JPH02310338A - Fine-grained martensitic steel - Google Patents

Fine-grained martensitic steel

Info

Publication number
JPH02310338A
JPH02310338A JP1128535A JP12853589A JPH02310338A JP H02310338 A JPH02310338 A JP H02310338A JP 1128535 A JP1128535 A JP 1128535A JP 12853589 A JP12853589 A JP 12853589A JP H02310338 A JPH02310338 A JP H02310338A
Authority
JP
Japan
Prior art keywords
steel
martensite
austenite
fine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1128535A
Other languages
Japanese (ja)
Other versions
JP3252905B2 (en
Inventor
Kenji Aihara
相原 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12853589A priority Critical patent/JP3252905B2/en
Priority to CA002004548A priority patent/CA2004548C/en
Priority to KR1019890017936A priority patent/KR930010321B1/en
Priority to AU45924/89A priority patent/AU615360B2/en
Priority to ES89122371T priority patent/ES2073422T3/en
Priority to EP89122371A priority patent/EP0372465B1/en
Priority to CN 89109065 priority patent/CN1018930B/en
Priority to US07/446,457 priority patent/US5080727A/en
Priority to DE68922075T priority patent/DE68922075T2/en
Publication of JPH02310338A publication Critical patent/JPH02310338A/en
Application granted granted Critical
Publication of JP3252905B2 publication Critical patent/JP3252905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the fine-grained martensitic steel widely useful in general purposes by regulating its structure as the one having specified average size of the packet of martensite or that of old austenitic grains before the formation or martensite. CONSTITUTION:In the steel, the average size of the packet of martensite or that of old austenitic grains before the formation of martensite is regulated to <=5mum. The steel can be manufactured by regulating the structural state of steel stock into the one in which at least a part is constituted of ferrite, raising its temp. to the transformation point (Ac1 point) or above while plastic working is executed to reversely transform a part or whole of the structure into austenite for a time and to allow ultra-fine austenitic grains to appear and thereafter executing cooling or the like. The steel has various characteristics such as excellent workability in addition to the characteristics peculiar to a martensitic steel.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、曲げ、切断、ねじり、打ち抜き。[Detailed description of the invention] <Industrial application field> This invention can be bent, cut, twisted and punched.

伸線、圧延等の如き加工処理性が良好な、汎用性に冨む
微細粒マルテンサイト鋼材に関するものである。
The present invention relates to a fine-grained martensitic steel material that is highly versatile and has good processing properties such as wire drawing and rolling.

〈従来技術とその課題〉 従来から“鋼材の緒特性(強度、靭性、加工性(塑性加
工性、切断特性1曲げ特性等)、耐゛食性、超塑性など
)はその組織が微細になるほど向上する」との事実が広
く知られており、その認識のもとに各種の技術をもって
鋼の結晶粒を微細化したり粒成長を抑制することが行わ
れている。そして、例えばFe −13〜18wtχC
r−8J2ivtχNiのオーステナイト系ステンレス
鋼を室温で冷間加工することでオーステナイトをマルテ
ンサイトに加工誘起変態させた後安定オーステナイト域
に加熱して焼鈍し、マルテンサイトをオーステナイトに
逆変態させることによって、粒径:0.5−のオーステ
ナイト結晶組織を持つオーステナイト鋼材が得られると
の報告〔鉄と鋼、第74年(1988年)第6号、第1
052〜1057頁〕や、低炭素鋼を変態点よりも上の
オーステナイト領域で強加工して微細フェライトを誘起
させた後、直ちに急冷することによって、1〜50%未
満の割合で平均粒径5〜3悶のフェライト結晶粒を含む
と共に残部がマルテンサイト又はベイナイトの焼入れ組
織から成る熱間圧延鋼材を得ようとの提案〔特公昭62
−42021号〕もなされた。
<Prior art and its challenges> It has been said that the mechanical properties of steel (strength, toughness, workability (plastic workability, cutting properties, bending properties, etc.), corrosion resistance, superplasticity, etc.) improve as the structure becomes finer. It is widely known that steel grains are made finer and grain growth is suppressed using various techniques based on this recognition. For example, Fe −13 to 18wtχC
r-8J2ivtχNi austenitic stainless steel is cold-worked at room temperature to cause strain-induced transformation of austenite into martensite, then heated to a stable austenite region and annealed, and martensite is reverse transformed into austenite. It is reported that an austenitic steel material having an austenite crystal structure with a diameter of 0.5- can be obtained [Tetsu to Hagane, No. 74 (1988) No. 6, No. 1]
052-1057], or by strongly working low carbon steel in the austenite region above the transformation point to induce fine ferrite, and then immediately quenching it, the average grain size is reduced to less than 1 to 50%. Proposal to obtain a hot-rolled steel material containing ferrite crystal grains of ~300 mm and having a hardened structure with the remainder being martensite or bainite [Special Publication No. 62]
-42021] was also made.

しかしながら、これらの既知技術をもってしてもマルテ
ンサイト組織そのものの微細化にはどうしても限界があ
り、該技術で達成される微細組織範囲内での特性動向は
従来知見を基に容易に予測できる域を出るものではなか
った。
However, even with these known techniques, there is a limit to the refinement of the martensitic structure itself, and the characteristics trends within the microstructure range achieved by these techniques are beyond the range that can be easily predicted based on conventional knowledge. It wasn't something that would come out.

ところが、最近になって、本発明者等はフェライト鋼材
やパーライト鋼材を対象として従来知られていたレベル
を皇かに下回る超微細組織の実現手段を見出し、しかも
、それら鋼材の組織が成る特定の値以下にまで微細化さ
れると予想を超える特性動向を示すようになる牛の事実
を究明することに成功した。更に、これらフェライト、
パーライト鋼材では、その主体となる組織(フェライト
粒又はパーライト粒)の粒径で特性がほぼ支配されるこ
とも確認している。
However, recently, the inventors of the present invention have discovered a means of achieving ultra-fine structures that are far below the level known in the past for ferritic steel and pearlite steel, and have discovered a method for achieving ultra-fine structures that are far below the levels previously known. We succeeded in investigating the fact that when cattle are refined to a level below this value, they begin to exhibit characteristics that exceed expectations. Furthermore, these ferrites,
It has also been confirmed that the characteristics of pearlite steel are almost controlled by the grain size of its main structure (ferrite grains or pearlite grains).

そこで、本発明者等は、マルテンサイト組織鋼材におい
ても従来技術での組織微細化限界を打破し得る方策が存
在するものと確信し、′フルテンサイド組織を主体とす
る鋼材における更なる組v6.微細化手段とそれによる
特性動向を解明すべく、様々な観点からの研究を行った
Therefore, the present inventors believe that there is a method that can overcome the limit of structure refinement in the conventional technology even in martensitic structure steels, and 'Further group v6. We conducted research from various perspectives in order to elucidate the means of miniaturization and the characteristics trends resulting from them.

く課題を解決するための手段〉 そして、上記研究を通じ、本発明者は次のような知見を
得たのである。
Means for Solving the Problems> Through the above research, the present inventors have obtained the following knowledge.

まず、マルテンサイト鋼材では熱間からの急冷によって
オーステナイト粒内にて成る結晶方位関係に制約された
マルテンサイト葉の集団(マルテンサイトのパケット)
が生成されるが、マルテンサイト綱材においてはこのパ
ケットがフェライト鋼材におけるフェライト粒径と同様
なa織の単位として作用し、鋼材の性質を決定するのに
極めて大きな役割を持っていることが明らかとなった。
First, in martensitic steel materials, groups of martensite leaves (martensite packets) that are constrained by crystal orientation relationships within austenite grains due to rapid cooling from hot.
It is clear that in martensitic steel, these packets act as a weave unit similar to the ferrite grain size in ferritic steel, and play an extremely important role in determining the properties of the steel. It became.

ところで、こうしたパケットは1つのオーステナイト結
晶粒から生成するものであるため“マルテンサイト変態
後のバケソビは元のオーステナイト粒の大きさに左右さ
れ、マルテンサイトのパケット径を小さくするためには
マルテンサイト変態前のオーステナイト粒径(元のオー
ステナイト粒径)の微細化が欠かせない。しかしながら
、従来、フェライト粒についてはかなりの微細化を達成
する記述が提案されてはいたものの、オーステナイト粒
の微細化は難しく、例えば5−以下のオーステナイト粒
組織を工業的に実現することは夢とされていたため、こ
のような細粒オーステナイト組織を前組織にしないと形
成が困難と思われる微細マルテンサイトパケット鋼材の
特性動向を知ることはおろか、該鋼材の実現すら危ぶま
れた。
By the way, since these packets are generated from a single austenite crystal grain, the size of the packet after martensitic transformation depends on the size of the original austenite grain. It is essential to refine the previous austenite grain size (original austenite grain size).However, although descriptions that achieve considerable refinement of ferrite grains have been proposed, For example, it was considered a dream to industrially realize an austenite grain structure with a grain size of 5 or less, so the characteristics of fine martensitic packet steel materials, which are thought to be difficult to form without such a fine austenite structure as a pre-structure. Not only was it difficult to know about trends, but even the realization of the steel material was in doubt.

ところが、特に、[従来一般的に採用されていた鋼材組
織微細化手段の如く、既に存在しているオーステナイト
粒を熱間加工によって幾ら加工したとしても、新たなオ
ーステナイト粒が熱間加工での再結晶によって生成され
る限りは高温和であるオーステナイトの微細化には限度
があり、従ってこのオーステナイト粒から発生する変態
生成組織も該オーステナイト粒径に拘束されるため微細
化に自ずと限界があるのを如何ともし難い」との観点に
立って更に続けられた研究の結果、本発明者は以下のよ
うな事実を確認するに至った訳である。即ち、 (a)  鋼を熱間加工する場合、加工の前段階で既知
の熱間加工における如き熱履歴或いは加工履歴を経させ
、しかる後、一旦鋼組織の少なくとも一部が低温和組織
を呈するように温度管理等を行ってから、加工の最終段
階として塑性加工を加えながら温度を上げて変態点を超
えさせ、前記低温相U織をオーステナイト組織に逆変態
させると、従来の制御圧延等では到底得られないような
超微細オーステナイト組織が実現できる。
However, in particular, no matter how much the already existing austenite grains are processed by hot working, such as with conventional steel structure refinement methods, new austenite grains cannot be regenerated by hot working. There is a limit to the refinement of austenite, which is a high-temperature alloy as long as it is produced by crystals, and therefore the transformation structure generated from the austenite grains is also constrained by the austenite grain size, so there is a natural limit to the refinement. As a result of further research based on the viewpoint that "it is difficult to do anything about it," the present inventors have come to confirm the following fact. That is, (a) When hot working steel, the steel undergoes a thermal history or processing history similar to that in known hot working prior to working, and then at least a portion of the steel structure exhibits a low-temperature relaxation structure. After performing temperature control, etc., as the final stage of processing, the temperature is raised to exceed the transformation point while adding plastic working to reverse transform the low-temperature phase U weave into an austenite structure. An ultra-fine austenite structure that is impossible to obtain can be achieved.

(b)  また、逆変態によって生じる上記超微細オー
ステナイト組織は、上述のように、熱間加工が最終段階
に至る前の加工途中において一旦逆変態のための前組織
(低温和組織)が得られるような温度条件下に鋼材を置
き、続く加工の最終段階でこの低温和組織に塑性加工を
加えながら温度を上げて変態点を超えさせると言う処理
を施せば実現されるが、加工の最初の段階から逆変態に
よってす一ステナイト組織とするための前組織(低温組
紐m>を準備しておき、まずこれに冷間温度域や温間温
度域での加工を加えた後、加工の最終段階で「塑性加工
を加えながら温度を上げて変態点を超えさせる」と言う
処理を施すことによっても実現される。
(b) Furthermore, as mentioned above, the ultrafine austenite structure produced by reverse transformation is obtained once a pre-structure (low-temperature relaxation structure) for reverse transformation is obtained during processing before hot working reaches the final stage. This can be achieved by placing the steel material under such temperature conditions, and in the final stage of processing, plastic working is applied to this low-temperature structure while raising the temperature to exceed the transformation point. A pre-structure (low-temperature braid m) is prepared to obtain a monostenite structure through reverse transformation from the stage, and this is first processed in a cold temperature range or a warm temperature range, and then processed in the final stage of processing. This can also be achieved by performing a process called ``raising the temperature while adding plastic working to exceed the transformation point.''

(C)  上述のように、低温和組織に塑性加工を加え
ながら温度を上げて変態点を超えさせてオーステナイト
組織へ逆変態させる場合、該逆変態を十分に完了させる
ためには、塑性加工を加えながら実施する温度上昇過程
が終った後、完全な平衡状態におけるAI変態点、即ち
Ae、点の温度以上に一定時間保持する手段の採用も有
利である。
(C) As mentioned above, when applying plastic working to a low-temperature softened structure while raising the temperature to exceed the transformation point and reverse transform to an austenite structure, it is necessary to perform plastic working in order to fully complete the reverse transformation. It is also advantageous to employ means for maintaining the temperature at or above the AI transformation point in a complete equilibrium state, that is, the temperature at Ae, for a certain period of time after the temperature raising process carried out while adding is completed.

(d)  このようにして得られた超微細粒オーステナ
イト組織を冷却して得られるマルテンサイト組織鋼材は
、元のオーステナイト粒が超微細化されているが故に極
めて微細なパケットのマルテンサイト組織とすることが
可能である。
(d) The martensitic steel material obtained by cooling the ultrafine-grained austenite structure obtained in this way has an extremely fine packet martensitic structure because the original austenite grains have been made ultrafine. Is possible.

(e)シかも、このように処理して得られる“マルテン
サイトを主体とした鋼材”において、マルテンサイトの
パケットの平均径が5鴻以下になると、鋼材の緒特性(
加工性1強度、靭性等)が従来の知見からは予想されな
かった程に大幅な向上を見せる。
(e) If the average diameter of the martensite packets becomes less than 5 mm in the "martensite-based steel material" obtained by this treatment, the steel properties (
The workability (strength, toughness, etc.) showed a significant improvement that was not expected based on conventional knowledge.

(fl  ところで、一般に、マルテンサイト、特にそ
れを焼戻した焼戻しマルテンサイトでは、マルテンサイ
トのパケットの大きさを測定するよりもエツチング手段
や組織の状況により旧オーステナイト粒(マルテンサイ
ト生成の前組織であるオーステナイト粒)の大きさを測
定する方が容易なことが多く、しかも前述したように該
旧オーステナイト粒径とマルテンサイトのパケットの平
均径とは表裏一体の関係にあって、マルテンサイトを主
体とした鋼材の緒特性の著しい向上は旧オーステナイト
粒径:5鴻を境としてそれ以下になった場合に始めて認
められるので、該鋼材におけるマルテンサイトのパケッ
ト平均径と旧オーステナイト粒径とは同様指標と考えて
差し支えないこと。
(fl) By the way, in general, martensite, especially tempered martensite, is determined by etching methods and structure conditions rather than by measuring the size of martensite packets. It is often easier to measure the size of prior austenite grains, and as mentioned above, the prior austenite grain size and the average diameter of martensite packets are two sides of the same coin. A significant improvement in the properties of a steel material is only recognized when the prior austenite grain size is below 5. Therefore, the average packet diameter of martensite and the prior austenite grain size in the steel material are similar indicators. It's okay to think about it.

この発明は、上記知見等に基づいてなされたもので、[
従来存在しなかったところの、優れた加工性を有する“
マルテンサイトのパケットの平均径或いはマルテンサイ
トを生成する前の旧オーステナイト粒の平均径が5gm
以下であるマルテンサイトを主体とした組織”から成る
、超微細マルチンサイ)M材を実現した点」に大きな特
徴を有している。
This invention was made based on the above findings, etc.
It has excellent workability that did not exist before.
The average diameter of martensite packets or the average diameter of old austenite grains before forming martensite is 5 gm
The major feature is that it has realized an ultra-fine martensite M material consisting of the following martensite-based structure.

ここでの「マルテンサイトのパケット」とは、[細長い
マルテンサイト結晶の長手方向がほぼ平行に並んでいる
領域」と定義されるものであり、「パケット平均径」と
は前記領域を粒とみなしたときの平均粒直径を指してい
る。また、「旧オーステナイト粒平均径」とは、前述し
たようにマルテンサイトが変態生成する前のオーステナ
イト組織における平均オーステナイト粒径のことである
A "martensite packet" here is defined as a region in which the longitudinal directions of elongated martensite crystals are arranged almost parallel to each other, and the "packet average diameter" refers to the region considered to be a grain. It refers to the average grain diameter when Moreover, the "prior austenite grain average diameter" refers to the average austenite grain diameter in the austenite structure before martensite is transformed and generated, as described above.

なお、該旧オーステナイト粒界をマルテンサイト組織の
鋼材から確認する方法は種々知られているが、実際的に
はマルテンサイトを焼戻したのち界面活性剤を添加した
腐食液で旧オーステナイト組織を現出・確認する方法を
採用するのが好ましい。
Various methods are known for confirming the prior austenite grain boundaries in steel materials with a martensitic structure, but in practice, martensite is tempered and then a corrosive solution containing a surfactant is used to reveal the prior austenite structure.・It is preferable to adopt a method of confirmation.

更に、「マルテンサイトを主体とした組織」とは、組織
中にマルテンサイト (ここではマルテンサイト、焼戻
しマルテンサイト、時効処理マルテンサイトを含めて称
する)が50%以上含まれているものを言い、鋼材組織
中においてマルテンサイトの占める比率が50%に達す
るとその鋼材の特性は殆んどマルテンサイトの特性に支
配されるようになる。
Furthermore, "a structure mainly composed of martensite" refers to a structure containing 50% or more of martensite (herein referred to as martensite, tempered martensite, and aged martensite), When the ratio of martensite in the steel structure reaches 50%, the characteristics of the steel material are almost entirely controlled by the characteristics of martensite.

ところで、本発明に係る鋼材の成分組成は、マルテンサ
イトを主体とする組織の得られるものであれば格別に制
限されるものではなく、炭素鋼。
By the way, the composition of the steel material according to the present invention is not particularly limited as long as it can obtain a structure mainly composed of martensite, and carbon steel may be used.

低合金鋼はもとより、フェライト系ステンレス鋼。Low alloy steel as well as ferritic stainless steel.

PHステンレス鋼或いはマルエージ鋼等、マルテンサイ
ト組織の状態で使用するものの何れであっても良い。ま
た、更には+3. V、 Nb+ Ti、 Zr、 W
+Co、 Ta等の合金元素の1種以上を適量含有させ
たものであっても良く、目的に応じてはLa、 Cc等
の希土類元素やCa、  S、 Pb、 Te+旧及び
Se等の快削元素を添加した成分組成も対象となる。
Any material used in a martensitic structure, such as PH stainless steel or marage steel, may be used. Moreover, +3. V, Nb+ Ti, Zr, W
+It may contain an appropriate amount of one or more alloying elements such as Co, Ta, etc., and depending on the purpose, it may contain rare earth elements such as La, Cc, or free-cutting materials such as Ca, S, Pb, Te+old and Se. Component compositions with added elements are also covered.

次に、本発明の鋼材においてマルテンサイトのパケット
の平均径或いはマルテンサイトを生成する前の旧オース
テナイト粒の平均径を5p以下とした理由、並びに本発
明綱材の製造手段を説明する。
Next, the reason why the average diameter of martensite packets or the average diameter of prior austenite grains before martensite generation is set to 5p or less in the steel material of the present invention, and the means for producing the steel material of the present invention will be explained.

〈作用〉 マルテンサイト鋼材の機械的性質、特に強度。<Effect> Mechanical properties of martensitic steel, especially strength.

伸び並びに絞り値はマルテンサイトのパケット径もしく
は旧オーステナイト粒径の微細化と共に向上するが、上
記値が何れも51rrn以下になると予想以上の大幅な
向上効果が認められるようになる。
The elongation and the aperture value improve as the martensite packet diameter or prior austenite grain size becomes finer, but when both of the above values become 51 rrn or less, a more significant improvement effect than expected is observed.

特に、パケット径が24m以下になるとその向上効果は
極めて顕著となる。このため、鋼材組織の50%以上を
占めて本発明鋼材の性質を支配するマルテンサイトのパ
ケット、もしくは先に述べたようにこれと表裏一体にあ
る旧オーステナイト粒の平均径を5rrm以下と限定し
たが、できれば2賜以下であることが望ましい。
In particular, when the packet diameter becomes 24 m or less, the improvement effect becomes extremely remarkable. For this reason, the average diameter of the martensite packets, which account for 50% or more of the steel structure and control the properties of the steel of the present invention, or the prior austenite grains that are two sides of the same coin as mentioned above, was limited to 5 rrm or less. However, if possible, it is desirable that the number is 2 or less.

ところで、本発明に係る鋼材は次のような製造手段によ
って実現される。即ち、素材網を少なくとも一部がフェ
ライト (ここで言うフェライトとは、フェライト組織
、パーライト組織、ベイナイト組織、マルテンサイト組
織などのフェライト相から成る組織を指す)から成る組
織状態としておき、これに塑性加工を加えつつ変態点(
Ac1点)以上の温度域に昇温するか、この昇温に続い
てAe。
By the way, the steel material according to the present invention is realized by the following manufacturing method. That is, the material network is made to have a structure in which at least a portion of it consists of ferrite (ferrite here refers to a structure consisting of a ferrite phase such as a ferrite structure, a pearlite structure, a bainite structure, and a martensite structure), and this is given a plastic structure. While adding processing, the transformation point (
Ae.

点板上の温度域に一定時間保持して上記フェライト相か
ら成る組織の一部又は全部を一部オーステナイトに逆変
態させて超微細オーステナイト粒を出現させ、その後冷
却する手段である。
This is a means of maintaining the temperature in the temperature range on the point plate for a certain period of time to reversely transform a part or all of the structure consisting of the ferrite phase into austenite so that ultrafine austenite grains appear, and then cooling.

上記逆変態時に加えられる塑性加工方法としては、既知
の板圧延機、シームレス鋼管の各種圧延機、穿孔機2条
鋼・線材等のための孔型圧延機の他、周知のハンマー、
スェージャ−、ストレッチ・レデューサ−、ストレッチ
ャー、ねじり加工機。
Plastic working methods applied during the above-mentioned reverse transformation include known plate rolling mills, various rolling mills for seamless steel pipes, hole-type rolling mills for perforating two-strip steel, wire rods, etc., as well as well-known hammers,
Swager, stretch reducer, stretcher, twisting machine.

押出し機、引抜機等を使用することで所要の温度域にて
所要加工度の加工が行える方法であれば何れをも採用す
ることができ、格別に制限されるものではない。
Any method can be used as long as it can be processed to the required degree of processing in the required temperature range by using an extruder, a drawing machine, etc., and is not particularly limited.

なお、該塑性加工の歪量は次の三つの作用を生起させる
点で重要である。一つは、フェライトを加工することに
より加工硬化したフェライトから非常に微細なオーステ
ナイトの結晶粒が加工により誘起されて生成する作用で
あり、二つ目は、フェライトがオーステナイトに変態す
る変態点にまで被加工材の温度を上昇させるための加工
発熱を発生する作用であり、三つ目は、生成した微細な
オーステナイトの結晶を加工硬化させて、その後のフェ
ライト生成に際して更に微細なフェライト粒を加工誘起
変態生成させる作用である。このような観点から、該塑
性加工の歪量は20%以上、好ましくは50%以上とす
るのが良い。
Note that the amount of strain during the plastic working is important in that it causes the following three effects. The first is that extremely fine austenite crystal grains are induced and generated from the work-hardened ferrite by processing ferrite, and the second is that the process of processing ferrite induces the production of extremely fine austenite crystal grains. This is an action that generates processing heat to raise the temperature of the workpiece, and the third action is to work harden the fine austenite crystals that are generated and induce further fine ferrite grains during subsequent ferrite formation. This is the effect of producing metamorphosis. From this point of view, the amount of strain in the plastic working is preferably 20% or more, preferably 50% or more.

被加工鋼材の昇温温度は、フェライトがオーステナイト
に逆変態する温度、即ちAc、点板上にまで上昇するこ
とが必須である。勿論、Ac、点板上の温度域であって
もその温度がAc3点未満であるとフェライトとオース
テナイトの二相混合組織になるが、温度上昇させながら
塑性加工を加える方法によればAc、点未満の温度域で
あっても結晶粒は加工と再結晶によって十分に微細化し
ている。
It is essential that the temperature of the steel material to be processed rises to a temperature at which ferrite reversely transforms into austenite, that is, above Ac, a point plate. Of course, even if the temperature is in the temperature range on the Ac point plate, if the temperature is less than the Ac3 point, a two-phase mixed structure of ferrite and austenite will result, but if the temperature is increased and plastic working is added, the Ac point Even in the temperature range below 100 mL, the crystal grains are sufficiently refined by processing and recrystallization.

しかしながら、「フェライトを加工することにより、加
工硬化したフェライトから非常に微細なオーステナイト
の結晶粒が加工により誘起されて生成する」という特徴
的な作用・効果を十分に発揮させるためには、できれば
Ac3点以上にまで昇温することが望ましい。もっとも
、製品によってはフェライトとオーステナイトとの二相
組織にする必要があるものもあり、このような製品に対
しては昇温温度をAc、点未満の温度域で留めておくこ
とが必要であることは言うまでもない。
However, in order to fully exhibit the characteristic action and effect that "by processing ferrite, very fine austenite crystal grains are induced and generated from work-hardened ferrite", it is necessary to It is desirable to raise the temperature to above the point. However, some products require a two-phase structure of ferrite and austenite, and for such products it is necessary to keep the heating temperature within the temperature range below the Ac point. Needless to say.

フェライトからオーステナイト相へ逆変態させる際に塑
性加工を加えながら昇温するのは、先にも説明したよう
に“フェライト域での加工によるフェライト粒微細化”
、“加工硬化フェライト粒からの微細オーステナイト粒
の加工誘起生成”並びに“オーステナイト粒の加工によ
る微細化”、更には“加工硬化オーステナイト粒からの
微細マルテンサイトの歪誘起変態促進”を図るためであ
る。
As explained earlier, the reason why the temperature is raised while adding plastic working during reverse transformation from ferrite to austenite phase is "ferrite grain refinement due to working in the ferrite region".
, in order to achieve "work-induced generation of fine austenite grains from work-hardened ferrite grains,""refining austenite grains by working," and further "promote strain-induced transformation of fine martensite from work-hardened austenite grains." .

次いで、本発明を実施例に基づいてより具体的に説明す
る。
Next, the present invention will be explained more specifically based on Examples.

〈実施例〉 第1表に示した成分組成の鋼を真空溶解炉で溶製し、鋼
A、B及びCについてはこれを1トン綱塊にした後、均
熱−分塊圧延を経て1.20m X 120mm断面の
綱片とした。
<Example> Steels having the composition shown in Table 1 were melted in a vacuum melting furnace, and steels A, B, and C were made into 1-ton steel ingots, and then subjected to soaking and blooming rolling. It was made into a piece of rope with a cross section of 20m x 120mm.

また、綱り及び已については真空溶解材をESR溶解炉
で再熔解した後鋼塊とした。
In addition, for the rope and rope, the vacuum melted material was remelted in an ESR melting furnace and then made into a steel ingot.

次に、これら鋼片及び鋼塊を980℃に加熱して熱間鍛
造し、続いて外削により35m中の棒鋼とした後、第2
表に示す条件の処理を施してマルテンサイトを主体とし
た組織から成る鋼材を試作した。
Next, these steel slabs and steel ingots were heated to 980°C and hot forged, and then externally milled to form a 35m steel bar.
A steel material with a structure mainly composed of martensite was produced by processing the conditions shown in the table.

なお、試験番号1(比較例)については、w4Aから成
る35m中の棒鋼を980℃に加熱後8スタンドタンデ
ムミルで17鶴φに圧延した後、圧延ライン中で水中焼
入れし、更にこの直接焼入材を650℃で焼戻した。
Regarding test number 1 (comparative example), a 35 m long steel bar made of w4A was heated to 980°C, rolled to a diameter of 17 mm in an 8-stand tandem mill, quenched in water in a rolling line, and then directly quenched. The input material was tempered at 650°C.

試験番号2は、鋼Aから成る35Dφの棒鋼を700℃
に加熱後、試験番号1と同じ処理を施した。このとき、
圧延材の圧延終了温度は変態点を超える915℃まで上
昇していた。
In test number 2, a 35Dφ steel bar made of steel A was heated to 700°C.
After heating, the same treatment as Test No. 1 was performed. At this time,
The rolling completion temperature of the rolled material had risen to 915°C, which exceeds the transformation point.

試験番号3乃至5では、まずmAから成る35nφの棒
鋼を980℃に加熱後8スタンドタンデムミルで17m
中に圧延して500℃まで放冷し、その後引き続いて高
周波加熱炉で700℃まで昇温した後、10スタンドタ
ンデムミルで5.5鶴φまで90%の圧下を加えて圧延
した。そして、この圧延後、試験番号3と5については
水中で焼入れし、試験番号4については室温まで上昇し
ていた。更に、このうちの試験番号3では、圧延放冷材
を650℃で焼戻し処理した。
In test numbers 3 to 5, first, a 35nφ steel bar made of mA was heated to 980°C and then milled for 17m using an 8-stand tandem mill.
The material was rolled in a 10-stand tandem mill and allowed to cool to 500° C., then heated to 700° C. in a high-frequency heating furnace, and then rolled with a 90% reduction to a diameter of 5.5 cranes in a 10-stand tandem mill. After this rolling, test numbers 3 and 5 were quenched in water, and test number 4 was heated to room temperature. Furthermore, in test number 3, the rolled material was tempered at 650°C.

また、試験番号4では圧延・放冷材を高周波加熱で70
0℃まで再加熱した後2 、 Omm中まで87%圧下
の圧延を行い、圧延後噴霧水冷で焼入れしたが、このと
きの圧延終了温度は925℃まで上昇していた。そして
、焼入れ後の圧延材を650℃で焼戻し処理した。
In addition, in test number 4, the rolled and cooled material was heated to 70% by high-frequency heating.
After reheating to 0°C, rolling was carried out to 87% reduction to 2 Omm, and quenching was performed by spray cooling after rolling, but the rolling end temperature at this time had risen to 925°C. Then, the rolled material after quenching was tempered at 650°C.

試験番号5では、5.51m中とした水中焼入材を70
0℃にまで高周波加熱で加熱した後、2.Owmφまで
10スタンドタンデムミルで87%圧下の圧延を行い、
圧延後噴霧冷却して焼入れを施した。
In test number 5, the water-quenched material with a diameter of 5.51 m was
After heating to 0°C by high frequency heating, 2. Rolling is performed with a 10-stand tandem mill at a reduction of 87% to Owmφ.
After rolling, it was spray cooled and quenched.

なお、このときの2.0iΦ圧延終了温度は925℃で
あったが、この圧延材を650℃で焼戻し処理した。
Although the 2.0iΦ rolling completion temperature at this time was 925°C, this rolled material was tempered at 650°C.

試験番号6は、綱Aから成る351m中の棒鋼を980
℃に加熱後、780℃で8スタンドミルにて17m中に
まで圧延し、その後450℃までシャワー水冷を施して
から自然放冷した。そして、この材料を高周波加熱で7
00℃に加熱後5.5鶴φまで圧延しく圧延終了温度:
940℃)、直ちに噴霧氷冷した。更に、引き続いてこ
の5.5鶴φの圧延材を再度700℃まで高周波加熱し
、10スタンドミルで86.8%圧下の圧延を施して2
.Ofiφとした後噴霧水冷で焼入れしてから、350
℃で焼戻し処理した。
In test number 6, a 351m steel bar consisting of rope A was tested at 980m.
After heating to .degree. C., it was rolled to a thickness of 17 m using an 8-stand mill at 780.degree. C., then cooled with shower water to 450.degree. C., and then allowed to cool naturally. Then, this material is heated to 70% by high frequency heating.
After heating to 00℃ and rolling to 5.5mm diameter, rolling finish temperature:
940° C.) and immediately cooled with spray ice. Furthermore, this rolled material of 5.5 crane φ was again high-frequency heated to 700°C, and rolled with a reduction of 86.8% using a 10-stand mill.
.. After making Ofiφ and quenching with spray water cooling, 350
Tempering treatment was carried out at ℃.

試験番号7は、w4Cから成る351m中の棒鋼を試験
番号6と同様条件で圧延したが、17鶴φ圧延後のシャ
ワー水冷は500℃までとし、17n+φ−5,5Wm
中への圧延、及び5.5Hφ→2 、 Omm中への圧
延に際して加熱温度は750℃とした。そして、最終の
2.On+φ圧延・直接焼入れ材を 550℃で時効処
理した。
In test number 7, a 351m long steel bar made of w4C was rolled under the same conditions as test number 6, but the shower water cooling after rolling 17 φ was set to 500°C, and 17n+φ-5.5Wm
The heating temperature was 750° C. during rolling into the medium and 5.5Hφ→2, Omm. And the final 2. The On+φ rolled and directly quenched material was aged at 550°C.

試験番号8は、試験番号6と同じ条件で鋼りから成る3
Sflφの棒鋼を処理したものであるが、この場合には
2.0鶴中圧延・直接焼入れのままで、その後の焼戻し
処理は行わなかった。
Test number 8 was conducted under the same conditions as test number 6.
A steel bar of Sflφ was processed, but in this case, the steel bar was subjected to 2.0 mm rolling and direct quenching, and no subsequent tempering treatment was performed.

試験番号9は、試験番号8で得た2、0nφ圧延・直接
焼入材に、更に530℃での時効処理を施した例である
Test No. 9 is an example in which the 2.0 nφ rolled and directly hardened material obtained in Test No. 8 was further subjected to aging treatment at 530°C.

試験番号10では、鋼Eから成る35關φの棒鋼を98
0℃に加熱後、830℃で17 、0 mm中にまで圧
延してから自然放冷したものを、高周波加熱により60
0℃に加熱し、5.5鶴φまで圧延後放冷した。なお、
このときの圧延終了温度は800℃にまで上昇していた
。そして、5.5鶴中圧延材は更に高周波加熱により再
加熱後、2.0鶴φまで圧延(圧延終了温度二800℃
)してから放冷しく圧延後放冷で完全にマルテンサイト
組織となっていた)、この放冷材を500℃で時効処理
した。
In test number 10, a 35 mm diameter steel bar made of steel E was tested at 98 mm.
After heating to 0°C, it was rolled at 830°C to a thickness of 17.0 mm, then allowed to cool naturally, and then heated to 60 mm by high-frequency heating.
It was heated to 0°C, rolled to a diameter of 5.5 cranes, and then allowed to cool. In addition,
At this time, the rolling end temperature had risen to 800°C. Then, the 5.5 crane medium-rolled material was further reheated by high-frequency heating and then rolled to 2.0 crane diameter (rolling end temperature 2800℃).
), the material was rolled and then allowed to cool, resulting in a completely martensitic structure), and this material was aged at 500°C.

このようにして得られた各鋼材について、その組織を観
察すると共に、機械的性質を調査した結果を第2表に併
せて示した。なお、旧オーステナイト粒径の測定は、エ
ツチング処理によって旧オーステナイト組織を現出させ
る方法によった。
Table 2 shows the results of observing the structure and investigating the mechanical properties of each of the steel materials thus obtained. The prior austenite grain size was measured by a method of exposing the prior austenite structure by etching.

第2表に示される結果からも明らかなように、本発明に
係るマルテンサイトM材は従来材(比較材)に比べて高
強度でありながら優れた延性を有しており、しかも試験
番号2〜5に見られる如く組wi微細化に伴う特性向上
が極めて著しいことが分かる。
As is clear from the results shown in Table 2, the martensitic M material according to the present invention has higher strength and superior ductility than the conventional material (comparative material), and moreover, test number 2 As seen in Figures 5 to 5, it can be seen that the improvement in characteristics accompanying the miniaturization of the group wi is extremely remarkable.

ところで、第2表には、得られたマルテンサイト鋼材の
人工海水噴霧試験による腐食進行速度の調査結果(耐食
性)をも示したが、この耐食性調査においても、本発明
材は低合金!l14(鋼A)を基礎とした従来組織鋼材
(平均オーステナイト粒径:14.7塵の制御圧延−直
接焼入材、即ち試験番号1材)の0.093m/年に比
べて著しく優れた結果が得られている。
By the way, Table 2 also shows the investigation results (corrosion resistance) of the rate of corrosion progression (corrosion resistance) of the obtained martensitic steel materials by artificial seawater spray tests, and this corrosion resistance investigation also showed that the materials of the present invention have low alloys! Significantly superior results compared to 0.093 m/year of conventional structured steel material (average austenite grain size: 14.7 dust controlled rolling-direct quenching material, i.e. test number 1 material) based on l14 (Steel A). is obtained.

(効果の総括) 以上に説明した如く、この発明によれば、従来技術では
実際上実現することが出来なかった超微細マルテンサイ
ト鋼材を提供することができ、マルテンサイト鋼材特有
の特性に加えて非常に優れた加工性等これまでにない優
れた緒特性を有する鋼材を安定供給することが可能とな
るなど、産業上極めて有用な効果がもたらされる。
(Summary of Effects) As explained above, according to the present invention, it is possible to provide an ultra-fine martensitic steel material that could not be practically realized with the conventional technology, and in addition to the characteristics unique to martensitic steel materials, This brings about extremely useful effects industrially, such as making it possible to stably supply steel materials with unprecedentedly excellent mechanical properties such as extremely excellent workability.

Claims (1)

【特許請求の範囲】[Claims] マルテンサイトのパケットの平均径或いはマルテンサイ
トを生成する前の旧オーステナイト粒の平均径が5μm
以下であるマルテンサイトを主体とした組織から成る、
加工性に富んだ微細粒マルテンサイト鋼材。
The average diameter of martensite packets or the average diameter of prior austenite grains before forming martensite is 5 μm
Consisting of the following martensite-based tissues:
Fine-grained martensitic steel with excellent workability.
JP12853589A 1988-12-05 1989-05-22 Fine grain martensitic steel Expired - Lifetime JP3252905B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP12853589A JP3252905B2 (en) 1989-05-22 1989-05-22 Fine grain martensitic steel
CA002004548A CA2004548C (en) 1988-12-05 1989-12-04 Metallic material having ultra-fine grain structure and method for its manufacture
AU45924/89A AU615360B2 (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
ES89122371T ES2073422T3 (en) 1988-12-05 1989-12-05 METHOD TO MANUFACTURE A METALLIC MATERIAL.
KR1019890017936A KR930010321B1 (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
EP89122371A EP0372465B1 (en) 1988-12-05 1989-12-05 Method for manufacture of a metallic material having ultrafine grain structure
CN 89109065 CN1018930B (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
US07/446,457 US5080727A (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
DE68922075T DE68922075T2 (en) 1988-12-05 1989-12-05 Process for the production of a metallic material with an ultrafine grain structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12853589A JP3252905B2 (en) 1989-05-22 1989-05-22 Fine grain martensitic steel

Publications (2)

Publication Number Publication Date
JPH02310338A true JPH02310338A (en) 1990-12-26
JP3252905B2 JP3252905B2 (en) 2002-02-04

Family

ID=14987158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12853589A Expired - Lifetime JP3252905B2 (en) 1988-12-05 1989-05-22 Fine grain martensitic steel

Country Status (1)

Country Link
JP (1) JP3252905B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503262A (en) * 2005-08-04 2009-01-29 テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト High strength steel for seamless weldable steel pipe
JP2015221927A (en) * 2014-05-23 2015-12-10 新日鐵住金株式会社 Steel material and manufacturing method therefor
JP2015221920A (en) * 2014-05-22 2015-12-10 新日鐵住金株式会社 Steel material and manufacturing method therefor
JP2019090069A (en) * 2017-11-10 2019-06-13 新日鐵住金株式会社 Nickel steel for high-pressure hydrogen
JP2020012173A (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Steel material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503262A (en) * 2005-08-04 2009-01-29 テナリス・コネクシヨンズ・アクチエンゲゼルシヤフト High strength steel for seamless weldable steel pipe
JP2015221920A (en) * 2014-05-22 2015-12-10 新日鐵住金株式会社 Steel material and manufacturing method therefor
JP2015221927A (en) * 2014-05-23 2015-12-10 新日鐵住金株式会社 Steel material and manufacturing method therefor
JP2019090069A (en) * 2017-11-10 2019-06-13 新日鐵住金株式会社 Nickel steel for high-pressure hydrogen
JP2020012173A (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Steel material

Also Published As

Publication number Publication date
JP3252905B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
EP0372465B1 (en) Method for manufacture of a metallic material having ultrafine grain structure
EP1862561A1 (en) Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
US4533401A (en) Process for producing steel wire or rods of high ductility and strength
CN110093564A (en) A kind of 1180MPa grade super strength low cost cold rolling quenching partition steel and its manufacturing method
JP2006506534A5 (en)
JP2006506534A (en) Cold-worked steel with pocket-laser martensite / austenite microstructure
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JP2002285278A (en) High strength and high ductility steel sheet with hyperfine crystal grain structure obtainable by subjecting plain low carbon steel to low strain working and annealing and production method therefor
JPH02310338A (en) Fine-grained martensitic steel
JP2833004B2 (en) Fine grain pearlite steel
JP2808675B2 (en) Fine grain bainite steel
JPH02301540A (en) Fine grained ferrite steel
JP2000256794A (en) High toughness high damping alloy and its production
JP2814528B2 (en) Martensitic stainless steel for oil well and its production method
JPH0328351A (en) High ductility pc steel stock and its production
JPH01123029A (en) Production of seamless stainless steel pipe
JPS6052551A (en) Steel having high ductility and high workability and its production
JPS61243118A (en) Production of hot-rolled two-phase stainless steel
JPH0375309A (en) Production of steel material having superfine structure
JPS6220820A (en) Cold working method
JP2004027351A (en) Method for producing high strength and high toughness martensitic stainless steel seamless pipe
JPH024656B2 (en)
JPH04293731A (en) Production of high (r) value hot rolled steel sheet low in plane anisotropy
JPS59205447A (en) Ultra-fine grain ferrite steel and preparation thereof
JPS62263924A (en) Production of tough steel pipe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 8