JPH02310354A - Manufacture of hot-dip galvanized steel sheet having excellent workability - Google Patents

Manufacture of hot-dip galvanized steel sheet having excellent workability

Info

Publication number
JPH02310354A
JPH02310354A JP1131094A JP13109489A JPH02310354A JP H02310354 A JPH02310354 A JP H02310354A JP 1131094 A JP1131094 A JP 1131094A JP 13109489 A JP13109489 A JP 13109489A JP H02310354 A JPH02310354 A JP H02310354A
Authority
JP
Japan
Prior art keywords
hot
steel
dip galvanized
temperature
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1131094A
Other languages
Japanese (ja)
Other versions
JPH0635647B2 (en
Inventor
Hidenori Shirasawa
白沢 秀則
Norihiro Nakajima
中島 悟博
Motoyuki Miyahara
宮原 征行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1131094A priority Critical patent/JPH0635647B2/en
Publication of JPH02310354A publication Critical patent/JPH02310354A/en
Publication of JPH0635647B2 publication Critical patent/JPH0635647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To manufacture the hot-dip galvanized steel sheet having excellent workability at low cost by subjecting a steel contg. specified amounts of C, Mn and S to hot rolling at a specified temp., coiling it, heating the steel to a specified temp. as it is and hot-dip galvanizing the steel. CONSTITUTION:A steel contg., by weight, 0.02 to 0.08% C, 0.60 to 1.60% Mn and <=0.009% S is hot-rolled at the temp. of the Ar3 point or below and is coiled at <=600 deg.C coiling temp. into a coil shape. The hot rolled sheet is hot-dip galvanized without subjecting to cold rolling. At this time, the heating temp. for the steel strip before hot-dip galvanized is regulated to 650 to 750 deg.C. In this way, the hot-dip galvanized steel sheet having excellent workability of high strength-flanging properties and excellent tensile properties can be obtd. without executing cold rolling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱延鋼板を原板として、冷間圧延することな
しに溶融亜鉛めっきを施して製造する溶融亜鉛めっき鋼
板の製造に係り、より詳細には、引張強さが38〜50
 kgf / mm2の溶融亜鉛めっき鋼板(例えば、
JISにおける自動車構造用熱延鋼板に相当するもの)
において、より高いプレス加工性、具体的には、低い降
伏点、高い伸び及び伸びフランジ性が要求される場合に
好適な加工性の優れた溶融亜鉛めっき鋼板の製造方法に
関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the production of hot-dip galvanized steel sheets, which are produced by hot-dip galvanizing a hot-rolled steel sheet as an original sheet without cold rolling. In detail, the tensile strength is 38 to 50
kgf/mm2 hot dip galvanized steel sheet (e.g.
(equivalent to hot-rolled steel sheets for automobile structures in JIS)
The present invention relates to a method for producing a hot-dip galvanized steel sheet with excellent workability, which is suitable when higher press workability, specifically, low yield point, high elongation, and stretch flangeability are required.

(従来の技術) 近年、自動車等の車体或いはその構造部材には溶融亜鉛
めっき鋼板や合金化溶融亜鉛めっき鋼板が多く使用され
るようになってきた。これらの用途では、形状が複雑で
あるため、プレス加工時に鋼板が厳しい加工を受けるこ
とから、成形性の優れた溶融亜鉛めっき鋼板が要求され
ることになる。
(Prior Art) In recent years, hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets have been increasingly used for vehicle bodies such as automobiles and their structural members. In these applications, since the shape is complex and the steel sheet undergoes severe processing during press working, a hot-dip galvanized steel sheet with excellent formability is required.

従来、このような用途に供される合金化溶融亜鉛めっき
鋼板の製造法としては、熱延鋼帯を冷間圧延に付した後
、そのまま或いは再結晶焼鈍を施した後、連続合金化溶
融亜鉛めっきライン(以下、「亜鉛めっきライン」と称
す)に通板して浸漬めっき及び合金化処理を行う、いわ
ゆる冷延鋼板を原板とした鋼板の製造法が通常の方法で
ある。
Conventionally, the method for producing alloyed hot-dip galvanized steel sheets for such uses is to cold-roll a hot-rolled steel strip, either directly or after recrystallization annealing, and then continuously alloyed hot-dip galvanized steel sheet. A common method is to produce a steel sheet using a so-called cold-rolled steel sheet as a base sheet, in which the sheet is passed through a plating line (hereinafter referred to as a "galvanizing line") and subjected to dip plating and alloying treatment.

しかし、最近では、需要家側からコストダウンの要請が
強まり、加工性に優れ且つ安価な溶融亜鉛めっき鋼板や
合金化溶融亜鉛めっき鋼板が求められている。このため
、冷延鋼板を原板とすることに代えて、熱延後酸洗する
が、冷間圧延やこれに続く再結晶焼鈍を施すことなく、
直接亜鉛めっきラインへ通板する方法、すなわち、製造
工程の一部を省略して製造コスを低減する方法が検討さ
れ、一部で実用化されている。
However, recently, demands for cost reduction have become stronger from customers, and hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets that have excellent workability and are inexpensive are in demand. For this reason, instead of using a cold rolled steel sheet as the original sheet, it is pickled after hot rolling, but without cold rolling or subsequent recrystallization annealing.
A method of passing the sheet directly to the galvanizing line, that is, a method of reducing manufacturing costs by omitting part of the manufacturing process, has been studied and has been put into practical use in some cases.

しかし、従来、熱延鋼板を冷間圧延することなく直接亜
鉛めっきラインへ通板して得られる熱延原板溶融亜鉛め
っき鋼板は、板厚が3.2+++m以上の比較的板厚の
厚い鋼とか、或いは加工性がそれ程厳しくない用途に限
られて使用されているにすぎず、板厚が薄く且つ加工性
の優れた熱延原板溶融亜鉛めっき鋼板はこれまであまり
製造されていない。
However, conventional hot-rolled hot-dip galvanized steel sheets, which are obtained by passing hot-rolled steel sheets directly through a galvanizing line without cold rolling, are relatively thick steel sheets with a thickness of 3.2+++m or more. Alternatively, they are used only in applications where workability is not so demanding, and hot-rolled original hot-dip galvanized steel sheets that are thin and have excellent workability have not been manufactured to date.

そこで、このように板厚が薄く且つ加工性の優れた熱延
原板溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板
の製造法については種々改善が試みられているが、未だ
有効な方法が見い出されていない。
Therefore, various improvements have been made to the manufacturing methods of hot-rolled hot-rolled hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets, which are thin and have excellent workability, but no effective method has yet been found. Not yet.

(発明が解決しようとする課題) 一般に、溶融亜鉛めっき鋼板を製造するには、亜鉛めっ
きラインにおいて、まず酸化雰囲気中で加熱均熱され、
次いでめっき層の密着性を高めるために溶融亜鉛温度(
460’C)程度に還元雰囲気中で保持した後、溶融亜
鉛めっき浴中に浸漬される。この場合、加熱均熱過程で
は、再結晶焼鈍或いは軟質化を目的として、約700〜
850’Cに保持されるのが通例である。更に製品の塗
装密着性を目的として合金化処理を行う場合には、溶融
亜鉛めっき後、更に鋼帯は約500〜700℃に加熱さ
れる。上記溶融めっきラインは冷延鋼板を対象に設備設
計されたものであり、対象鋼板の昇温ラインを含んでい
るから、元々加工組織が残っておらず、したがって焼鈍
を行う必要のない熱延鋼板であっても、設備稼働上必然
的に昇温を受けることとなる。
(Problems to be Solved by the Invention) Generally, in order to manufacture a hot-dip galvanized steel sheet, it is first heated and soaked in an oxidizing atmosphere in a galvanizing line.
Next, the temperature of the molten zinc (
After being maintained in a reducing atmosphere at about 460'C), it is immersed in a hot-dip galvanizing bath. In this case, in the heating and soaking process, for the purpose of recrystallization annealing or softening, the
It is customary to hold the temperature at 850'C. Furthermore, when performing alloying treatment for the purpose of improving paint adhesion of the product, the steel strip is further heated to about 500 to 700°C after hot-dip galvanizing. The above-mentioned hot-dip plating line is designed for cold-rolled steel sheets and includes a heating line for the target steel sheets, so it is a hot-rolled steel sheet that does not have any processed structure remaining and therefore does not need to be annealed. Even so, the temperature will inevitably rise during equipment operation.

なお、格別の観点から見た場合においても溶融めっきの
密着性を確保するには亜鉛の溶融温度(約460℃)以
上に予熱しておく必要もあり、更に合金化処理を行う場
合にも良好な塗装密着性及びめっき層の加工性を得るた
めに亜鉛めっき中の鉄濃度を適正な値に制御しなければ
ならず、このためにも約550℃以上の鋼帯の加熱が必
要であり、いずれにせよ、原板の再加熱処理は不可避の
プロセスとなっている。
Furthermore, from a special point of view, it is necessary to preheat the zinc to a temperature higher than the melting temperature (approximately 460°C) in order to ensure the adhesion of hot-dip plating, and it is also good when performing alloying treatment. In order to obtain good paint adhesion and workability of the plating layer, the iron concentration in the galvanizing must be controlled to an appropriate value, and for this purpose it is necessary to heat the steel strip to a temperature of approximately 550°C or higher. In any case, reheating the original plate has become an inevitable process.

しかるに、0.02〜0.15%程度のCを有し。However, it contains about 0.02 to 0.15% of C.

かつ原子量論的にCの原子量以上にTi、Nb等の炭化
物形成元素を含まない鋼に、上記のような熱処理を施す
と、熱延巻取り後の徐冷過程で充分に析出したセメンタ
イト中のCが昇温によって再固溶するという現象が生じ
る。このように再固溶したCは、溶融亜鉛めっきライン
の後半においては急速冷却が行われるために充分にセメ
ンタイトとして析出できず、製品段階では溶融亜鉛めっ
きライン通板前(以下、「熱延まま」という)に比べ、
鋼中に固溶するCの量が増える。このため、熱延ままと
溶融亜鉛めっき後の特性を比較すると、降伏点が上昇し
、伸びが低下する傾向にある。当然ながら、上記のよう
な引張特性の変化の大きさは鋼中のC量、めっきライン
での加熱温度により左右され、特にC量については、鋼
中のC量を低減し、Ti、Nb等の炭化物形成元素によ
り鋼中のCを熱延段階でTiC,NbC等で析出させ、
これら炭化物がめつきラインでの加熱温度で再び固溶し
なければめっき処理前後の引張特性の変化は小さくなる
のであるが、この場合、鋼中に固溶するCが殆どないた
め結晶粒界の強度が弱くなる結果、成形加工後に衝撃荷
重が加わったり、或いは低温での変形を行ったりしたと
きに脆性破壊(粒界破壊)を生ずる。いわゆる「縦割れ
」が発生するおそれがあり、C量を低減することは好ま
しくない。
When the above heat treatment is applied to steel that does not contain carbide-forming elements such as Ti and Nb in an atomic weight greater than or equal to the atomic weight of C, the cementite that has sufficiently precipitated during the slow cooling process after hot rolling and coiling is removed. A phenomenon occurs in which C re-dissolves as a solid solution as the temperature rises. The C re-dissolved in this way cannot be sufficiently precipitated as cementite due to rapid cooling in the latter half of the hot-dip galvanizing line, and at the product stage, before passing through the hot-dip galvanizing line (hereinafter referred to as "hot-rolled"). ) compared to
The amount of C dissolved in steel increases. Therefore, when comparing the properties of as-hot-rolled steel and after hot-dip galvanizing, the yield point tends to increase and the elongation tends to decrease. Naturally, the magnitude of the change in tensile properties as described above depends on the amount of C in the steel and the heating temperature in the plating line. C in the steel is precipitated with TiC, NbC, etc. during the hot rolling stage by the carbide forming elements of
If these carbides do not dissolve into solid solution again at the heating temperature in the plating line, the change in tensile properties before and after plating will be small, but in this case, since there is almost no solid solution of C in the steel, the strength of the grain boundaries will decrease. As a result, brittle fracture (intergranular fracture) occurs when an impact load is applied after molding or when deformation is performed at low temperatures. It is not preferable to reduce the amount of C because there is a risk that so-called "vertical cracks" may occur.

一方、38〜50kgf/+nm”程度の引張強さを有
する溶融亜鉛めっき鋼板では、自動車足回り部品等でプ
レス加工される際に伸びフランジ性が最も重要な特性の
1つとなる。この伸びフランジ性を向上せしめる方法と
しては、用途が異なるが、例えば、特開昭61−485
20号には、0.010〜0.120%のCを含有する
鋼を用い、Ar。
On the other hand, for hot-dip galvanized steel sheets having a tensile strength of approximately 38 to 50 kgf/+nm, stretch flangeability is one of the most important properties when press-formed into automobile suspension parts, etc. Methods for improving this have different uses, but for example,
For No. 20, steel containing 0.010 to 0.120% of C was used, and Ar.

意思上の熱間圧延後、3段階の冷却を行うことにより、
伸びフランジ性(穴拡げ性)を向上させることが示され
ている。しかしながら、この提案は、熱延鋼板に関する
ものであり、前述のような溶融亜鉛めっきライン通板に
よる材質の変動については何ら考慮されていない。例え
ば、熱延鋼板を原板とする場合には再結晶焼鈍を行う必
要がないため、この場合におけるめっき前の均熱(通常
550〜600℃程度の低温で行われる)に対して伸び
フランジ性のほか、引張特性がどのように変動するかは
不明である。
After intentional hot rolling, by performing three stages of cooling,
It has been shown to improve stretch flangeability (hole expandability). However, this proposal relates to hot-rolled steel sheets, and does not take into account the change in material quality caused by passing through the hot-dip galvanizing line as described above. For example, when a hot rolled steel sheet is used as the original sheet, there is no need to perform recrystallization annealing, so the stretch flangeability is In addition, it is unclear how the tensile properties change.

本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、高い伸びフランジ性、優れた引張特
性を有する溶融亜鉛めっき鋼板を冷間圧延を施すことな
く製造できる方法を提供することを目的とするものであ
る。
The present invention has been made in order to solve the problems of the prior art described above, and provides a method for producing hot-dip galvanized steel sheets having high stretch flangeability and excellent tensile properties without cold rolling. The purpose is to

(課題を解決するための手段) 前記目的を達成するため、本発明者らは、まず、鋼の成
分組成について検討したゆその結果、伸びフランジ性は
特にCが0.08%以下で大幅に向上することを見出し
た。しかしながら、前述したように熱延鋼板を原板とす
る場合は再結晶焼鈍を行う必要がないため、めっき前の
均熱は通常550〜600℃程度の低温で行われ、この
様な条件で前記の0.08%以下のC量の鋼板に溶融亜
鉛めっきを行うと、伸びフランジ性のほか、もう1つの
重要視すべき特性である引張特性が大幅に劣化すること
が判明した。
(Means for Solving the Problem) In order to achieve the above object, the present inventors first investigated the composition of steel and found that the stretch flangeability was significantly improved especially when C was 0.08% or less. I found that it can be improved. However, as mentioned above, when hot-rolled steel sheets are used as base sheets, there is no need to perform recrystallization annealing, so soaking before plating is usually carried out at a low temperature of about 550 to 600 degrees Celsius, and under these conditions, the above-mentioned It has been found that when hot-dip galvanizing is applied to a steel sheet with a C content of 0.08% or less, in addition to stretch flangeability, tensile properties, another important property, are significantly degraded.

そこで、鋼の成分組成、製造プロセス条件等について更
に鋭意研究を重ねた結果、C量を従来より低減し、更に
適正な熱延条件(特に巻取り温度)と、溶融亜鉛めっき
ラインでの加熱温度の組み合わせにより、高い伸びフラ
ンジ性と優れた引張特性を兼ね備えた溶融亜鉛めっき鋼
板が得られることを知見し、ここに本発明をなしたもの
である。
Therefore, as a result of further intensive research into the composition of steel, manufacturing process conditions, etc., we have reduced the amount of C compared to conventional methods, and developed appropriate hot rolling conditions (especially coiling temperature) and heating temperature on the hot-dip galvanizing line. It was discovered that a hot-dip galvanized steel sheet having both high stretch flangeability and excellent tensile properties could be obtained by a combination of the following, and the present invention was thus made.

すなわち、本発明に係る加工性の優れた溶融亜鉛めっき
鋼板の製造方法は、c:o、o2〜o、08%、Mn:
0.60〜1.60%及びS:O,OO9%以下を含む
鋼を、Ar3点以上の温度で熱間圧延後、600℃以下
の巻取温度でコイル状に巻取り、次いで冷間圧延をせず
に、溶融亜鉛めっきを施すに際し、溶融亜鉛めっき前の
鋼帯の加熱温度が650℃以上750℃以下であること
を特徴とするものである。
That is, the method for producing a hot-dip galvanized steel sheet with excellent workability according to the present invention includes c:o, o2~o, 08%, Mn:
Steel containing 0.60 to 1.60% and S:O, OO 9% or less is hot rolled at a temperature of Ar3 or higher, then wound into a coil at a coiling temperature of 600°C or lower, and then cold rolled. When performing hot-dip galvanizing without galvanizing, the heating temperature of the steel strip before hot-dip galvanizing is 650°C or more and 750°C or less.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

(作用) まず、本発明の重要な要素であるC、Mn量及び巻取温
度、溶融亜鉛めっき条件について、実験結果に基き説明
する。
(Function) First, the important elements of the present invention, such as the amounts of C and Mn, the winding temperature, and the hot-dip galvanizing conditions, will be explained based on experimental results.

実験では、C:0.01〜0.12%、Mn:0.68
〜1.90%及びS:O,009%以下を含有する鋼を
溶製し、鋳型に鋳込み、スラブとした。これらのスラブ
にAr3点以上で板厚2.00mmまで熱間圧延を施し
、400〜650℃の温度で巻取った。得られた熱延鋼
板を、溶融亜鉛めっきを施すに際し、溶融亜鉛めっき前
の加熱温度を500〜800℃の範囲で変化させた。
In the experiment, C: 0.01-0.12%, Mn: 0.68
A steel containing ~1.90% and S:O,009% or less was produced and cast into a mold to form a slab. These slabs were hot rolled at 3 or more Ar points to a thickness of 2.00 mm, and wound up at a temperature of 400 to 650°C. When hot-dip galvanizing the obtained hot-rolled steel sheet, the heating temperature before hot-dip galvanizing was varied in the range of 500 to 800°C.

熱延まま及び溶融亜鉛めっき後の各鋼板より、圧延方向
にJISS号試験片及び穴拡げ試験用サンプルを採取し
、伸びフランジ性と引張特性を評価した。なお、穴拡げ
試験は、打ち抜きにて8m+s径の穴あけ後、先端角6
0°の円錐ポンチにより穴拡げ加工を行い、最も大きな
亀裂が板厚を貫通したときの径(D、mm)を調べ、穴
拡がり限(λ)を以下のように求め、この値により伸び
フランジ性を評価した。
JISS No. test pieces and hole expansion test samples were taken from each steel sheet as hot-rolled and after hot-dip galvanizing in the rolling direction, and stretch flangeability and tensile properties were evaluated. In addition, in the hole expansion test, after punching a hole with a diameter of 8 m + s, the tip angle was 6.
Expand the hole using a 0° conical punch, check the diameter (D, mm) when the largest crack penetrates the plate thickness, determine the hole expansion limit (λ) as shown below, and use this value to form a stretch flange. The gender was evaluated.

λ= −X 100 (%) (1)C量 まず、本発明において重要な構成因子であるC量につい
て説明する。
λ=-X 100 (%) (1) Amount of C First, the amount of C, which is an important constituent factor in the present invention, will be explained.

上記実験結果の一例を第1図及び第2図に示す。An example of the above experimental results is shown in FIGS. 1 and 2.

なお、これらの図の場合、溶融亜鉛めっき前加熱を65
0〜700℃で行った。
In addition, in the case of these figures, the heating before hot-dip galvanizing is 65
The temperature was 0 to 700°C.

第1図はほぼ同一の強度を有する鋼板の穴拡がり限を示
したものである。第1図より、宗法がり限はC量の低下
と共に向上することがわかる。これは、第3図の顕微鏡
写真(巻取温度500℃)に示すように、C量の低下に
より粒界に存在する硬い第2相が小さく、かつ少なくな
るため、フェライトと第2相間で発生するボイドが小さ
く、かっこれらが連結しにくくなり、穴拡げ試験での亀
裂の発生及び成長が抑えられたためと考えられる。
FIG. 1 shows the hole expansion limits of steel plates having approximately the same strength. From FIG. 1, it can be seen that the yield limit improves as the amount of C decreases. As shown in the micrograph in Figure 3 (coiling temperature: 500°C), this occurs between the ferrite and the second phase because the hard second phase existing at the grain boundaries becomes smaller and fewer due to the decrease in the amount of C. This is thought to be because the voids formed by the cracks were small and the brackets were difficult to connect, which suppressed the occurrence and growth of cracks in the hole expansion test.

したがって、優れた伸びフランジ性を得るためには、C
量は0.08%以下、好ましくは0.06%以下である
ことが必要である。
Therefore, in order to obtain excellent stretch flangeability, C
The amount needs to be below 0.08%, preferably below 0.06%.

但し、C量があまりに低いと、第2図のC:0゜01%
鋼の例に示したように、同−Mn量で比較した場合及び
同一強度で比較した場合、いずれにおイテモ、c:o、
oa%、0.05%の各線に比べて引張強度と伸びバラ
ンスが低下する。これはC量が低いために溶融亜鉛めっ
きでの加熱時にセメンタイト中のCが全て固溶してしま
い、更にその後の急冷時にフェライト中のCの過飽和度
が低く、セメンタイトとしての析出が遅く、製品の鋼中
の固溶C量が多くなり、伸びが低下するためと考えられ
る。
However, if the amount of C is too low, C in Figure 2: 0°01%
As shown in the example of steel, when comparing the same -Mn content and the same strength, itemmo, c:o,
The tensile strength and elongation balance are lower than the 0.05% and 0.05% lines. This is because the C content is low, so all of the C in cementite dissolves into solid solution during heating during hot-dip galvanizing, and furthermore, during the subsequent rapid cooling, the supersaturation degree of C in ferrite is low, and precipitation as cementite is slow, resulting in It is thought that this is because the amount of solid solute C in the steel increases and the elongation decreases.

したがって、このような伸びの低下を抑制するためには
、C量は0.02%以上とすることが必要である。
Therefore, in order to suppress such a decrease in elongation, the amount of C needs to be 0.02% or more.

よって、C量は0.02〜0.08%の範囲とする。Therefore, the amount of C is set in the range of 0.02 to 0.08%.

(2)Mn量 Mnは鋼の強化元素として有効である。本発明において
は、主な強化元素は、CとMnであるため、所望の強度
(38kgf/+u+2)を得るためには0゜60%以
上のMnが必要である。
(2) Amount of Mn Mn is effective as a strengthening element for steel. In the present invention, since the main reinforcing elements are C and Mn, 0.60% or more of Mn is required to obtain the desired strength (38 kgf/+u+2).

一方、上記実験結果を示す第4図かられかるように、穴
拡がり限は、Mn量が1.60%以下の範囲では殆ど低
下しない、すなわち、この範囲ではMnの添加により穴
拡がり限を低下させることなく、鋼を強化することがで
きる。これは、第3図の顕微鏡写真に示すように、Mn
:1.92%鋼では第2相の量が多くなっており、これ
が穴拡がり限を低下させているものと考えられる。
On the other hand, as can be seen from Figure 4 showing the above experimental results, the hole expansion limit hardly decreases in the range where the Mn content is 1.60% or less. It is possible to strengthen steel without damaging it. As shown in the micrograph in Figure 3, this is due to Mn
:1.92% steel has a large amount of second phase, which is thought to reduce the hole expansion limit.

したがって、優れた伸びフランジ性を得るためには、M
nは1.60%以下であることが必要である。
Therefore, in order to obtain excellent stretch flangeability, M
It is necessary that n is 1.60% or less.

よって、Mn量は0.60〜1.60%の範囲とする。Therefore, the Mn content is set in the range of 0.60 to 1.60%.

(3)溶融亜鉛めっき条件 また、第4図より、巻取温度は550℃の方が穴拡がり
限は高いことが示されており、高い穴拡がり限を得るた
めには、巻取温度は低い方が望ましい。
(3) Hot-dip galvanizing conditions Also, Figure 4 shows that the hole expansion limit is higher when the winding temperature is 550°C, and in order to obtain a high hole expansion limit, the winding temperature must be low. It is preferable.

一方、上記実験結果の一例を示す第4図は1巻取温度(
以下、rcTJと略称する)及び溶融亜鉛めっき前加熱
温度、(以下、「めっき前加熱温度」という)の影響を
示している。同図より、めっき前加熱温度が650℃よ
り低い場合及び750℃より高い場合には、いずれも熱
延ままに比べて伸びが大きく低下し、降伏点が高い。し
かしながら、めっき前加熱温度が650℃以上750℃
以下の範囲の場合では、いずれの鋼種もこの温度範囲外
で加熱した前述の場合に比べ、伸びが高く、降伏点も低
く、熱延ままの特性値に近づいている。この原因は必ず
しも明らかでないが、めっき前加熱温度が650〜75
0℃では加熱時のせメンタイト中のCの再固溶量が適正
であったため、後の急冷時のセメンタイトの析出が進ん
だためと考えられる。
On the other hand, FIG. 4, which shows an example of the above experimental results, shows the one-winding temperature (
(hereinafter abbreviated as rcTJ) and pre-hot-dip galvanizing heating temperature (hereinafter referred to as "pre-plating heating temperature"). From the same figure, when the pre-plating heating temperature is lower than 650°C and higher than 750°C, the elongation is greatly reduced and the yield point is high compared to the as-hot-rolled steel. However, the heating temperature before plating is 650℃ or more and 750℃
In the case of the following range, all steel types have higher elongation and lower yield point than the above-mentioned cases in which the steel was heated outside this temperature range, approaching the characteristic values of as-hot-rolled steel. The cause of this is not necessarily clear, but the heating temperature before plating is 650 to 75
This is considered to be because at 0° C., the amount of re-solid solution of C in cementite during heating was appropriate, so that precipitation of cementite progressed during subsequent rapid cooling.

したがって、めっき前加熱温度は650〜750℃の範
囲とする。なお、溶融亜鉛めっきの他の条件は特には制
限されない。
Therefore, the pre-plating heating temperature is in the range of 650 to 750°C. Note that other conditions for hot-dip galvanizing are not particularly limited.

(4)巻取温度 一方5巻取温度CTについては、第5図のC:0.05
%、Mn:0.80%鋼の例で示されるように、めっき
前加熱温度の影響がCTにより異なっている。すなわち
、めっき前加熱温度が700℃の場合、CTが低いほど
熱延ままの特性値に近くなり、かつこの場合CTが低い
方が強度と伸びのバランスはよい、したがって、より優
れた強度と伸びのバランスを得るためには、CTは60
0℃以下が好ましい、更にこの場合、同一成分組成でよ
り高い強度が得られる。換言すれば、同一強度を得るた
めに、必要なMn量が少なくて済むため、製造コスト的
にも有利である。
(4) Winding temperature On the other hand, for the 5th winding temperature CT, C in Figure 5: 0.05
%, Mn:0.80% As shown in the example of steel, the influence of the pre-plating heating temperature differs depending on the CT. In other words, when the pre-plating heating temperature is 700°C, the lower the CT, the closer the characteristic value is to the as-hot-rolled property.In this case, the lower the CT, the better the balance between strength and elongation.Therefore, the lower the CT, the better the balance between strength and elongation. In order to obtain the balance of , CT is 60
The temperature is preferably 0° C. or lower, and in this case, higher strength can be obtained with the same component composition. In other words, in order to obtain the same strength, a smaller amount of Mn is required, which is advantageous in terms of manufacturing cost.

(5)その他 次に本発明を構成するその他の各因子について説明する
(5) Others Next, other factors constituting the present invention will be explained.

■S Sは周知のように、その含有量が多いとMnS介在物が
増加し、穴拡げ率を低下させる。したがって、できる限
り低いことが好ましいが、本発明においては、0.00
9%以下にするとその悪影響が小さいため、0.009
%を上限とする。
■SS As is well known, when the S content is high, MnS inclusions increase and the hole expansion rate decreases. Therefore, it is preferable that it be as low as possible, but in the present invention, 0.00
If it is 9% or less, the negative effect is small, so 0.009
The upper limit is %.

■熱延終了温度  − オーステナイトとフェライト域で熱延を行った場合、フ
ェライトが加工を受け、この部分はめっき前加熱によっ
て、加工されたフェライトとして残存或いは粗粒化し、
いずれの場合も伸びフランジ性が低下するため、熱延終
了温度はArm点以上とする。
■Hot rolling end temperature - When hot rolling is performed in the austenite and ferrite region, the ferrite undergoes processing, and this area remains as processed ferrite or becomes coarse grained due to heating before plating.
In either case, the stretch flangeability deteriorates, so the hot rolling end temperature is set to be equal to or higher than the Arm point.

なお、本発明では以上の点を必須構成要件とし、その他
の点は特に制限されるものではないが、例えば、鋼の強
度或いは鋼精錬時の脱酸を目的として、Si、AQを添
加することができ、また不可避的不純物として混在する
Pの影響もあるので、以下にこれらについて説明する。
In addition, in the present invention, the above points are essential components, and other points are not particularly limited, but for example, Si and AQ may be added for the purpose of increasing the strength of steel or deoxidizing during steel refining. In addition, since there is also the influence of P mixed as an unavoidable impurity, these will be explained below.

Si: Siの含有量は0.2%以下であることが望ましい。含
有量が0.2%を超えると熱延段階で赤スケールが生じ
るおそれがあり、赤スケール模様は酸洗後も残るため、
めっき表面に縞状模様が浮き出て表面外観を劣化させ、
商品価値を著しく低下させる。更に赤スケールが発生し
た場合、スケール発生部分のめっき密着性が劣化するた
め、この観点からも、Si含有量は可及的に抑制するこ
とが望ましい。
Si: The content of Si is desirably 0.2% or less. If the content exceeds 0.2%, red scale may occur during the hot rolling stage, and the red scale pattern remains even after pickling.
Striped patterns appear on the plating surface, deteriorating the surface appearance.
Significantly reduce product value. Furthermore, when red scale occurs, the plating adhesion of the scale-generated portion deteriorates, so from this point of view as well, it is desirable to suppress the Si content as much as possible.

AQ: AQは鋼精錬時の脱酸剤として添加される元素であるが
、その添加量が0.005%以下の場合には、脱酸が不
充分であり、逆に0.10%を超える場合には、脱酸の
効果が飽和し、製造コスト上不利なため、0.005%
以上、0.10%以下とするのが望ましい。
AQ: AQ is an element added as a deoxidizing agent during steel refining, but if the amount added is less than 0.005%, deoxidizing is insufficient, and on the contrary, if it exceeds 0.10% In some cases, the deoxidizing effect is saturated and it is disadvantageous in terms of manufacturing costs, so 0.005%
In view of the above, it is desirable that the content be 0.10% or less.

P: Pは強化元素として有効であるが、その含有量が0.0
3%を超える場合には、溶融亜鉛めっき後、合金化処理
を行う場合に合金化速度が著しく低下するため、0.0
3%以下とするのが望ましい。
P: P is effective as a reinforcing element, but its content is 0.0
If it exceeds 3%, the alloying rate will drop significantly when performing alloying treatment after hot-dip galvanizing, so 0.0
It is desirable that it be 3% or less.

N: Nは本発明のように600℃以下の低い温度で巻取れば
鋼中に固溶し、耐時効性を劣化させる恐れがあり、特に
この観点からはN含有量が低い方が有利であるため、0
.0050%以下が望ましb)。
N: If N is rolled at a low temperature of 600°C or less as in the present invention, it will form a solid solution in the steel and may deteriorate the aging resistance. Particularly from this point of view, a lower N content is advantageous. 0 because there is
.. 0050% or less b).

その他: 溶融亜鉛めっき後の合金化処理に関しては、通常の処理
温度(500〜700℃)の範囲では引張特性、伸びフ
ランジ性に対し、殆ど影響を及ぼさないために特に限定
はされない。
Others: The alloying treatment after hot-dip galvanizing is not particularly limited because it has almost no effect on tensile properties and stretch flangeability in the normal treatment temperature range (500 to 700°C).

次に本発明の一実施例を示す。なお、本発明はこの実施
例のみに限定されるものではないことは云うまでもなく
、既述の各種基礎研究及び実験例のほか、他の態様も可
′能である。
Next, one embodiment of the present invention will be described. It goes without saying that the present invention is not limited to this example, and other embodiments are possible in addition to the various basic research and experimental examples described above.

(実施例) 第1表に示す化学成分(wt%)を有する鋼を常法によ
り溶製し、転炉出鋼後、連続鋳造によりスラブとした0
次いで、板厚2+amまで第2表に示す熱延終了温度で
熱間圧延を施し、第2表に示す巻取温度でコイル状に巻
取った。得られた熱延コイルを酸洗した後、亜鉛めっき
ラインにて第2表に示すめっき前加熱温度で加熱処理し
、溶融亜鉛めっき処理を施し、伸び率1.0%の調質圧
延を施した。
(Example) Steel having the chemical composition (wt%) shown in Table 1 was melted by a conventional method, and after being tapped from a converter, it was made into a slab by continuous casting.
Next, the material was hot rolled to a thickness of 2+am at the hot rolling end temperature shown in Table 2, and wound into a coil at the winding temperature shown in Table 2. After pickling the obtained hot-rolled coil, it was heat-treated in a galvanizing line at the pre-plating heating temperature shown in Table 2, hot-dip galvanized, and temper-rolled with an elongation rate of 1.0%. did.

得られた溶融亜鉛めっき鋼板の諸特性(引張特性、伸び
、伸びフランジ性)を第2表に併記する。
Various properties (tensile properties, elongation, stretch flangeability) of the obtained hot-dip galvanized steel sheets are also listed in Table 2.

なお、表中、引張特性は該鋼板から圧延方向にJISS
号試験片を採取し、引張試験を行った結果であり、伸び
フランジ性は前述の穴拡げ試験方法により評価した。
In addition, in the table, the tensile properties are JISS in the rolling direction from the steel plate.
These are the results of a tensile test performed on a No. 1 test piece, and the stretch flangeability was evaluated using the hole expansion test method described above.

第2表より明らかなように、本発明例であるNα1、魔
6、h9はいずれも強度と延性のバランスがよく、穴拡
がり限も高い。
As is clear from Table 2, the examples of the present invention, Nα1, Ma6, and H9, all have a good balance between strength and ductility, and have a high hole expansion limit.

これに対し、比較例のNα2はC量が低すぎるため、本
発明例&1に比べて伸びが劣る。
On the other hand, the comparative example Nα2 has a too low C content, so its elongation is inferior to that of the invention example &1.

更に、比較例のNα3〜&5はそれぞれq、Mn、Sが
高すぎるため、穴拡がり限が本発明例Nα1に比べて低
い。
Furthermore, since q, Mn, and S of Comparative Examples Nα3 to &5 are too high, the hole expansion limit is lower than that of Inventive Example Nα1.

また、比較例のNn 7は熱延終了温度が低すぎ、Nn
8で巻取温度が高すぎるため、それぞれ強度と伸びのバ
ランスが本発明例&6に比べて劣る。
In addition, the hot rolling end temperature of Nn 7 as a comparative example was too low, and Nn
Since the winding temperature in Sample No. 8 was too high, the balance between strength and elongation was inferior to Invention Examples & No. 6.

また、比較例Nα10はめっき前加熱温度が高すぎ、N
α11はこれが低すぎるため、本発明例Nα9に比べて
引張強度と伸びのバランスが悪い。
In addition, in Comparative Example Nα10, the heating temperature before plating was too high, and Nα10
Since α11 is too low, the balance between tensile strength and elongation is poor compared to the invention example Nα9.

【以下余白1 (発明の効果) 以上詳述したように1本発明によれば、高い伸びフラン
ジ性と優れた引張特性を有する溶融亜鉛めっき鋼板を、
冷間圧延を施すことなく、製造することができるため、
製造コスト上有利であり、更に、厳しい伸びフランジ加
工や絞り加工にも耐え得るため、これらの用途にも適用
が可能となり、産業上有利な効果がもたらされる。
[Blank 1 (Effects of the Invention) As detailed above, according to the present invention, a hot-dip galvanized steel sheet having high stretch flangeability and excellent tensile properties can be
Because it can be manufactured without cold rolling,
It is advantageous in terms of manufacturing cost and can withstand severe stretch flanging and drawing processes, so it can be applied to these uses and brings about industrially advantageous effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は打ち抜き穴の穴拡がり限に及ぼすC量の影響を
示す図、 第2図はC,Mn量の異なる鋼の引張強さと伸びバラン
スを比較した図で、はぼMn量を一定にした場合と、は
ぼ引張強さを一定にした場合でC量の違いによる差を示
しており。 第3図(a)、(b)、(C′)は圧延方向断面での金
属組織(ミクロ組織)の顕微鏡写真(倍率1000倍)
で、C,Mn量の影響を示しており、黒い輪郭で囲まれ
た紐状の部分がフェライト以外の組織(パーライト、ベ
イナイト、マルテンサイト等)を表わしており、 第4図は打ち抜き穴の穴拡がり限に及ぼすMn量の影響
を示す図、 第5図は引張特性に及ぼす溶融亜鉛めっきラインでの加
熱温度の影響を示す図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 第1図 C量  (Aン 第2図 引?J+強さ (ツ仏、・) 第4図 Mη童(幻
Figure 1 is a diagram showing the effect of C content on the expansion limit of punched holes. Figure 2 is a diagram comparing the tensile strength and elongation balance of steels with different C and Mn contents. It shows the difference due to the difference in C content between the case where the tensile strength is constant and the case where the tensile strength is constant. Figure 3 (a), (b), and (C') are micrographs (1000x magnification) of the metal structure (microstructure) in the cross section in the rolling direction.
Figure 4 shows the influence of the amounts of C and Mn, and the string-like part surrounded by the black outline represents structures other than ferrite (pearlite, bainite, martensite, etc.). FIG. 5 is a diagram showing the effect of the amount of Mn on the spreading limit, and FIG. 5 is a diagram showing the effect of the heating temperature in the hot-dip galvanizing line on the tensile properties. Patent applicant Takashi Nakamura, Patent attorney representing Kobe Steel, Ltd. Figure 1 C quantity (A and 2?

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、C:0.02〜0.08%、
Mn:0.60〜1.60%及びS:0.009%以下
を含む鋼を、Ar_3点以上の温度で熱間圧延後、60
0℃以下の巻取温度でコイル状に巻取り、次いで冷間圧
延をせずに、溶融亜鉛めっきを施すに際し、溶融亜鉛め
っき前の鋼帯の加熱温度が650℃以上750℃以下で
あることを特徴とする加工性の優れた溶融亜鉛めっき鋼
板の製造方法。
In weight% (the same applies hereinafter), C: 0.02 to 0.08%,
After hot rolling a steel containing Mn: 0.60 to 1.60% and S: 0.009% or less at a temperature of Ar_3 or higher, 60
When winding into a coil at a winding temperature of 0°C or lower and then hot-dip galvanizing without cold rolling, the heating temperature of the steel strip before hot-dip galvanizing is 650°C or higher and 750°C or lower. A method for producing hot-dip galvanized steel sheets with excellent workability.
JP1131094A 1989-05-24 1989-05-24 Method for producing hot-dip galvanized steel sheet with excellent workability Expired - Fee Related JPH0635647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131094A JPH0635647B2 (en) 1989-05-24 1989-05-24 Method for producing hot-dip galvanized steel sheet with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131094A JPH0635647B2 (en) 1989-05-24 1989-05-24 Method for producing hot-dip galvanized steel sheet with excellent workability

Publications (2)

Publication Number Publication Date
JPH02310354A true JPH02310354A (en) 1990-12-26
JPH0635647B2 JPH0635647B2 (en) 1994-05-11

Family

ID=15049837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131094A Expired - Fee Related JPH0635647B2 (en) 1989-05-24 1989-05-24 Method for producing hot-dip galvanized steel sheet with excellent workability

Country Status (1)

Country Link
JP (1) JPH0635647B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1010678A2 (en) 2009-05-27 2016-03-15 Nippon Steel Corp high strength steel plate, hot-plated steel plate and hot-alloy alloy steel plate which have excellent fatigue, elongation and collision characteristics, and manufacturing method for said steel plates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036859U (en) * 1973-07-31 1975-04-17
JPS6087043U (en) * 1983-11-16 1985-06-15 島田 喜郎 Card for creating computer program drawings
JPS63111884U (en) * 1987-01-07 1988-07-18
JPH01133642U (en) * 1988-03-03 1989-09-12

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036859U (en) * 1973-07-31 1975-04-17
JPS6087043U (en) * 1983-11-16 1985-06-15 島田 喜郎 Card for creating computer program drawings
JPS63111884U (en) * 1987-01-07 1988-07-18
JPH01133642U (en) * 1988-03-03 1989-09-12

Also Published As

Publication number Publication date
JPH0635647B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP5088023B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
CN110073026B (en) High-strength cold-rolled steel sheet and hot-dip galvanized steel sheet having excellent yield strength, ductility and hole expansibility, and methods for producing same
KR20180025930A (en) Ultra high strength multiphase steel and method for manufacturing cold rolled steel strip therefrom
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
JP2021507992A (en) High-strength steel sheet with excellent workability and its manufacturing method
JP6052476B1 (en) High strength steel plate and manufacturing method thereof
US11414721B2 (en) Method for the manufacture of TWIP steel sheet having an austenitic matrix
CN113316656B (en) High-strength hot-dip galvanized steel sheet and method for producing same
KR102162898B1 (en) High-strength hot-dip galvanized steel sheet and its manufacturing method
JP2001003150A (en) High tensile strength hot dip galvanized steel sheet excellent in ductility and its production
JP2002129241A (en) Method for manufacturing high tensile hot-dip galvanized steel sheet having excellent ductility
CN115216688B (en) 800 MPa-grade hot-rolled low-alloy high-strength steel, steel matrix thereof and preparation method thereof
JP6843245B2 (en) High-strength galvanized steel sheet with excellent bendability and stretch flangeability and its manufacturing method
CN115198173B (en) 980 MPa-grade hot-base galvanized complex-phase steel, steel matrix and preparation method thereof
CN108474084B (en) Hot-rolled plated steel sheet having excellent workability and method for producing same
CN114807737B (en) Hot dip galvanized steel and manufacturing method thereof
JP4010132B2 (en) Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
JP2761096B2 (en) Manufacturing method of high ductility and high strength alloyed hot-dip galvanized steel sheet
JP2005206920A (en) High-tensile-strength hot-dip galvanized hot-rolled steel sheet with low yield ratio and composite structure superior in extension flange, and manufacturing method therefor
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JP2003193189A (en) High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor
JP3967868B2 (en) High-strength hot-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability, and manufacturing method thereof
JP3587114B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees