JPH0231207B2 - - Google Patents

Info

Publication number
JPH0231207B2
JPH0231207B2 JP57120470A JP12047082A JPH0231207B2 JP H0231207 B2 JPH0231207 B2 JP H0231207B2 JP 57120470 A JP57120470 A JP 57120470A JP 12047082 A JP12047082 A JP 12047082A JP H0231207 B2 JPH0231207 B2 JP H0231207B2
Authority
JP
Japan
Prior art keywords
heat medium
evaporator
steam
turbine
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57120470A
Other languages
Japanese (ja)
Other versions
JPS5912107A (en
Inventor
Haruyuki Yamazaki
Haruichiro Sakaguchi
Yasuaki Akatsu
Noryoshi Teranishi
Tadao Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12047082A priority Critical patent/JPS5912107A/en
Publication of JPS5912107A publication Critical patent/JPS5912107A/en
Publication of JPH0231207B2 publication Critical patent/JPH0231207B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は発電プラントに係る。特に、蒸発器で
発生させた蒸気によりタービンを駆動して発電を
行う発電プリントに関する。 従来、この種の発電プラントにおいては、蒸発
器に導入するタービン駆動用作動媒体として所謂
湿り型の熱媒体つまりその飽和蒸気を断熱膨脹さ
せた時に湿り域に入る熱媒体を用いるのが一般的
である。このような従来の発電プラントの代表例
を第1図に示す。この従来例の主要構成要素は予
熱器1、蒸発器2、過熱器3、タービン4、発電
機5、凝縮器6、循環ポンプ7である。この例は
凝縮器6からの作動媒体を循環ポンプ7で昇圧
し、予熱器1で予熱し、蒸発器2で飽和蒸気10
1を発生させ、更に過熱器3で過熱蒸気102と
してタービン4へ導入し、タービン4を駆動して
発電した後、再び凝縮器6へ戻す系統になつてい
る。その過程をT−S線図(温度−エントロピー
線図)で第2図に示した。 ところがこのような従来技術にあつては、ター
ビンに作動媒体を過熱蒸気の状態で導くべく、図
の如く蒸発器2の後段にどうしても過熱器3を設
ける必要があつた。その理由は、蒸発器2で発生
した飽和蒸気101を直接タービン導入すると蒸
気が断熱膨張した時に湿り蒸気となり、蒸気中に
液滴が混入し、液滴が混入するとタービン性能が
低下すると共に、液滴のアタツクによりタービン
ブレードが損傷する虞が大きいためである。この
ため従来の発電プラントでは、断熱膨脹時にター
ビン内で湿り蒸気とならないように、タービンへ
過熱蒸気102を流入させることが不可欠であ
る。従つて、従来の発電プラントでは、蒸発器2
で発生した飽和蒸気101を更に加熱して過熱蒸
気102にする過熱器3が必要であり、これを廃
することはできなかつたわけである。 よつて従来の発電プラントは、熱交換器が大型
にならざるを得ないという問題点を残している。 本発明の目的は、発電プラントにおいてその蒸
発器で直接過熱蒸気を発生させるようにし、特別
な過熱器は不要としてコンパクトで高性能の発電
プラントを提供することにある。 この目的を達成するため、本発明においてはタ
ービン駆動用の作動媒体として断熱膨脹時に湿り
域に入る熱媒体(これを本明細書中で熱媒体Aと
称する)と該熱媒体Aより沸点の高い他の熱媒体
(同じくこれを熱媒体Bと称する)とを用い、こ
れを蒸発器に導入してタービン駆動を行う構成と
する。 本発明は以下のような知見に基づいてなされた
ものである。即ちある一定圧力の蒸気を発生させ
る場合、上記したような熱媒体Aと該熱媒体Aよ
り沸点の高い熱媒体Bとを混合することにより、
熱媒体Aのみの飽和蒸気温度より高い温度の過熱
蒸気が発生する性質があること、また、熱媒体
A,Bの混合比を変えることにより過熱度が変わ
る性質があることが一般に知られている。本発明
者らはこの性質について実験でも確認した。本発
明者らはこの性質に着目し、更に種々検討を重ね
た結果、前記二成分の熱媒体を混合させることに
より生ずる性質を発電プラントに適用し、蒸発器
内の作動媒体としての熱媒体Aに、これより沸点
の高い熱媒体Bを混合させ、過熱蒸気を発生させ
るようにする本発明に至つたものである。また、
熱媒体A,Bの混合比を変えて、必要な過熱度を
得られるようにしたものである。 以下本発明の一実施例を第3図により説明す
る。 この発電プラントは、蒸発器2で発生させた蒸
気102によりタービン4を駆動して発電を行う
ものであつて、蒸発器2には作動媒体として、断
熱膨脹時に湿り域に入る熱媒体Aと、この熱媒体
Aより沸点の高い他の熱媒体Bとを導入して構成
したものである。 この結果、混合熱媒体の作用により、蒸発器2
においてすでに過熱器(従来例の第1図参照)で
過熱されたのと同様な過熱蒸気を得ることができ
る。従つて過熱器を用いなくて済み、プラントを
コンパクトにすることができる。また熱媒体A,
Bの混合比は任意に変えられることから、発生す
る蒸気の過熱度を自由に変えることもできる。 本実施例の構成と作用効果とを一層詳しく説明
すれば、下記の通りである。本例の発電プラント
の主な構成要素は、予熱器1、蒸発器2、タービ
ン4、発電機5、凝縮器6、循環ポンプ7であ
る。凝縮器6からの作動媒体を循環ポンプ7で昇
圧して予熱器1へ送り、予熱して、蒸発器2で過
熱蒸気102を発生させてタービンを回転させ、
発電した後、再び凝縮器6へ戻す。発電プラント
の蒸発器2に、従来より使用してきた作動媒体と
しての熱媒体Aより沸点の高い熱安定性の良い熱
媒体Bを内容させておき、これに熱媒体Aを混合
させ、A,Bの混合液を蒸発器2で加熱して過熱
蒸気102を発生させる。これは第2図における
蒸発工程と過熱工程を同時に蒸発器2内で行つて
いることを示している。また、熱媒体A,Bの混
合比を変えることにより発生する蒸発の過熱度を
自由に変えられる効果があるので、プラントの性
能を上げるため、タービン排気を飽和蒸気にする
ことができる。 本発明の実施に用い得る断熱膨脹時に湿り域に
入る作動体A、及びこれと混合する熱媒体Bの組
合せの一例を次の表に示す。下記例は、低沸点媒
体たる各種フロンを熱媒体Aとした場合と、従来
より作動媒体として多く用いられている水の熱媒
体Aとして本発明を実施する場合について例示し
たものである。
The present invention relates to a power plant. In particular, it relates to power generation printing that generates electricity by driving a turbine using steam generated in an evaporator. Conventionally, in this type of power generation plant, it has been common to use a so-called wet heat carrier, that is, a heat carrier that enters the wet region when the saturated steam is adiabatically expanded, as the turbine-driving working medium introduced into the evaporator. be. A typical example of such a conventional power generation plant is shown in FIG. The main components of this conventional example are a preheater 1, an evaporator 2, a superheater 3, a turbine 4, a generator 5, a condenser 6, and a circulation pump 7. In this example, the working medium from the condenser 6 is pressurized by the circulation pump 7, preheated by the preheater 1, and saturated steam is
1 is generated, and then introduced into the turbine 4 as superheated steam 102 in the superheater 3, and after driving the turbine 4 to generate electricity, it is returned to the condenser 6 again. The process is shown in FIG. 2 as a T-S diagram (temperature-entropy diagram). However, in such a conventional technique, it was necessary to provide a superheater 3 downstream of the evaporator 2 as shown in the figure, in order to introduce the working medium in the state of superheated steam to the turbine. The reason for this is that when the saturated steam 101 generated in the evaporator 2 is directly introduced into the turbine, it becomes wet steam when it expands adiabatically, and droplets are mixed into the steam. This is because there is a high possibility that the turbine blades will be damaged by the droplet attack. Therefore, in conventional power plants, it is essential to allow superheated steam 102 to flow into the turbine so that it does not become wet steam within the turbine during adiabatic expansion. Therefore, in a conventional power plant, the evaporator 2
A superheater 3 is required to further heat the saturated steam 101 generated in the above process to convert it into superheated steam 102, and this cannot be abolished. Therefore, conventional power plants still have the problem that the heat exchanger has to be large. An object of the present invention is to provide a compact, high-performance power plant in which superheated steam is directly generated in the evaporator of the power plant, eliminating the need for a special superheater. To achieve this objective, the present invention uses a heat medium (herein referred to as heat medium A) that enters a humid region during adiabatic expansion as a working medium for driving a turbine, and a heat medium with a boiling point higher than that of heat medium A. The configuration is such that another heat medium (also referred to as heat medium B) is introduced into the evaporator to drive the turbine. The present invention was made based on the following findings. That is, when generating steam at a certain constant pressure, by mixing the heat medium A as described above and the heat medium B whose boiling point is higher than that of the heat medium A,
It is generally known that there is a property that superheated steam is generated at a temperature higher than the saturated steam temperature of heat medium A alone, and that the degree of superheating can be changed by changing the mixing ratio of heat medium A and B. . The present inventors also confirmed this property through experiments. The present inventors focused on this property, and as a result of further various studies, applied the properties produced by mixing the above-mentioned two-component heat medium to a power generation plant, and used the heat medium A as the working medium in the evaporator. The present invention has been achieved in which a heat medium B having a higher boiling point is mixed with the heat medium B to generate superheated steam. Also,
By changing the mixing ratio of heat media A and B, the required degree of superheat can be obtained. An embodiment of the present invention will be described below with reference to FIG. This power generation plant generates electricity by driving a turbine 4 using steam 102 generated in an evaporator 2, and the evaporator 2 has a heat medium A, which enters a humid region during adiabatic expansion, as a working medium, and This heat medium A is constructed by introducing another heat medium B having a boiling point higher than that of the heat medium A. As a result, due to the action of the mixed heat medium, the evaporator 2
It is possible to obtain superheated steam similar to that already superheated in the superheater (see FIG. 1 of the conventional example). Therefore, there is no need to use a superheater, and the plant can be made more compact. In addition, heat medium A,
Since the mixing ratio of B can be changed arbitrarily, the degree of superheating of the generated steam can also be changed freely. The structure and effects of this embodiment will be explained in more detail as follows. The main components of the power plant of this example are a preheater 1, an evaporator 2, a turbine 4, a generator 5, a condenser 6, and a circulation pump 7. The working medium from the condenser 6 is pressurized by the circulation pump 7 and sent to the preheater 1 for preheating, and the evaporator 2 generates superheated steam 102 to rotate the turbine.
After generating electricity, it is returned to the condenser 6 again. The evaporator 2 of the power generation plant contains heat medium B, which has a higher boiling point and better thermal stability than heat medium A, which has been used conventionally as a working medium, and heat medium A is mixed with this, and A, B The mixed liquid is heated in the evaporator 2 to generate superheated steam 102. This shows that the evaporation process and superheating process in FIG. 2 are performed simultaneously in the evaporator 2. Furthermore, by changing the mixing ratio of the heat mediums A and B, the degree of superheating of the generated evaporation can be freely changed, so that the turbine exhaust can be made into saturated steam in order to improve the performance of the plant. The following table shows an example of a combination of the working body A that enters the wet region during adiabatic expansion and the heat medium B that is mixed with the working body A that can be used in carrying out the present invention. The following examples illustrate cases in which the heat medium A is various kinds of fluorocarbons, which are low boiling point media, and cases in which the present invention is implemented using water as the heat medium A, which has been conventionally often used as a working medium.

【表】 熱媒体AとしてフロンR12、熱媒体Bとしてポ
リオールエステル油を組合せた場合のA,Bの混
合比の決め方の一例を以下に示す。第2図におい
て、凝縮圧力9.8Kg/cm2abs(飽和で40℃)と蒸発
圧力34Kg/cm2abs(飽和で100℃)とのランキンサ
イクルで、プランントの性能を上げるため、ター
ビン排気を9.8Kg/cm2absの飽和蒸気40℃にするに
は、タービン入口の蒸気は飽和蒸気温度100℃よ
り約10℃(Δt)過熱する必要がある。蒸発圧力
を高くすると過熱度Δtが高くなるわけであり、
従つて熱媒体Bの割合を大きくすると過熱度Δt
は高くなるのあるが、このような10℃程度の過熱
を蒸発器2において達成するには、熱媒体Aのフ
ロンR12と熱媒体Bのポリオールエステル油の混
合比は、ラウルの法則から体積比約1:1の割合
で混合すれば良いことがわかる。この1:1とい
うのは概算であるが、厳密にはラウルの法則を用
いて両者のモル分率を求め、これを体積比に換算
すればよく、計算で正確に求めることができるも
のである。 以下に、ラウルの法則による計算方法を説明す
る。 熱媒体A,Bの純成分の蒸気圧PA、PBは温度
の関数であり、PA=fA(T)、PB=fB(T)と表せ
る。従つて、蒸発器の圧力P、温度Tが決まれ
ば、ラウルの法則から、熱媒体A,Bの液相のモ
ル分率xA,xBは、 xA=(P−PB)/(PA−PB) xB=(PA−P)/(PA−PB) より計算できる。 ここで、熱媒体A,Bの気相モル分率yA,yB
は、 yA=PAxA/(PAxA+PBxB) yB=PBxB/(PAxA+PBxB) で表せ、PA≫PBであり、yB0であるので、混
合媒体の蒸気の主成分は熱媒体Aとなる。従つ
て、第2図のTS線図の蒸気を、近似的に熱媒体
Aの蒸気表を用いて計算することができる。 なお前記凝縮圧力や蒸発圧力の値は、冷却水温
度やタービン圧力その他諸要素によつて定められ
るものである。 このように本実施例によれば、発電プラントの
蒸発器において、過熱蒸気を発生させる効果があ
るのでコンパクト高性能の発電プラントを提供で
きる。 上述の如く本発明によれば、発電プラントにお
いて、その蒸発器で直接、過熱蒸気を発生させる
ことができるので、特別な過熱器は要さず発電プ
ラントを小型化でき、従つて同型であれば効率の
良い高性能のものとすることができるという効果
がある。 なお、当然のことではあるが、本発明は上述し
た実施例にのみ限定されるものではない。
[Table] An example of how to determine the mixing ratio of A and B when Freon R12 is used as heat medium A and polyol ester oil is used as heat medium B is shown below. Figure 2 shows a Rankine cycle with a condensing pressure of 9.8 kg/cm 2 ab s (40°C at saturation) and an evaporation pressure of 34 kg/cm 2 ab s (100°C at saturation). In order to make 9.8Kg/cm 2 ab s of saturated steam at 40°C, the steam at the turbine inlet needs to be superheated by about 10°C (Δt) above the saturated steam temperature of 100°C. Increasing the evaporation pressure increases the superheat degree Δt,
Therefore, if the proportion of heat medium B is increased, the degree of superheating Δt
However, in order to achieve superheating of about 10°C in evaporator 2, the mixing ratio of Freon R12 as heat medium A and polyol ester oil as heat medium B must be determined by volume ratio according to Raoult's law. It can be seen that mixing at a ratio of approximately 1:1 is sufficient. This ratio of 1:1 is an approximation, but strictly speaking, it is sufficient to find the mole fraction of both using Raoult's law and convert it to a volume ratio, which can be determined accurately by calculation. . The calculation method using Raoult's law will be explained below. The vapor pressures P A and P B of the pure components of the heat carriers A and B are functions of temperature, and can be expressed as P A = f A (T) and P B = f B (T). Therefore, once the pressure P and temperature T of the evaporator are determined, from Raoult's law, the mole fractions x A and x B of the liquid phase of heat carriers A and B are x A = (P-P B )/( It can be calculated from P A − P B ) x B = (P A − P)/(P A − P B ). Here, the gas phase molar fractions y A , y B of heat media A and B
can be expressed as y A = P A x A / (P A x A + P B x B ) y B = P B x B / (P A x A + P B x B ), where P A ≫ P B and y Since B 0, the main component of the vapor of the mixed medium is the heat medium A. Therefore, the steam in the TS diagram of FIG. 2 can be approximately calculated using the steam table of heat medium A. Note that the values of the condensing pressure and evaporation pressure are determined by cooling water temperature, turbine pressure, and other various factors. As described above, according to this embodiment, since the evaporator of the power plant has the effect of generating superheated steam, it is possible to provide a compact, high-performance power plant. As described above, according to the present invention, superheated steam can be directly generated in the evaporator of a power generation plant, so a special superheater is not required and the power generation plant can be downsized. This has the effect of making it efficient and high performance. Note that, as a matter of course, the present invention is not limited to the above-described embodiments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の発電プラントの系統図、第2図
は熱サイクル図を示す。第3図は本発明の発電プ
ラントの一実施例の系統図を示す。 1……予熱器、2……蒸発器、4……タービ
ン、5……発電機、101……飽和蒸気、102
……過熱蒸気、103……飽和蒸気(タービン排
気)、104……液体(媒体)。
Figure 1 shows a system diagram of a conventional power generation plant, and Figure 2 shows a thermal cycle diagram. FIG. 3 shows a system diagram of an embodiment of the power generation plant of the present invention. 1... Preheater, 2... Evaporator, 4... Turbine, 5... Generator, 101... Saturated steam, 102
... Superheated steam, 103 ... Saturated steam (turbine exhaust), 104 ... Liquid (medium).

Claims (1)

【特許請求の範囲】 1 蒸発器で発生させた蒸気によりタービンを駆
動して発電を行う発電プラントにおいて、蒸発器
に導入する作動媒体として、断熱膨張時に湿り域
に入る熱媒体Aと該熱媒体Aより沸点が高い他の
熱媒体Bとをラウルの法則に従い混合した混合作
動媒体であつてタービンで膨張した時に該混合作
動媒体の蒸気が湿り蒸気とならない混合比で混合
したものを使用したことを特徴とする発電プラン
ト。 2 熱媒体AとしてフロンR12、フロンR21、フ
ロンR22のいずれかを用い熱媒体Bとしてポリオ
ールエステル油、エステル油のいずれかを用いて
混合作動媒体とし、あるいは、熱媒体Aとして水
を用い熱媒体Bとしてグリセリン、エチレングリ
コールのいずれかを用いて混合作動媒体とするこ
とを特徴とする特許請求の範囲第1項記載の発電
プラント。
[Claims] 1. In a power generation plant that generates electricity by driving a turbine using steam generated in an evaporator, a heat medium A that enters a humid region during adiabatic expansion and the heat medium are used as a working medium introduced into the evaporator. The use of a mixed working medium that is mixed with another heat medium B, which has a higher boiling point than A, according to Raoult's law, at a mixing ratio that does not cause the steam of the mixed working medium to become wet steam when expanded in the turbine. A power generation plant featuring: 2. Use either Freon R12, Freon R21, or Freon R22 as heat medium A, and use either polyol ester oil or ester oil as heat medium B as a mixed working medium, or use water as heat medium A as a heat medium. 2. The power generation plant according to claim 1, wherein B is either glycerin or ethylene glycol as a mixed working medium.
JP12047082A 1982-07-13 1982-07-13 Power generating plant Granted JPS5912107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12047082A JPS5912107A (en) 1982-07-13 1982-07-13 Power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12047082A JPS5912107A (en) 1982-07-13 1982-07-13 Power generating plant

Publications (2)

Publication Number Publication Date
JPS5912107A JPS5912107A (en) 1984-01-21
JPH0231207B2 true JPH0231207B2 (en) 1990-07-12

Family

ID=14786962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12047082A Granted JPS5912107A (en) 1982-07-13 1982-07-13 Power generating plant

Country Status (1)

Country Link
JP (1) JPS5912107A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105652A (en) * 1978-02-07 1979-08-18 Daikin Ind Ltd Rankine cycle working fluid
JPS5683504A (en) * 1979-12-10 1981-07-08 Agency Of Ind Science & Technol Power plant
JPS5696106A (en) * 1979-12-28 1981-08-04 Sumitomo Heavy Ind Ltd Heat engine to use mixed liquid as operating medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105652A (en) * 1978-02-07 1979-08-18 Daikin Ind Ltd Rankine cycle working fluid
JPS5683504A (en) * 1979-12-10 1981-07-08 Agency Of Ind Science & Technol Power plant
JPS5696106A (en) * 1979-12-28 1981-08-04 Sumitomo Heavy Ind Ltd Heat engine to use mixed liquid as operating medium

Also Published As

Publication number Publication date
JPS5912107A (en) 1984-01-21

Similar Documents

Publication Publication Date Title
JP4523948B2 (en) Method and apparatus for converting heat into effective energy
US4982568A (en) Method and apparatus for converting heat from geothermal fluid to electric power
JP3789499B2 (en) Method and apparatus for performing a thermodynamic cycle using the heat of geothermal water and geothermal steam
US5953918A (en) Method and apparatus of converting heat to useful energy
CA2525384C (en) Method and apparatus for acquiring heat from multiple heat sources
CA1245465A (en) Method and apparatus for implementing a thermodynamic cycle with intercooling
JP2679753B2 (en) Method and device for converting thermal energy into electric power
TW436580B (en) Gas turbine inlet air cooling method for combined cycle power plants
US5557936A (en) Thermodynamic power generation system employing a three component working fluid
US4876855A (en) Working fluid for rankine cycle power plant
WO1998006791A1 (en) Pentafluoropropanes and hexafluoropropanes as working fluids for power generation
US4224796A (en) Method for converting heat energy to mechanical energy with 1,2-dichloro-1,1-difluoroethane
JP3011669B2 (en) Mixed media cycle power generation system
US8117844B2 (en) Method and apparatus for acquiring heat from multiple heat sources
JPH0231207B2 (en)
US4459810A (en) Working fluids for use with rankine cycle
EP1936129A2 (en) Method and apparatus of converting heat to useful energy
AU2011225700B2 (en) Improved thermodynamic cycle
JPS6157446B2 (en)
JPH0454206A (en) Power plant
JPH08105305A (en) Absorption type rankine cycle generation apparatus
JPH0681611A (en) Heat pipe generating set
KR100355624B1 (en) Method and Apparatus of Thermodynamic Cycle
JPH0223590B2 (en)
JPH0223591B2 (en)