JPH0231214B2 - - Google Patents

Info

Publication number
JPH0231214B2
JPH0231214B2 JP58111855A JP11185583A JPH0231214B2 JP H0231214 B2 JPH0231214 B2 JP H0231214B2 JP 58111855 A JP58111855 A JP 58111855A JP 11185583 A JP11185583 A JP 11185583A JP H0231214 B2 JPH0231214 B2 JP H0231214B2
Authority
JP
Japan
Prior art keywords
combustion chamber
nozzle
chamber
sub
center line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58111855A
Other languages
Japanese (ja)
Other versions
JPS606016A (en
Inventor
Koji Imoto
Mataji Tateishi
Noryasu Inanaga
Tadao Oomura
Hideyuki Ishikawa
Katsuhiko Kyota
Hiroyuki Kobayashi
Koichi Nakanishi
Satoshi Kume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Motors Corp
Priority to JP58111855A priority Critical patent/JPS606016A/en
Publication of JPS606016A publication Critical patent/JPS606016A/en
Publication of JPH0231214B2 publication Critical patent/JPH0231214B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/14Engines characterised by precombustion chambers with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 本発明は副室式機関の燃焼室に関する。[Detailed description of the invention] The present invention relates to a combustion chamber of a subchamber type engine.

従来の渦流室式機関の副室噴口を第1図に示
す。図において、副燃焼室2はシリンダヘツド4
内に凹設されている。副燃焼室2の構造は、上部
が半球形、下部は円錐台のものあるいは円柱形の
もの等があるが、第1図には下部が円錐台のもの
を示す。副燃焼室2に燃料噴射弁5及び機関の始
動時に副燃焼室2内を予熱するグロープラグ6を
必要に応じて設置する。副燃焼室2は副室噴口3
を介してピストン7の頂面、シリンダ8、シリン
ダヘツド4の下面から構成される主燃焼室1と連
通している。副燃焼室中心線A−Aとシリンダ中
心線B−Bを含む平面による副室噴口3の切断面
での副室噴口3の稜線は平行である(θL=θR)。
Figure 1 shows the subchamber nozzle of a conventional swirl chamber engine. In the figure, the auxiliary combustion chamber 2 is connected to the cylinder head 4.
It is recessed inside. The structure of the auxiliary combustion chamber 2 includes a hemispherical upper part and a truncated conical or cylindrical lower part, and FIG. 1 shows a truncated conical lower part. A fuel injection valve 5 and a glow plug 6 for preheating the inside of the auxiliary combustion chamber 2 at the time of starting the engine are installed in the auxiliary combustion chamber 2 as necessary. The auxiliary combustion chamber 2 is the auxiliary chamber nozzle 3
It communicates with the main combustion chamber 1, which is made up of the top surface of the piston 7, the cylinder 8, and the bottom surface of the cylinder head 4, through the piston 7. The ridge lines of the sub-chamber nozzle 3 at a cut plane of the sub-chamber nozzle 3 taken by a plane including the sub-combustion chamber center line AA and the cylinder center line BB are parallel (θ LR ).

機関運転時の圧縮行程で、ピストン7により主
燃焼室1内の空気が圧縮され副室噴口3を経て副
燃焼室2内に流入し渦流Sを生成する。渦流Sの
方向に沿つて燃料噴射弁5より燃料を噴射する
と、燃料は渦流Sと共に副燃焼室2内を旋回し、
燃料と空気の混合が行われ、着火、燃焼する。副
燃焼室2内の燃焼ガス、未燃燃料は副室噴口3を
通つて主燃焼室1内に噴出しピストンに仕事をす
ると共に主燃焼室1内の空気との混合燃焼を行わ
しめる。即ち、副燃焼室2から流出した噴流はシ
リンダ中心線B−Bに対し副燃焼室2と反対側の
シリンダ壁8まで到達し、壁面に衝突する。衝突
後はシリンダ壁8の壁面に沿つて分散する。
During the compression stroke during engine operation, air in the main combustion chamber 1 is compressed by the piston 7 and flows into the auxiliary combustion chamber 2 through the auxiliary chamber nozzle 3 to generate a vortex S. When fuel is injected from the fuel injection valve 5 along the direction of the vortex S, the fuel swirls in the sub-combustion chamber 2 along with the vortex S.
Fuel and air are mixed, ignited, and burned. Combustion gas and unburned fuel in the auxiliary combustion chamber 2 are ejected into the main combustion chamber 1 through the auxiliary chamber nozzle 3, work on the piston, and mix with the air in the main combustion chamber 1 to perform mixed combustion. That is, the jet flow flowing out from the sub-combustion chamber 2 reaches the cylinder wall 8 on the opposite side of the sub-combustion chamber 2 with respect to the cylinder center line BB, and collides with the wall surface. After the collision, the particles disperse along the wall surface of the cylinder wall 8.

しかし上記のものには次の欠点がある。 However, the above method has the following drawbacks.

排ガスNOxを低減するために、燃焼噴射時期
を遅らせると、副燃焼室2内で燃焼噴霧が着火、
燃焼し始める時期にはピストン7が下降行程にあ
るため、副燃焼室2内のガスは副室噴口8を通つ
て主燃焼室1内に流出するため、副燃焼室2内の
燃料は未燃分が多いまま主燃焼室1内に流出す
る。この場合、低負荷、即ち燃料噴射量が少ない
運転域であると、主燃焼室1内では空気過大の状
態、しかも噴出ガスの温度レベルが低いため、主
燃焼室1内でも不完全燃焼をおこし、未燃炭化水
素HC等の排出が増大する。また高負荷、即ち燃
料噴射量が多い運転域であると、主燃焼室1内で
は空気不足の状態となり、不完全燃焼をおこし、
吐煙等が悪化する。
In order to reduce exhaust gas NO
When combustion starts, the piston 7 is in its downward stroke, so the gas in the sub-combustion chamber 2 flows out into the main combustion chamber 1 through the sub-chamber nozzle 8, so the fuel in the sub-combustion chamber 2 remains unburned. It flows out into the main combustion chamber 1 with a large amount of water remaining. In this case, when the load is low, that is, in an operating range where the amount of fuel injection is small, there is too much air in the main combustion chamber 1, and the temperature level of the ejected gas is low, so incomplete combustion occurs even within the main combustion chamber 1. , emissions of unburned hydrocarbons, HC, etc. will increase. In addition, when the load is high, that is, when the fuel injection amount is large, there is a lack of air in the main combustion chamber 1, causing incomplete combustion.
Smoke, etc. worsens.

副燃焼室2内で着火する時期に副燃焼室2から
主燃焼室1へのガス流出を抑制する方法として、
(1)副室噴口の通路面積を小さくすること、(2)副室
噴口角度θL(=θR)を縮少することが考えられる。
As a method of suppressing gas outflow from the auxiliary combustion chamber 2 to the main combustion chamber 1 at the time of ignition in the auxiliary combustion chamber 2,
Possible solutions include (1) reducing the passage area of the subchamber nozzle, and (2) reducing the subchamber nozzle angle θ L (=θ R ).

上記ガス流出を抑制すると高負荷時の主燃焼室
1内の燃焼遅れをカバーする対策、即ち主燃焼室
1内の燃料と空気の混合、燃焼を促進せねばなら
ない。このためには、(1)の場合、副室噴口3の通
路面積をかなり小さくせねばならず、この際圧縮
行程時の副燃焼室2内の渦流Sが強くなるため、
燃焼噴霧は低負荷で分散しすぎ、着火、燃焼しに
くくなる。(2)の場合、副室噴口3が副室口金9か
らはみ出し構成できなくなるか、または構造が複
雑となるためコスト高となる(第2図参照)。
To suppress the above gas outflow, it is necessary to take measures to compensate for the combustion delay in the main combustion chamber 1 during high loads, that is, to promote the mixing and combustion of fuel and air in the main combustion chamber 1. For this purpose, in the case of (1), the passage area of the sub-chamber nozzle 3 must be made considerably smaller, and in this case, the vortex S in the sub-combustion chamber 2 during the compression stroke becomes stronger.
Combustion spray disperses too much at low loads, making it difficult to ignite and burn. In the case of (2), the sub-chamber nozzle 3 protrudes from the sub-chamber mouthpiece 9 and cannot be constructed, or the structure becomes complicated, resulting in high costs (see FIG. 2).

本発明の目的は上記の点に着目し、燃料噴射時
期を遅らせてNOx低減を図る場合に生ずる不完
全燃焼を防止できる副室噴口を提供することであ
り、その特徴とするところは、副燃焼室中心線と
シリンダ中心線とを含む平面による副室噴口の切
断面での副室噴口の稜線のうち、シリンダ中心線
側に位置する稜線とシリンダ中心線に直角な平面
とのなす最小角度をθLで表わし、シリンダ中心線
から離れて位置する稜線とシリンダ中心線に直角
な平面とのなす最小角度をθRで表わしたとき、θL
<θRとしたテーパ形副室噴口の上記副燃焼室中心
線とシリンダ中心線とを含む平面による副室噴口
通路断面のうち、シリンダ中心線から離れて位置
する噴口通路壁の主燃焼室側開口部に突起を設け
ることにより、同開口部の噴口通路の稜線とシリ
ンダ中心線に直角な平面とのなす最小角度を
θR′とすると、θR′<θRとしたことである。
The purpose of the present invention is to focus on the above points and provide a pre-chamber nozzle that can prevent incomplete combustion that occurs when reducing NOx by delaying fuel injection timing. Among the ridge lines of the sub-chamber nozzle on the cut plane of the sub-chamber nozzle by a plane including the combustion chamber center line and the cylinder center line, the minimum angle between the ridge line located on the cylinder center line side and a plane perpendicular to the cylinder center line. is expressed by θ L , and the minimum angle between the ridge line located away from the cylinder center line and a plane perpendicular to the cylinder center line is expressed by θ R , then θ L
R of the main combustion chamber side of the nozzle passage wall located away from the cylinder centerline in the cross section of the subchamber nozzle passage taken by a plane including the auxiliary combustion chamber centerline and the cylinder centerline of the tapered auxiliary chamber nozzle. By providing a protrusion in the opening, if the minimum angle between the ridgeline of the nozzle passage of the opening and a plane perpendicular to the cylinder centerline is θ R ', then θ R '<θ R is satisfied.

以下図面を参照して本発明による実施例につき
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明による第1実施例の燃焼室を示
す断面図、第4図は第3図の副室噴口を拡大して
示す断面図である。
FIG. 3 is a sectional view showing the combustion chamber of the first embodiment of the present invention, and FIG. 4 is an enlarged sectional view showing the subchamber nozzle in FIG. 3.

副燃焼室2の構造は上部が半球形、下部は円錐
台のものあるいは円柱形のもの等があるが、下部
が円錐台のものを示す。
The structure of the auxiliary combustion chamber 2 includes a hemispherical upper part and a truncated conical or cylindrical lower part, and the lower part is shown as a truncated conical one.

副燃焼室を中心線A−Aとシリンダ中心線B−
Bを含む平面により副室噴口3を切つた時の噴口
通路断面における稜線の傾きθL、θRは、θL<θR
関係にある。副室噴口3の開口端面積を主燃焼室
側に比べ副燃焼室側に小さくする。
Center line A-A and cylinder center line B-
The inclinations θ L and θ R of the ridge lines in the cross section of the nozzle passage when the pre-chamber nozzle 3 is cut by a plane including B have a relationship of θ LR. The opening end area of the sub-chamber nozzle 3 is made smaller on the sub-combustion chamber side compared to the main combustion chamber side.

上記噴口通路断面のうち、シリンダ中心線B−
Bから離れて位置する噴口通路壁面の主燃焼室側
開口端部に、同開口端部の噴口通路の稜線とシリ
ンダ中心線B−Bに直角な平面とのなす最小角度
θR′がθR′<θRとなるように、半径Rなる円弧と直
線の組合せからなる突起を設ける(第4図参照)。
Of the cross section of the nozzle passage above, the cylinder center line B-
The minimum angle θ R ' between the ridgeline of the nozzle passage at the opening end and a plane perpendicular to the cylinder center line B-B is θ R A protrusion consisting of a combination of a circular arc with radius R and a straight line is provided so that '<θ R (see Fig. 4).

上記構成の場合の作用、効果について述べる。 The functions and effects of the above configuration will be described.

上述の副室噴口とすると、NOx低減上、燃料
噴射時期を遅らせ、ピストン7が下降行程にある
時期に副燃焼室2内で着火しても、副室噴口3の
副燃焼室側開口面積が小さいこと、及び角度θL
小さいため、副燃焼室2から主燃焼室1へのガス
流出が抑制されるので(両効果により前記副室側
開口面積をそれ程小さくしなくてすむ)、副燃焼
室2内での燃焼が促進し、安定したものとなる。
その後、副燃焼室2内の圧力上昇により主燃焼室
1内へのガスが流出するが、前記角度θR′及びθL
が小さいため、噴出ガスのシリンダ中心方向への
ペネトレーシヨンが向上し、主燃焼室1内の未燃
燃料と空気の混合気形成、燃焼が促進される。
With the above-mentioned pre-chamber nozzle, even if the fuel injection timing is delayed to reduce NO x and ignition occurs in the sub-combustion chamber 2 when the piston 7 is on its downward stroke, the opening area of the pre-chamber nozzle 3 on the sub-combustion chamber side will be reduced. is small and the angle θ L is small, so gas outflow from the sub-combustion chamber 2 to the main combustion chamber 1 is suppressed (both effects make it unnecessary to reduce the opening area on the sub-chamber side). Combustion within the combustion chamber 2 is promoted and becomes stable.
After that, gas flows out into the main combustion chamber 1 due to the pressure increase in the auxiliary combustion chamber 2, but the angles θ R ′ and θ L
Since this is small, the penetration of the ejected gas toward the center of the cylinder is improved, and the formation and combustion of a mixture of unburned fuel and air in the main combustion chamber 1 is promoted.

以上により機関のNOx、HC、吐煙低減を図る
ことができると共に、騒音も低減できる。
With the above, it is possible to reduce NO x , HC, and smoke from the engine, and also to reduce noise.

第5図は本発明による第2実施例の燃焼室の副
室噴口を示す断面図である。
FIG. 5 is a sectional view showing a subchamber nozzle of a combustion chamber in a second embodiment of the present invention.

第1実施例において、副室噴口3断面の突起部
を直線形で構成した場合である。作用、効果は第
1実施例とほぼ同様である。
In the first embodiment, the protrusion on the cross section of the subchamber nozzle 3 is configured in a straight line. The operation and effect are almost the same as in the first embodiment.

第6図は本発明による第3実施例の燃焼室の副
室噴口を示す断面図である。
FIG. 6 is a sectional view showing the subchamber nozzle of the combustion chamber of the third embodiment of the present invention.

第1実施例において、副室噴口3断面の突起部
を半径Rなる円弧で構成した場合である。作用、
効果は第1実施例とほぼ同様である。
In the first embodiment, the protrusion on the cross section of the sub-chamber nozzle 3 is configured as a circular arc with a radius R. action,
The effect is almost the same as in the first embodiment.

第7図は本発明による第4実施例の燃焼室の副
室噴口を示す断面図である。
FIG. 7 is a sectional view showing a subchamber nozzle of a combustion chamber in a fourth embodiment of the present invention.

第1実施例において、副室噴口3断面の突起先
端を丸めたもの(半径r)、あるいは削り落した
ものであり、第7図には前者の場合を示す。作
用、効果は第1実施例とほぼ同様であるが、前記
突起先端の溶損、亀裂等を防止でき、耐久性の点
で優れている。第2、3実施例についても同様な
ことが言える。
In the first embodiment, the tip of the protrusion on the cross section of the subchamber nozzle 3 is rounded (radius r) or shaved off, and FIG. 7 shows the former case. The operation and effect are almost the same as those of the first embodiment, but the tip of the protrusion can be prevented from melting, cracking, etc., and is excellent in durability. The same can be said of the second and third embodiments.

第8図は本発明による第5実施例の燃焼室を示
す断面図である。
FIG. 8 is a sectional view showing a combustion chamber of a fifth embodiment according to the present invention.

第1実施例において、副燃焼室中心線A−Aを
シリンダ中心線B−Bに対し角度θC傾斜させた場
合である。
In the first embodiment, the sub-combustion chamber centerline A-A is inclined at an angle θ C with respect to the cylinder centerline B-B.

作用、効果は第1実施例とほぼ同様であるが、
副室噴口3の前記稜線と副燃焼室2底面とのなす
角度がθCだけ大きくなるため、副室噴口3の角度
による副燃焼室2から主燃焼室1へのガス流出抑
制の効果が少なくなる。
The action and effect are almost the same as in the first embodiment, but
Since the angle between the ridge line of the sub-chamber nozzle 3 and the bottom surface of the sub-combustion chamber 2 increases by θ C , the effect of suppressing gas outflow from the sub-combustion chamber 2 to the main combustion chamber 1 due to the angle of the sub-chamber nozzle 3 is reduced. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の副室噴口を有する燃焼室を示す
断面図、第2図は副燃焼室から主燃焼室へのガス
流出状態を示す説明図、第3図は本発明による第
1実施例の燃焼室を示す断面図、第4図は第3図
の副室噴口を拡大して示す断面図、第5図は本発
明による第2実施例の燃焼室の副室噴口を示す断
面図、第6図は本発明による第3実施例の燃焼室
の副室噴口を示す断面図、第7図は本発明による
第4実施例の燃焼室の副室噴口を示す断面図、第
8図は本発明による第5実施例の燃焼室を示す断
面図である。 1……主燃焼室、2……副燃焼室、3……副室
噴口、A−A……副燃焼室中心線、B−B……シ
リンダ中心線。
Fig. 1 is a cross-sectional view showing a combustion chamber having a conventional sub-chamber nozzle, Fig. 2 is an explanatory diagram showing a gas outflow state from the sub-combustion chamber to the main combustion chamber, and Fig. 3 is a first embodiment according to the present invention. 4 is an enlarged sectional view showing the pre-chamber nozzle of FIG. 3; FIG. 5 is a sectional view showing the pre-chamber nozzle of the combustion chamber of the second embodiment of the present invention; FIG. 6 is a cross-sectional view showing the pre-chamber nozzle of the combustion chamber according to the third embodiment of the present invention, FIG. 7 is a cross-sectional view showing the pre-chamber nozzle of the combustion chamber of the fourth embodiment according to the present invention, and FIG. It is a sectional view showing a combustion chamber of a fifth example according to the present invention. 1...Main combustion chamber, 2...Sub-combustion chamber, 3...Sub-chamber nozzle, A-A...Sub-combustion chamber center line, B-B...Cylinder center line.

Claims (1)

【特許請求の範囲】[Claims] 1 副燃焼室中心線とシリンダ中心線とを含む平
面による副室噴口の切断面での副室噴口の稜線の
うち、シリンダ中心線側に位置する稜線とシリン
ダ中心線に直角な平面とのなす最小角度をθLで表
わし、シリンダ中心線から離れて位置する稜線と
シリンダ中心線に直角な平面とのなす最小角度を
θRで表わしたとき、θL<θRとしたテーパ形副室噴
口の上記副燃焼室中心線とシリンダ中心線とを含
む平面による副室噴口通路断面のうち、シリンダ
中心線から離れて位置する噴口通路壁の主燃焼室
側開口部に突起を設けることにより、同開口部の
噴口通路の稜線とシリンダ中心線に直角な平面と
のなす最小角度をθR′とすると、θR′<θRとしたこ
とを特徴とする副室式機関の燃焼室。
1. Among the ridgelines of the sub-chamber nozzle on the cut plane of the sub-chamber nozzle by a plane including the sub-combustion chamber center line and the cylinder center line, the ridge line located on the cylinder center line side and the plane perpendicular to the cylinder center line. A tapered pre-chamber nozzle with θ L < θ R , where the minimum angle is expressed as θ L , and the minimum angle between a ridge line located away from the cylinder center line and a plane perpendicular to the cylinder center line is expressed as θ R. By providing a protrusion at the main combustion chamber side opening of the nozzle passage wall located away from the cylinder centerline in the cross section of the subchamber nozzle passage taken by a plane including the auxiliary combustion chamber centerline and the cylinder centerline, A combustion chamber for a pre-chamber engine characterized in that θ R ′<θ R , where θ R ′ is the minimum angle between the ridgeline of the nozzle passage of the opening and a plane perpendicular to the cylinder centerline.
JP58111855A 1983-06-23 1983-06-23 Combustion chamber of engine having auxiliary chamber Granted JPS606016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58111855A JPS606016A (en) 1983-06-23 1983-06-23 Combustion chamber of engine having auxiliary chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58111855A JPS606016A (en) 1983-06-23 1983-06-23 Combustion chamber of engine having auxiliary chamber

Publications (2)

Publication Number Publication Date
JPS606016A JPS606016A (en) 1985-01-12
JPH0231214B2 true JPH0231214B2 (en) 1990-07-12

Family

ID=14571846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58111855A Granted JPS606016A (en) 1983-06-23 1983-06-23 Combustion chamber of engine having auxiliary chamber

Country Status (1)

Country Link
JP (1) JPS606016A (en)

Also Published As

Publication number Publication date
JPS606016A (en) 1985-01-12

Similar Documents

Publication Publication Date Title
US4005684A (en) Internal combustion engine
JPH041166B2 (en)
JPS6236131B2 (en)
US4116234A (en) Internal combustion engine with an auxiliary combustion chamber
JPH0231214B2 (en)
JPS60116816A (en) Combustion chamber of swirl chamber type diesel engine
JPH0143468Y2 (en)
JPH0619802Y2 (en) Subchamber diesel engine combustion chamber
JPH0618035Y2 (en) Combustion chamber of a sub-chamber internal combustion engine
JPH0575886B2 (en)
JPH0143467Y2 (en)
JPS60122224A (en) Combustion chamber of vortex chamber type engine
JP2921328B2 (en) Engine with swirl chamber
JPH0614033Y2 (en) Combustion chamber of a sub-chamber internal combustion engine
JPS6353363B2 (en)
JP2971247B2 (en) Combustion chamber of a swirl chamber type diesel engine
JPH0134657Y2 (en)
JPS5958118A (en) Combustion chamber for antechamber type engine
JPS6236130B2 (en)
JP2552596Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JP2552579Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JPS5968518A (en) Combustion chamber for engine with pre-chamber
JPH031486B2 (en)
JP2522799Y2 (en) Combustion chamber of direct injection diesel engine
JPH0263087B2 (en)