efficiency. The purpose is to

課題を解決Jるための手段 この発明は、上記の目的を達成するために、酸素イオン
透過性のある筒状の固体電解質の内外周両側での酸素濃
度の差によって起電力を生じる複数の発電要素を内部集
電子の外周側に配設し、かつこれらの発電要素の外周側
を外部集電子で覆った円筒型固体電解質燃料電池におい
て、前記内部集電子と外部集電子との少なくともいずれ
か一方を、弾性的に半径が増大もしくは減少する筒状体
によって形成したことを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a plurality of power generation systems that generate electromotive force due to the difference in oxygen concentration between the inner and outer circumferential sides of a cylindrical solid electrolyte that is permeable to oxygen ions. In a cylindrical solid electrolyte fuel cell in which elements are arranged on the outer periphery of an internal current collector and the outer periphery of these power generation elements is covered with an external current collector, at least one of the internal current collector and the external current collector. It is characterized by being formed of a cylindrical body whose radius increases or decreases elastically.

なおここで発電要素には、単電池のみならず、支持管の
外周に複数の単電池を形成してなるスタック、複数の単
電池を結束してなるスタック、複数のスタックを結束し
てなるモジュール等を含む。
Note that the power generation elements here include not only single cells, but also stacks formed by forming multiple single cells around the outer periphery of a support tube, stacks formed by bundling multiple single cells, and modules formed by bundling multiple stacks. Including etc.

作     用 この発明の燃料電池にJ3いては、固体電解質を挟んだ
両側に酸素ガスを含む酸化性ガスと水素ガスなどの燃料
ガスとを流Jことにより、固体電解質の内外両側での酸
素濃度の差によって起電力が生じ、各発電要素における
起電力は内部集電子および外部集電子から出力される。
Function: In the fuel cell J3 of the present invention, by flowing an oxidizing gas containing oxygen gas and a fuel gas such as hydrogen gas on both sides of the solid electrolyte, the oxygen concentration on both the inside and outside of the solid electrolyte can be reduced. The difference generates an electromotive force, and the electromotive force in each power generation element is output from the internal current collector and the external current collector.

そめ各発電要素の内周側にある内部集電子もしくは外周
側にある外部集電子のいずれか一方は弾性的に半径が増
加もしくは減少する筒状体であるから、各発電要素はそ
の筒状体の弾性力によって内部集電子の外面もしくは外
部集電子の内面に押し付けられる。その結果、各発電要
素は内部集電子および外部集電子に対して密着し、それ
ぞれの間の′#電状態が良好に維持される。また熱膨張
が生じた場合には、内部集電子もしくは外部集電子が弾
性的に変形するから、その変形によ2て熱膨張が吸収さ
れ、過大な熱応力が生じる°こ°とが防止される。
Either the internal current collector on the inner periphery side or the external current collector on the outer periphery side of each power generating element is a cylindrical body whose radius increases or decreases elastically, so each power generating element is pressed against the outer surface of the internal current collector or the inner surface of the external current collector by the elastic force of . As a result, each power generation element is brought into close contact with the internal current collector and the external current collector, and a good electrical state between them is maintained. In addition, when thermal expansion occurs, the internal current collector or external current collector deforms elastically, and this deformation absorbs the thermal expansion and prevents excessive thermal stress from occurring. Ru.

実  施  例 つぎにこの発明の実施例を図面を参照して説明づる。Example Next, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の一実施例を示す断面図であって、こ
こに示す例は6個の単電池3を内部集電子21と外部集
電子22との間に等配してスタック23を構成した燃料
電池の例であり、その単電池3は第5図を参照して説明
したものと同一の構成であるので、ここではその説明を
省略する。内部集電子21はN;やNi合金、Niを含
むサーメットなどの導電性に加え高融点でかつ耐水素脆
性のある材料によって円筒状に形成されており、この内
部集電子21は第2図に斜視図として示しであるように
スリット21aを形成することにより弾性的に変形して
半径が増減づるように構成されている。また外部集電子
22も内部集電子21と同様な祠料によって円筒状に形
成され、かつ第3図に斜視図として示づようにスリット
22aを形成することによ弾性的に変形して半径が増減
するよう構成されている。そして6藺の単電池3はその
インターコネクタ7を内部集電子21に向けて配置され
、これらのlr+電池3の外周に外部集電子22が嵌合
させられている。ここで外部集電子22として、自然状
態での半径が、内部集電子21の外周に配列した6(1
!Iの単電池3を包囲する半径より若干小さい半径のも
のが使用されており、その結果、各単電池3は内部集電
子21側に押圧されてそのインターコネクタ7が内部集
電子21の外面に密着し、また当然外部集電子22が各
単電池3の外面に密着している。なお、この場合、内部
集電子21が内周側に若干撓むから、各重電i1!!3
は内部集電子21の弾性力によっても外周側に押圧され
る。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and in the example shown here, six cells 3 are equally distributed between an internal current collector 21 and an external current collector 22 to form a stack 23. This is an example of a constructed fuel cell, and since the unit cell 3 has the same construction as that described with reference to FIG. 5, the description thereof will be omitted here. The internal current collector 21 is formed into a cylindrical shape from a material that is conductive, has a high melting point, and is resistant to hydrogen embrittlement, such as N, Ni alloy, or cermet containing Ni. As shown in the perspective view, the slit 21a is formed so that the slit 21a is elastically deformed and the radius increases or decreases. The external current collector 22 is also formed into a cylindrical shape using the same abrasive material as the internal current collector 21, and is elastically deformed by forming a slit 22a as shown in a perspective view in FIG. It is configured to increase and decrease. The six single cells 3 are arranged with their interconnectors 7 facing the internal current collectors 21, and the external current collectors 22 are fitted around the outer peripheries of these lr+ batteries 3. Here, as the external current collector 22, the radius in the natural state is 6 (1) arranged around the outer periphery of the internal current collector 21.
! As a result, each cell 3 is pressed toward the internal current collector 21 and its interconnector 7 is placed on the outer surface of the internal current collector 21. Naturally, the external current collector 22 is in close contact with the outer surface of each cell 3. In this case, since the internal current collector 21 is slightly bent toward the inner circumference, each heavy electric current i1! ! 3
is also pressed toward the outer circumference by the elastic force of the internal current collector 21.

各単電池3における固体電解質8は900〜1200℃
程度で優れた酸素イオン透過性を示すので、固体電解質
8をこの程度の温度に加熱弁渇した状態で各単電池3の
内周側にR素ガスを含む酸化性ガスを流し、かつ各単電
池3の外周側に水素ガスなどの燃料ガスを流す。それに
伴い固体電解質8の内外周での酸素濃度の差によって起
電力が生じ、各141電池3では酸′lA電極6が陽極
、燃料電極9が陰極となる。したがってスタック23の
全体としては内部集電子21が陽極となり、外部集電子
22が陰極となる。スタック23の全体を燃料電池の動
作温度まで加熱昇温ダると、内部集電子21や単電池3
などが熱膨張し、かつその膨張量がそれぞれ相違するが
、それに起因する相対変位は内部集電子21もしくは外
部集電子22が骨性的に変形することにより吸収され、
単電池3に過大な熱応力が生じることが防止される。ま
た各単電池3は内外の集電子21.22の弾性力によっ
てそれぞれの集電子21.22の間に挟み込まれており
、しかもその状態は熱膨張や収縮が生じた場合にも維持
されるから、各単電池3の内外各集電子21.22に対
する密着状態は常時良好であり、したがってその接触部
分での抵抗が小さく、その結果、燃料電池としての内部
抵抗を低減して高出ツノ化を図ることができる。
The temperature of the solid electrolyte 8 in each cell 3 is 900 to 1200°C
Since it exhibits excellent oxygen ion permeability at a temperature of about 100%, an oxidizing gas containing R gas is flowed around the inner circumferential side of each unit cell 3 while the solid electrolyte 8 is heated to this temperature, and each unit A fuel gas such as hydrogen gas is passed around the outer circumferential side of the battery 3. Accordingly, an electromotive force is generated due to the difference in oxygen concentration between the inner and outer circumferences of the solid electrolyte 8, and in each 141 cell 3, the acid 1A electrode 6 becomes the anode and the fuel electrode 9 becomes the cathode. Therefore, for the stack 23 as a whole, the internal current collector 21 serves as an anode and the external current collector 22 serves as a cathode. When the entire stack 23 is heated to the operating temperature of the fuel cell, the internal current collector 21 and the single cell 3
etc., and the amount of expansion is different, but the relative displacement caused by this is absorbed by the bony deformation of the internal current collector 21 or the external current collector 22,
Excessive thermal stress is prevented from being generated in the cell 3. Furthermore, each cell 3 is sandwiched between the respective collectors 21, 22 by the elastic force of the inner and outer collectors 21, 22, and this state is maintained even when thermal expansion or contraction occurs. , the adhesion state of each unit cell 3 to each of the internal and external current collectors 21, 22 is always good, so the resistance at the contact part is small, and as a result, the internal resistance as a fuel cell is reduced and a high output peak is achieved. can be achieved.

なお上記の実施例では導電性フェルトを特には設けてい
ないが、この発明では導電性フェルトを単電池3と各集
電子21.22との間に介在させてもよく、そのように
すれば、導電性フェルトが単電池3の外面の凹凸を埋め
ることになるので、それらの接触面積が拡大され、電気
的な導通状態が更に良好になる。
Incidentally, in the above embodiment, a conductive felt is not particularly provided, but in the present invention, a conductive felt may be interposed between the unit cell 3 and each current collector 21, 22, and if this is done, Since the conductive felt fills in the irregularities on the outer surface of the unit cell 3, the contact area between them is expanded, and the electrical continuity becomes even better.

また上記の実施例では円筒状の単電池を内部集電子と外
部B子との間に配列したスタックを例に取って説明した
が、多孔質支持管の外周面に多数の単電池を相互に直列
に接続して形成してなるスタックも円筒状をなし、かつ
並列に接続する必要があるので、この発明はそのような
スタックを第1図に示すように内部集電子を介して並列
接続する場合にも適用することができる。さらにこの発
明は第1図もしくは第4図に示すスタックを複数個結束
してモジュール化する場合にも適用づることができる。
Furthermore, in the above embodiment, a stack in which cylindrical cells were arranged between an internal current collector and an external B element was explained as an example, but a large number of cells were arranged mutually on the outer peripheral surface of a porous support tube. Since the stack formed by connecting in series also has a cylindrical shape and needs to be connected in parallel, the present invention connects such a stack in parallel via an internal current collector as shown in FIG. It can also be applied in cases. Furthermore, the present invention can be applied to the case where a plurality of stacks shown in FIG. 1 or 4 are combined into a module.

そして上記の実施例では、内部集電子と外部集電子との
両方を、半径が弾性的に変化する円筒体としたが、この
発明は、上記の実施例に限られず、内部集電子と外部集
電子とのいずれか一方が弾性的に半径の変化するもので
あればよい。
In the above embodiment, both the internal current collector and the external current collector are cylindrical bodies whose radii change elastically. However, the present invention is not limited to the above embodiment. It is sufficient if the radius of either one of the electrons and the electrons changes elastically.

発明の効果 以上の説明から明らかなようにこの発明の燃料電池によ
れば、単電池などの発電要素を挟み込んでいる内部集電
子と外部jJ 7f5子とのいずれか一方が、弾性的に
変形して半径が変化する構成であるから、熱膨張や熱収
縮などに起因する相対変位をそのいずれか一方の集電子
の変形によって吸収でき、それに伴って発電要素の熱応
力を低減でき、また発電要素と各集電子との接触状態を
集電子の弾性力によって維持するから、発電要素と集電
子との接触状態が加熱・冷却が繰り返し生じても常時良
好でその部分での電気抵抗が低くなり、そのためこの発
明によれば内部抵抗を低減して発電効率を向上させ、か
つ高出力化を図ることのできる燃料電池を得ることがで
きる。
Effects of the Invention As is clear from the above explanation, according to the fuel cell of the present invention, either the internal current collector or the external collector, which sandwich a power generating element such as a unit cell, is elastically deformed. Since the radius changes between the two current collectors, relative displacement caused by thermal expansion or contraction can be absorbed by the deformation of one of the current collectors, thereby reducing the thermal stress of the power generating element. Since the contact between the power generating element and each collector is maintained by the elastic force of the collector, the contact between the power generating element and the collector is always good even when heating and cooling occur repeatedly, and the electrical resistance at that part is low. Therefore, according to the present invention, it is possible to obtain a fuel cell that can reduce internal resistance, improve power generation efficiency, and achieve high output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す断面図、第2図はそ
の内部集電子を示す略解斜視図、第3図は外部集電子を
示す略解斜視図、第4図は従来のスタックの一例を承り
断面図、第5図は単電池の一例を示づ断面図である。 3・・・111電池、 6・・・酸素主働、 7・・・
インターコネクタ、 8・・・固体電解質、 9・・・
燃料電極、21・・・内部集電子、 21a・・・スリ
ット、 22・・・外部I H子、 22a・・・スリ
ット、 23・・・スタック。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a schematic perspective view showing an internal current collector, FIG. 3 is a schematic perspective view showing an external current collector, and FIG. 4 is a conventional stack. FIG. 5 is a sectional view showing an example of a unit cell. 3...111 battery, 6...oxygen main, 7...
interconnector, 8... solid electrolyte, 9...
Fuel electrode, 21... Internal current collector, 21a... Slit, 22... External IH element, 22a... Slit, 23... Stack.

Claims (1)

【特許請求の範囲】 酸素イオン透過性のある筒状の固体電解質の内外周両側
での酸素濃度の差によって起電力を生じる複数の発電要
素を内部集電子の外周側に配設し、かつこれらの発電要
素の外周側を外部集電子で覆った円筒型固体電解質燃料
電池において、 前記内部集電子と外部集電子との少なくともいずれか一
方が、弾性的に半径が増大もしくは減少する筒状体によ
つて形成されていることを特徴とする円筒型固体電解質
燃料電池。
[Scope of Claims] A plurality of power generating elements that generate an electromotive force due to the difference in oxygen concentration between the inner and outer circumferential sides of a cylindrical solid electrolyte that is permeable to oxygen ions are disposed on the outer circumferential side of an internal current collector, and In a cylindrical solid electrolyte fuel cell in which the outer circumferential side of a power generation element is covered with an external current collector, at least one of the internal current collector and the external current collector is formed into a cylindrical body whose radius increases or decreases elastically. A cylindrical solid electrolyte fuel cell characterized by being formed by
JP1132036A 1989-05-25 1989-05-25 Cylindrical solid electrolyte fuel cell Expired - Fee Related JP2799877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132036A JP2799877B2 (en) 1989-05-25 1989-05-25 Cylindrical solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132036A JP2799877B2 (en) 1989-05-25 1989-05-25 Cylindrical solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH02312165A true JPH02312165A (en) 1990-12-27
JP2799877B2 JP2799877B2 (en) 1998-09-21

Family

ID=15072003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132036A Expired - Fee Related JP2799877B2 (en) 1989-05-25 1989-05-25 Cylindrical solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2799877B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482590A1 (en) * 2003-05-30 2004-12-01 Sanyo Electric Biomedical Co., Ltd. Solid oxide fuel cell, solid oxide fuel cell assembly, solid oxide fuel cell module, and solid oxide fuel cell power generator
JP2006216416A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Membrane electrode assembly bundle for tube type fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482590A1 (en) * 2003-05-30 2004-12-01 Sanyo Electric Biomedical Co., Ltd. Solid oxide fuel cell, solid oxide fuel cell assembly, solid oxide fuel cell module, and solid oxide fuel cell power generator
JP2006216416A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Membrane electrode assembly bundle for tube type fuel cell

Also Published As

Publication number Publication date
JP2799877B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US6589681B1 (en) Series/parallel connection of planar fuel cell stacks
JP2947557B2 (en) High temperature solid electrolyte fuel cell power generator
JPH0159705B2 (en)
JPH06251780A (en) Solid high polymer electrolyte type fuel cell
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
US7566509B2 (en) Tubular fuel cell and method of producing the same
JP3146758B2 (en) Solid polymer electrolyte fuel cell
JP6917416B2 (en) Electrochemical reaction cell stack
JP2818944B2 (en) Solid oxide fuel cell module
JP6835768B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
EP0536909B1 (en) Solid oxide fuel cell generator
JP3487630B2 (en) Cylindrical solid electrolyte fuel cell
JP2933228B2 (en) Solid oxide fuel cell module
JPH02312165A (en) Cylindrical solid electrolyte fuel cell
JP7210508B2 (en) Electrochemical reaction cell stack
JP4244579B2 (en) Flat stacked solid oxide fuel cell
JP6777669B2 (en) How to operate the electrochemical reaction cell stack and the electrochemical reaction system
JPH1125999A (en) Solid electrolyte fuel cell
JP2769629B2 (en) Cylindrical solid electrolyte fuel cell
JP3688305B2 (en) Cylindrical solid electrolyte fuel cell
JP2816474B2 (en) Solid oxide fuel cell module
JP3048689B2 (en) Structure of solid oxide fuel cell module
JP2799880B2 (en) Fuel cell connector and fuel cell structure
JP2933227B2 (en) Solid oxide fuel cell module
JPH07335234A (en) Fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees