JPH0231003B2 - - Google Patents

Info

Publication number
JPH0231003B2
JPH0231003B2 JP56191590A JP19159081A JPH0231003B2 JP H0231003 B2 JPH0231003 B2 JP H0231003B2 JP 56191590 A JP56191590 A JP 56191590A JP 19159081 A JP19159081 A JP 19159081A JP H0231003 B2 JPH0231003 B2 JP H0231003B2
Authority
JP
Japan
Prior art keywords
reactivity
hydrogenation
alloy powder
hydrogen gas
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56191590A
Other languages
Japanese (ja)
Other versions
JPS5895603A (en
Inventor
Mitsutaka Kawamura
Shuichiro Ono
Yoshio Imamura
Yoichi Mizuno
Haruhiro Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Toyobo Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toyobo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP56191590A priority Critical patent/JPS5895603A/en
Publication of JPS5895603A publication Critical patent/JPS5895603A/en
Publication of JPH0231003B2 publication Critical patent/JPH0231003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は水素ガス吸蔵用合金粉末収納容器内に
おける金属水素化物の水素化反応度を制御する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the hydrogenation reactivity of a metal hydride in a hydrogen gas storage alloy powder storage container.

従来、水素ガス吸蔵用合金粉末収納容器内にお
ける水素化(脱水素化を含む、以下同じ)反応度
制御方法の一つとしては第1図に示す様な制御方
式が知られている。即ち水素ガスタンク3から流
量調節弁4を介して水素吸蔵用合金粉末収納容器
1内に流入する水素ガス吸蔵時の水素ガス流量
(ΔQ吸/Δt)を吸蔵用流量計5で測定する一方、
水素ガス導管7から2方弁8を介して水素ガスタ
ンク3へ帰還する水素ガス放出時の水素ガス流量
(Δ放/Δt)を放出用流量計6で測定し、これら
の流量測定値をもとに流量演算器9,10で夫々
積分演算を行なつて水素吸蔵量及び水素放出量を
求め、更にこれらの計算値をもとに水素化反応度
演算器11で水素化反応度を算出し、該算出値に
基づいて流量調節弁4を作動させている。従つて
こうした制御方法においてはその制御回路が複雑
であり、又使用される水素ガス流量計が非常に高
価である上に、吸蔵用流量計5と放出用流量計6
を夫々独立して配置しなければならず、更に流量
演算器も2基設けなければならない等の為に制御
装置のコストが非常に高くなるという欠点があ
る。
Conventionally, a control method as shown in FIG. 1 has been known as one method for controlling the reactivity of hydrogenation (including dehydrogenation, hereinafter the same) in an alloy powder storage container for storing hydrogen gas. That is, while measuring the hydrogen gas flow rate (ΔQ absorption/Δt) during hydrogen gas absorption flowing into the hydrogen storage alloy powder storage container 1 from the hydrogen gas tank 3 via the flow rate control valve 4, using the storage flow meter 5,
The hydrogen gas flow rate (Δrelease/Δt) when the hydrogen gas is discharged from the hydrogen gas conduit 7 via the two-way valve 8 to the hydrogen gas tank 3 is measured using the discharge flow meter 6, and based on these flow rate measurements. Then, the flow rate calculators 9 and 10 perform integral calculations to obtain the hydrogen storage amount and hydrogen release amount, and further, based on these calculated values, the hydrogenation reactivity calculator 11 calculates the hydrogenation reactivity, The flow control valve 4 is operated based on the calculated value. Therefore, in such a control method, the control circuit is complicated, the hydrogen gas flowmeter used is very expensive, and the storage flowmeter 5 and the discharge flowmeter 6 are required.
The disadvantage is that the cost of the control device becomes very high because each of them must be arranged independently, and two flow rate calculators must also be provided.

又上記の制御方法以外の方法としては、平衡解
離圧や温度と水素化反応度の相関々係に着目して
平衡解離圧を測定し、その系の温度に相当する平
衡解離圧−水素化反応度線図を利用して制御する
方法がある。しかしこの制御方法においても下記
〜の欠点の故にその制御を確実且つ円滑に行
なうことは困難である。即ち平衡解離圧から水
素化反応度を一義的に決定することはできない。
各温度毎の平衡解離圧線図及び水素化反応度線
図を多数準備する必要がある。平衡解離圧−水
素化反応度線図は一般に第2図に示す様な曲線と
なるが、プラトー域であるBC間においては水素
化反応度の変化に対して平衡解離圧の変化が非常
に小さく感度が鈍くなるので測定誤差が大きくな
り、極端な場合には測定不可能になる。
In addition, as a control method other than the above-mentioned control method, the equilibrium dissociation pressure is measured by focusing on the correlation between the equilibrium dissociation pressure and temperature and the degree of hydrogenation reaction, and the equilibrium dissociation pressure corresponding to the temperature of the system - hydrogenation reaction is calculated. There is a method of controlling using a degree diagram. However, even in this control method, it is difficult to perform the control reliably and smoothly due to the following drawbacks. That is, the hydrogenation reactivity cannot be uniquely determined from the equilibrium dissociation pressure.
It is necessary to prepare a large number of equilibrium dissociation pressure diagrams and hydrogenation reactivity diagrams for each temperature. The equilibrium dissociation pressure-hydrogenation reactivity diagram generally takes the form shown in Figure 2, but in the plateau region BC, the change in equilibrium dissociation pressure is very small with respect to changes in hydrogenation reactivity. As the sensitivity decreases, measurement errors increase, and in extreme cases, measurements become impossible.

本発明はこうした従来法の欠点を全て解消し、
水素化反応に伴う合金粉末の体積膨張現象を利用
した簡単な検知機構を採用して金属水素化物の水
素化反応度を確実且つ迅速に制御する方法を提供
することを目的としてなされたもので、この様な
本発明の制御方法とは、水素ガス吸蔵用合金粉末
を収納してなる本体容器の略中央部に、上記合金
粉末と同種の合金粉末が充填されると共に前記本
体容器内との連通口を有し且つ外壁面に歪計が取
付けられてなる耐圧性小型容器を配置し、該耐圧
性小型容器の歪計にかかる応力を測定して水素化
反応度を検知すると共に、該検知反応度に基づき
前記本体容器への水素吸蔵流量を調節する様にし
た点に要旨が存在する。
The present invention eliminates all the drawbacks of these conventional methods,
This was done with the aim of providing a method for reliably and quickly controlling the hydrogenation reactivity of metal hydrides by employing a simple detection mechanism that utilizes the volumetric expansion phenomenon of alloy powder accompanying the hydrogenation reaction. Such a control method of the present invention is such that an alloy powder of the same type as the alloy powder is filled approximately in the center of a main container containing hydrogen gas storage alloy powder, and the main container is in communication with the inside of the main container. A pressure-resistant small container having a mouth and a strain gauge attached to the outer wall surface is arranged, and the stress applied to the strain gauge of the pressure-resistant small container is measured to detect the degree of hydrogenation reaction, and the detected reaction The gist lies in that the flow rate of hydrogen storage into the main body container is adjusted based on the temperature.

以下実施例図面に基づき本発明の構成及び作用
効果を説明するが、下記実施例は一代表例を示す
に過ぎず、前・後記に徴して適宜変更して実施す
ることも本発明に含まれる。尚第1図の構成と同
一のものについては同一の符号を付してある。第
3図は本発明の制御方法で使用する水素化反応度
検出装置21の概略説明図である。即ち図に例示
した短筒状ボトル型の耐圧性小容器22内には首
部22aに至るまで水素吸蔵用合金粉末23が充
填されると共に、該首部22a内の合金粉末表面
上にフイルター24を載置する。そして該フイル
ター24を押える為に、中央部に水素ガス連通口
25aが設けられてなるキヤップ25を首部22
aに螺合する一方、小容器22の底面22bには
歪計26を固着し、更に該歪計26に導線27を
接続する。尚フイルター24は予めキヤップ25
の底面に取付けておいても良く、場合によつては
キヤップ25の上面側に設けることもできる。尚
小容器22の形状は特に限定されず、又壁厚も特
に制限される訳ではないが、歪計26の固着壁面
22bを薄くして歪計26の歪感度を高める様に
することもできる。又歪計26の固着は接着剤に
よるものの他、ボルトや溶接等によつて行つても
よいことは勿論である。
The configuration and effects of the present invention will be explained below based on the drawings of the embodiments, but the embodiments below are merely representative examples, and the present invention also includes implementations with appropriate changes as described above and below. . Components that are the same as those in FIG. 1 are designated by the same reference numerals. FIG. 3 is a schematic explanatory diagram of the hydrogenation reactivity detection device 21 used in the control method of the present invention. That is, the short cylindrical bottle-shaped pressure-resistant small container 22 illustrated in the figure is filled with hydrogen-absorbing alloy powder 23 up to the neck 22a, and a filter 24 is placed on the surface of the alloy powder in the neck 22a. place In order to hold down the filter 24, a cap 25 having a hydrogen gas communication port 25a in the center is attached to the neck part 22.
a, while a strain gauge 26 is fixed to the bottom surface 22b of the small container 22, and a conducting wire 27 is further connected to the strain gauge 26. In addition, the filter 24 is equipped with a cap 25 in advance.
It may be attached to the bottom surface of the cap 25, or in some cases, it may be provided on the top surface side of the cap 25. The shape of the small container 22 is not particularly limited, nor is the wall thickness particularly limited, but the fixed wall surface 22b of the strain gauge 26 may be made thinner to increase the strain sensitivity of the strain gauge 26. . Furthermore, it goes without saying that the strain gauge 26 may be fixed by bolts, welding, etc. in addition to adhesive.

この様な検出装置21における小容器22に水
素ガスを吸蔵させると合金粉末23は水素化反応
を起こして体積が膨張し、その結果壁面22bに
内部応力がかかる。この応力を歪計26によつて
測定するが、この様な吸蔵を数回繰り返して水素
化反応と応力の関係が安定状態に落ち着いた段階
で第4図に示す様な検量曲線を定める。尚この検
量曲線は水素吸蔵用合金の種類によつて異なる
が、この検量線に基づけば水素化反応度は温度に
関係なく壁面応力によつて一義的に決定できる。
尚小容器22の耐圧強度によつては、水素化反応
時の体積膨張に基づく応力が大き過ぎて小容器2
2が破壊することがない程度の充填密度とする
か、又は圧縮性が高く且つ水素に対して不活性な
固体粉末を合金粉末に混合して小容器22に充填
する様な配慮が望まれる場合もある。
When hydrogen gas is stored in the small container 22 of such a detection device 21, the alloy powder 23 undergoes a hydrogenation reaction and expands in volume, and as a result, internal stress is applied to the wall surface 22b. This stress is measured by the strain meter 26, and after repeating this occlusion several times until the relationship between the hydrogenation reaction and the stress has settled down to a stable state, a calibration curve as shown in FIG. 4 is determined. Although this calibration curve differs depending on the type of hydrogen storage alloy, based on this calibration curve, the hydrogenation reactivity can be uniquely determined by wall stress regardless of temperature.
Depending on the pressure resistance of the small container 22, the stress due to volumetric expansion during the hydrogenation reaction may be too large and the pressure resistance of the small container 22 may be too large.
In cases where it is desired to have a packing density that does not cause 2 to break, or to mix a highly compressible solid powder that is inert to hydrogen with the alloy powder and fill it in the small container 22. There is also.

次にこの様な検出装置21を使用して金属水素
化物の水素化反応度制御を実施する方法を説明す
る。即ち第5図(概略説明図)に示す様に水素ガ
ス吸蔵用合金粉末を収納してなる本体容器(以下
単に「本体容器」という)1内に合金粉末2を充
填すると共に水素ガス導管7のフイルター7aと
反応側の位置に同種の合金粉末が適当に充填され
てなる検出装置21を容器1における合金充填層
の略中央部に埋設して歪計26の導線27を本体
容器1からシール機構28を通じて外部に取り出
し、更に取り出した導線27を歪−応力変換器2
9に連結すると共に該歪−応力変換器29、水素
化反応度変換器30、水素ガス比較調節計31及
び流量調節弁4を電気的に連結した様な制御回路
を構成する。かくして本体容器1内における金属
水素化物の水素化反応度は、連通口25aを介し
て検出装置21内のそれと同じになるので小容器
22内の内部応力として歪計26に検知され、歪
−応力変換器29によつて壁面22bの応力とし
て把握されると同時に水素化反応度変換器30に
よつてその時の水素化反応度が算出されることに
なる。従つてその算出値と、予め設定された若し
くは要求される水素化反応度との比較計算が水素
ガス比較調節計31内で行なわれ、その偏差値に
応じて流量調節弁4が開閉作動し、吸蔵水素ガス
流量が適正に制御される。これにより金属水素化
物の水素化反応度制御は確実且つ迅速に行なわれ
る。
Next, a method of controlling the hydrogenation reactivity of metal hydrides using such a detection device 21 will be explained. That is, as shown in FIG. 5 (schematic explanatory drawing), a main body container (hereinafter simply referred to as "main container") 1 containing alloy powder for storing hydrogen gas is filled with alloy powder 2, and at the same time, the hydrogen gas conduit 7 is A detection device 21, which is suitably filled with the same type of alloy powder at a position on the reaction side of the filter 7a, is buried in the approximate center of the alloy packed layer in the container 1, and the conductor 27 of the strain gauge 26 is sealed from the main container 1. The conducting wire 27 is taken out to the outside through the strain-stress converter 2.
9, and constitutes a control circuit in which the strain-stress converter 29, hydrogenation reactivity converter 30, hydrogen gas comparison controller 31, and flow control valve 4 are electrically connected. In this way, the hydrogenation reactivity of the metal hydride in the main container 1 becomes the same as that in the detection device 21 through the communication port 25a, so it is detected by the strain meter 26 as an internal stress in the small container 22, and the strain-stress The stress on the wall surface 22b is detected by the converter 29, and at the same time, the hydrogenation reactivity at that time is calculated by the hydrogenation reactivity converter 30. Therefore, a comparison calculation between the calculated value and a preset or required hydrogenation reactivity is performed in the hydrogen gas comparison controller 31, and the flow rate control valve 4 is opened and closed according to the deviation value. The flow rate of stored hydrogen gas is appropriately controlled. Thereby, the hydrogenation reactivity of the metal hydride can be controlled reliably and quickly.

本発明の制御方法は以上の如く構成されるが、
要は内部応力を捉えることによつて水素化反応度
が一義的に決定できる様に構成された検出機構を
用いると共に水素ガス流量調節弁と連結せしめた
制御回路の採用により、下記に要約する諸利益を
享受できることとなつた。
Although the control method of the present invention is configured as described above,
In short, by using a detection mechanism configured to uniquely determine the hydrogenation reactivity by capturing internal stress, and by adopting a control circuit connected to a hydrogen gas flow rate control valve, the following can be achieved. Now we can enjoy the benefits.

制御回路が簡単であると共に高価な水素ガス
流量計を使用しなくてよいので制御装置のコス
トが安価である。
Since the control circuit is simple and there is no need to use an expensive hydrogen gas flow meter, the cost of the control device is low.

応力から水素化反応度を一義的に決定するこ
とができるので、従来の様に各温度毎における
多数の平衡解離圧線図及び水素化反応度線図デ
ータを準備する必要がない。
Since the hydrogenation reactivity can be uniquely determined from the stress, there is no need to prepare a large number of equilibrium dissociation pressure diagrams and hydrogenation reactivity diagram data for each temperature as in the conventional method.

圧力を測定パラメーターとするので測定感度
が非常に良好であり測定誤差が極めて小さいい
ので、水素化反応度の制御を確実に行なうこと
ができる。
Since pressure is used as the measurement parameter, the measurement sensitivity is very good and the measurement error is extremely small, so the hydrogenation reactivity can be controlled reliably.

上記と同様の理由により、反応度の変化が
素早く検知される。しかも水素化反応度が制御
回路内で瞬時に計算され、更に修正すべき水素
ガス吸蔵流量が指示されるので、水素化反応度
の制御は極めて迅速に行なうことができ、いわ
ゆるダイナミツクコントロールが可能となる。
なお小型容器は装填される水素吸蔵用合金粉末
の略中央部に配置されるので、上記本体容器内
における合金粉末全量の平均値に近似した水素
化反応度を検出することができる。
For the same reason as above, changes in reactivity are quickly detected. Moreover, the hydrogenation reactivity is instantaneously calculated within the control circuit, and the hydrogen gas storage flow rate to be corrected is indicated, so the hydrogenation reactivity can be controlled extremely quickly, making so-called dynamic control possible. becomes.
Since the small container is placed approximately at the center of the hydrogen storage alloy powder to be loaded, it is possible to detect a hydrogenation reactivity that approximates the average value of the total amount of the alloy powder in the main container.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の水素化反応度制御方法を例示す
る概略説明図、第2図は水素化反応度と平衡解離
の相関々係を示すグラフ、第3図は本発明の制御
方法に使用する水素化反応度検出装置の概略説明
図、第4図は同検出装置の壁面に作用する内部応
力と水素化反応度の相関々係を示すグラフ、第5
図は本発明に係る水素化反応度制御方法を例示す
る概略説明図である。 1……水素吸蔵用合金粉末収納本体容器、4…
…水素ガス流量調節計、21……水素化反応度検
出装置、22……耐圧性小容器、2,23……水
素吸蔵用合金粉末、7a,24……フイルター、
25a……水素ガス連通口、25……キヤップ、
26……歪計、27……導線、28……シール機
構、29……歪−応力変換器、30……水素化反
応度変換器、31……水素ガス比較調節計。
Fig. 1 is a schematic explanatory diagram illustrating a conventional hydrogenation reactivity control method, Fig. 2 is a graph showing the correlation between hydrogenation reactivity and equilibrium dissociation, and Fig. 3 is a graph used in the control method of the present invention. A schematic explanatory diagram of the hydrogenation reactivity detection device, Fig. 4 is a graph showing the correlation between the internal stress acting on the wall surface of the detection device and the hydrogenation reactivity, and Fig. 5
The figure is a schematic explanatory diagram illustrating the hydrogenation reactivity control method according to the present invention. 1...Hydrogen storage alloy powder storage main body container, 4...
...Hydrogen gas flow rate controller, 21...Hydrogenation reactivity detection device, 22...Pressure resistant small container, 2, 23...Hydrogen storage alloy powder, 7a, 24...Filter,
25a...Hydrogen gas communication port, 25...Cap,
26...Strain meter, 27...Conducting wire, 28...Seal mechanism, 29...Strain-stress converter, 30...Hydrogenation reactivity converter, 31...Hydrogen gas comparison controller.

Claims (1)

【特許請求の範囲】[Claims] 1 水素ガス吸蔵用合金粉末を収納してなる本体
容器の略中央部に、上記合金粉末と同種の合金粉
末が充填されると共に前記本体容器内との連通口
を有し且つ外壁面に歪計が取付けられてなる耐圧
性小型容器を配置し、該小型容器の歪計にかかる
応力を測定して水素化反応度を検知すると共に、
該検知反応度に基づき前記本体容器の水素吸蔵流
量を調節することを特徴とする金属水素化物の水
素化反応度制御方法。
1 A main body container containing hydrogen gas storage alloy powder is filled with alloy powder of the same kind as the above alloy powder in the approximate center thereof, has a communication port with the inside of the main body container, and has a strain gauge on the outer wall surface. A pressure-resistant small container is installed, and the stress applied to the strain gauge of the small container is measured to detect the degree of hydrogenation reactivity,
A method for controlling the hydrogenation reactivity of a metal hydride, comprising adjusting the hydrogen storage flow rate of the main body container based on the detected reactivity.
JP56191590A 1981-11-27 1981-11-27 Hydrogenation reaction rate control in metal hydride Granted JPS5895603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56191590A JPS5895603A (en) 1981-11-27 1981-11-27 Hydrogenation reaction rate control in metal hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56191590A JPS5895603A (en) 1981-11-27 1981-11-27 Hydrogenation reaction rate control in metal hydride

Publications (2)

Publication Number Publication Date
JPS5895603A JPS5895603A (en) 1983-06-07
JPH0231003B2 true JPH0231003B2 (en) 1990-07-11

Family

ID=16277166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56191590A Granted JPS5895603A (en) 1981-11-27 1981-11-27 Hydrogenation reaction rate control in metal hydride

Country Status (1)

Country Link
JP (1) JPS5895603A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106501A (en) * 1980-12-17 1982-07-02 Sekisui Chem Co Ltd Measuring apparatus for reaction of metallic hydride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106501A (en) * 1980-12-17 1982-07-02 Sekisui Chem Co Ltd Measuring apparatus for reaction of metallic hydride

Also Published As

Publication number Publication date
JPS5895603A (en) 1983-06-07

Similar Documents

Publication Publication Date Title
US6038919A (en) Measurement of quantity of incompressible substance in a closed container
US7254983B2 (en) Fuel gauge for hydrogen storage media
US4553431A (en) Determining and indicating the quantity of a stored material
US7152637B2 (en) Method and apparatus for dispensing compressed gas
US4404843A (en) Cryogenic storage tank leak detection system
US5616838A (en) Metering apparatus for cryogenic liquids
JP2002206693A (en) Method for filling vehicle fuel tank with gas
JP2007047125A (en) Hydrogen quantity sensor, and hydrogen storage device
JP3203062B2 (en) Method for measuring residual hydrogen content in hydrogen storage alloy container
EP0689044B1 (en) Apparatus for and method of measuring gas absorbing characteristics
US20050263260A1 (en) Apparatus and method for controlling molten metal pouring from a holding vessel
US7674541B2 (en) Hydrogen gas supply device and fuel cell apparatus
JPH0231003B2 (en)
US6285179B1 (en) Detecting apparatus and detecting method of absorbed hydrogen amount in hydrogen absorbing tank
JPS63125898A (en) Hydrogen storage apparatus and method for detecting quantity of stored hydrogen in hydrogen storage apparatus
JP2686521B2 (en) Hydrogen fuel gauge
JP2686522B2 (en) Hydrogen fuel gauge
JP6981706B1 (en) Hydrogen gas measuring method and hydrogen gas measuring device
JPH02118417A (en) Residual hydrogen quantity meter
SU930012A1 (en) Method of determination of vessel filling degree
JPH05332806A (en) Liquid amount measuring device
JP2686523B2 (en) Hydrogen fuel gauge
SU968618A1 (en) Method of measuring enclosed volumes
JPH0240170B2 (en)
SU1760361A1 (en) Method and device for checking continuous batcher and flow meters