JPH02118417A - Residual hydrogen quantity meter - Google Patents

Residual hydrogen quantity meter

Info

Publication number
JPH02118417A
JPH02118417A JP27207788A JP27207788A JPH02118417A JP H02118417 A JPH02118417 A JP H02118417A JP 27207788 A JP27207788 A JP 27207788A JP 27207788 A JP27207788 A JP 27207788A JP H02118417 A JPH02118417 A JP H02118417A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
alloy
magnet
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27207788A
Other languages
Japanese (ja)
Other versions
JP2737082B2 (en
Inventor
Takatoshi Sasahara
孝利 笹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP63272077A priority Critical patent/JP2737082B2/en
Publication of JPH02118417A publication Critical patent/JPH02118417A/en
Application granted granted Critical
Publication of JP2737082B2 publication Critical patent/JP2737082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To measure the residual hydrogen quantity in a hydrogen storage tank by detecting the change in the volume of the hydrogen occluding alloy housed in a sintered metal filter. CONSTITUTION:The hydrogen occluding alloy 32 is stored in the hydrogen storage tank 31. The sintered metal filter 14 extends into the tank 31 and the hydrogen occluding alloy 13 is housed therein. A magnet 17 provided in contact with the front surface of the occluding alloy 13 is pressed by a belleville spring 16 in a space 11a and moves downward when the volume of the occluding alloy 13 is linearly decreased with a decrease in the hydrogen occlusion quantity. A magnet 18 moves downward as well and a diaphragm 19 is pushed down as the magnet 17 moves downward. As result, a non-volatile liquid 20 housed in a diaphragm 27a and a liquid chamber 27b descend. The front surface of the liquid 20 can be checked from the outside of a covering tube 2 with glass and the residual hydrogen quantity can be measured by detecting the front surface of the liquid 20 in comparison with a residual hydrogen quantity display part 29 drawn on the surface of the covering tube 28 with the glass.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は水素貯蔵タンクに設けられた水素残量計に係り
、とりわけ安価で精度よく水素残量を測定することがで
きる水素残量計に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a hydrogen remaining amount meter installed in a hydrogen storage tank, and is particularly capable of measuring the remaining amount of hydrogen at low cost and with high accuracy. Regarding hydrogen fuel gauge.

(従来の技術) 従来、水素貯蔵タンク内に水素吸蔵合金を貯蔵し、この
水素吸蔵合金に水素を吸蔵させることにより水素の貯蔵
を行なう方法が知られている。この場合、水素吸蔵合金
として希土類のL a N 15等が用いられる。
(Prior Art) Conventionally, a method is known in which hydrogen is stored by storing a hydrogen storage alloy in a hydrogen storage tank and causing the hydrogen storage alloy to store hydrogen. In this case, rare earth L a N 15 or the like is used as the hydrogen storage alloy.

また水素貯蔵タンク内の水素残量の測定を行なうため、
各種の水素残量測定法が用いられている。
In addition, in order to measure the remaining amount of hydrogen in the hydrogen storage tank,
Various methods of measuring residual hydrogen are used.

このような水素残量測定法として、 (1) 例えば、水素吸蔵合金の温度Tおよび水素貯蔵
タンク内圧力P(水素平衡圧力)を温度、圧力センサで
検出し、第3図に示すVan’t 1oft’線図およ
び第4図に示すPCT曲線より水素残量を求める方法が
考えられている。
As such a method for measuring the remaining amount of hydrogen, (1) For example, the temperature T of the hydrogen storage alloy and the internal pressure P (hydrogen equilibrium pressure) of the hydrogen storage tank are detected using temperature and pressure sensors, and the Van't A method of determining the remaining amount of hydrogen from the 1of' diagram and the PCT curve shown in FIG. 4 has been considered.

ここで第3図は、水素吸蔵合金内の水素組成H/Mが一
定の場合のlnPと1/Tとの関係を示しており、また
第4図は、各温度T t 、 T 2における1nPと
H/Mとの関係を示している。
Here, FIG. 3 shows the relationship between lnP and 1/T when the hydrogen composition H/M in the hydrogen storage alloy is constant, and FIG. 4 shows the relationship between lnP and 1/T at each temperature T t and T 2. It shows the relationship between and H/M.

具体的には、第3図および第4図からあらかじめ温度T
1圧力P1および水素組成H/Mの3次元マツプを作成
し、この3次元マツプをもとに、検出温度および検出圧
力から水素残量を求めている。
Specifically, the temperature T is determined in advance from FIGS. 3 and 4.
A three-dimensional map of pressure P1 and hydrogen composition H/M is created, and based on this three-dimensional map, the remaining amount of hydrogen is determined from the detected temperature and detected pressure.

この水素濃度測定方法は、一般にマイコンによって行な
われることになるため、水素残量計の設置コストが高価
になってしまう。
Since this hydrogen concentration measuring method is generally performed by a microcomputer, the installation cost of the hydrogen remaining amount meter becomes high.

(2) また、第4図に示すPCT曲線において、プラ
トー域(圧力が平坦な部分であ7て一般に燃料として使
う領域)を合金の組成を多元系にすることで傾け、これ
により水素組成に対して圧力を一次に変化させ、この圧
力を測定することによって、水素残量を求める方法が考
えられている。
(2) In addition, in the PCT curve shown in Figure 4, the plateau region (the region where the pressure is flat and is generally used as a fuel) is tilted by making the alloy composition multi-component. On the other hand, a method has been considered in which the remaining amount of hydrogen is determined by linearly changing the pressure and measuring this pressure.

しかしこの測定方法では、水素圧力がシフトするため、
温度が安定した場所以外では測定精度が非常に悪く、ま
た水素放出時、吸蔵時には強制的に温度を上下させるた
め全く測定不可能となってしまう。
However, with this measurement method, the hydrogen pressure shifts, so
Measurement accuracy is very poor outside of a place where the temperature is stable, and when hydrogen is released or absorbed, the temperature is forcibly raised or lowered, making measurement impossible.

(3) さらに、水素供給系および消費系と水素貯蔵タ
ンクとの間に質量流量計を設けて移動水素流量をnJ定
することにより、合金の最大水素吸蔵量から差し引き算
出する方法も考えられている。
(3) Furthermore, a method has been considered in which a mass flow meter is installed between the hydrogen supply system, the consumption system, and the hydrogen storage tank, and the transferred hydrogen flow rate is determined in nJ, and then subtracted from the maximum hydrogen storage capacity of the alloy. There is.

しかし、質量流量計は非常に高価(約80万円以上)で
あり、簡易性に欠Jするという問題がある。
However, mass flow meters are very expensive (approximately 800,000 yen or more) and lack simplicity.

(発明が解決しようとする課題) 上述のように水素貯蔵タンク内の水素残量の測定を行な
うため、各種の水素残量測定法が考えられている。
(Problems to be Solved by the Invention) In order to measure the amount of hydrogen remaining in the hydrogen storage tank as described above, various methods for measuring the amount of remaining hydrogen have been considered.

しかしながら、(1)温度T、圧力Pおよび水素組成H
/Mの3次元マツプを作成し、この3次元マツプをもと
に検出温度および検出圧力から水素残量を求める方法に
おいては、マイコン等を用いるため設置コストが高価に
なってしまうという問題がある。(2)またPCT曲線
のプラトー域を傾けて水素残量を求める方法においては
、温度が安定した場所以外では測定精度が非常に悪いと
いう問題がある。(3)さらに質量流量計を設は移動水
素流量を測定することにより、合金の最大水素吸蔵量か
ら差し引き算出する方法においては設置コストが高価に
なってしまうという問題がある。
However, (1) temperature T, pressure P and hydrogen composition H
The method of creating a three-dimensional map of /M and calculating the remaining amount of hydrogen from the detected temperature and pressure based on this three-dimensional map has the problem that the installation cost becomes high because it uses a microcomputer, etc. . (2) Furthermore, in the method of determining the remaining amount of hydrogen by tilting the plateau region of the PCT curve, there is a problem in that the measurement accuracy is very poor outside of a place where the temperature is stable. (3) Furthermore, there is a problem in that the installation cost becomes high in a method in which a mass flow meter is designed to measure the flow rate of transferred hydrogen, thereby subtracting it from the maximum hydrogen storage capacity of the alloy.

本発明はこのような点を考慮してなされたものであり、
安価で精度よく水素残量の測定を行なうことができる水
素残量計を提供することを目的とする。
The present invention has been made in consideration of these points,
It is an object of the present invention to provide a hydrogen remaining amount meter that can accurately measure the remaining amount of hydrogen at low cost.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、水素貯蔵タンク内に設けられた水素ガス透過
材料製の収納箱と、この収納箱内に収納され水素吸蔵量
の変化によって体積変化を生じさせる水素吸蔵合金と、
前記水素吸蔵合金の体積変化を検出する検出装置とを備
えたことを特徴とする水素残量計である。
(Means for Solving the Problems) The present invention provides a storage box made of a hydrogen gas permeable material provided in a hydrogen storage tank, and hydrogen that is stored in the storage box and causes a volume change depending on a change in the amount of hydrogen absorbed. storage alloy,
The hydrogen remaining amount meter is characterized by comprising a detection device for detecting a change in volume of the hydrogen storage alloy.

(作 用) 本発明によれば、水素貯蔵タンク内の水素残量が変化し
た場合、収納箱内に収納された水素吸蔵合金の水素量も
変化してその体積が変化し、この水素吸蔵合金の体積変
化を検出装置によって検出することにより水素残量を測
定することができる。
(Function) According to the present invention, when the remaining amount of hydrogen in the hydrogen storage tank changes, the amount of hydrogen in the hydrogen storage alloy stored in the storage box also changes and its volume changes. The remaining amount of hydrogen can be measured by detecting the change in volume with a detection device.

(実施例) 以下、図面を参照して本発明の実施例について説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図および第2図は本発明による水素残量計の一実施
例°を示す図であり、このうち第・1図は水素残量計の
側断面図、第2図は水素吸蔵合金の特性を示す図である
Figures 1 and 2 are diagrams showing an embodiment of a hydrogen fuel gauge according to the present invention, of which Figure 1 is a side sectional view of the hydrogen fuel gauge, and Figure 2 is a side sectional view of the hydrogen storage alloy. FIG. 3 is a diagram showing characteristics.

第1図において、水素貯蔵タンク31内に水素吸蔵合金
32が貯蔵されている。水素吸蔵合金32としては、例
えば希土類系のL a N i5、L a N l 4
,7 A 1 o、s等水素吸蔵量によって体積変化を
生じさせる粒子状合金が用いられ、この水素吸蔵合金3
2の粒度は予め調整されている。
In FIG. 1, a hydrogen storage alloy 32 is stored in a hydrogen storage tank 31. As shown in FIG. As the hydrogen storage alloy 32, for example, rare earth-based L a N i5, L a N l4
, 7 A 1 o, s etc. A particulate alloy that causes a volume change depending on the amount of hydrogen storage is used, and this hydrogen storage alloy 3
The particle size of No. 2 is adjusted in advance.

次に水素残量計10の構成を説明する。Next, the configuration of the remaining hydrogen gauge 10 will be explained.

水素貯蔵タンク31の上部開口には取付座33が設けら
れ、この取付座33には下方に円筒状の焼結金属フィル
タ14を有する保持体11が載置され、止ねじ25によ
って固定されている。また取付座33と保持体11との
間は、0リング15によってシールされている。
A mounting seat 33 is provided at the upper opening of the hydrogen storage tank 31, and a holder 11 having a cylindrical sintered metal filter 14 underneath is mounted on the mounting seat 33, and is fixed with a set screw 25. . Further, the space between the mounting seat 33 and the holding body 11 is sealed by an O-ring 15.

焼結金属フィルタ14は水素貯蔵タンク31内に延びる
とともに、内部に水素貯蔵合金13が収納されている。
The sintered metal filter 14 extends into the hydrogen storage tank 31 and contains the hydrogen storage alloy 13 therein.

焼結金属フィルタ14内に収納された水素吸蔵合金13
は、水素貯蔵タンク31内に貯蔵された水素吸蔵合金3
2と同一組成のものが用いられるが、水素の吸蔵および
放出の繰り返しによる微粉化を防ぐため圧縮成形体の合
金が用いられている。
Hydrogen storage alloy 13 housed in sintered metal filter 14
is the hydrogen storage alloy 3 stored in the hydrogen storage tank 31
An alloy having the same composition as No. 2 is used, but an alloy of compression molding is used to prevent pulverization due to repeated absorption and release of hydrogen.

また焼結金属フィルタ14は伝熱性のよいステンレス製
となっており、水素ガスの透過を可能としているが、水
素貯蔵タンク31側から微粉化した合金が焼結金属フィ
ルタ14内に侵入しないようになっている。さらに焼結
金属フィルタ14の形状は、垂直方向に細長い円筒状と
なっており、例えば直径と長さの比が115゛となって
いる。これは円筒状の軸方向の体積変位を直径方向の体
積変位に比較してはるかに大きくするためである。
In addition, the sintered metal filter 14 is made of stainless steel with good heat conductivity and allows hydrogen gas to pass through, but it is necessary to prevent the pulverized alloy from entering the sintered metal filter 14 from the hydrogen storage tank 31 side. It has become. Furthermore, the shape of the sintered metal filter 14 is a cylindrical shape elongated in the vertical direction, and the diameter to length ratio is, for example, 115 degrees. This is because the volumetric displacement in the axial direction of the cylinder is much larger than the volumetric displacement in the diametrical direction.

保持体11内には、下方に取付けられた焼結金属フィル
タ14内と連通する空間11aが形成され、この空間1
1a内には、焼結金属フィルタ14内に収納された水素
吸蔵合金13の上面に接触する磁石17が設けられてい
る。この磁石17は水素吸蔵量の変化にともなう水素吸
蔵合金13の体積変化に応じて、空間11a内で上下方
向に移動するようになっており、空間11a上面と磁石
17との間には皿ばね16が介在されている。
A space 11a is formed in the holder 11 and communicates with the inside of the sintered metal filter 14 attached below.
A magnet 17 is provided in the interior of the sintered metal filter 14, which contacts the upper surface of the hydrogen storage alloy 13 housed in the sintered metal filter 14. This magnet 17 is configured to move vertically within the space 11a in response to changes in the volume of the hydrogen storage alloy 13 due to changes in the amount of hydrogen storage, and a disc spring is installed between the upper surface of the space 11a and the magnet 17. 16 are interposed.

また、保持体11の上部には、内部に互いに連通ずるダ
イヤフラム室27aおよび液体室27bが形成された表
示体27が設けられている。この表示体27のダイヤフ
ラム室27a内には、ダイヤフラム19が配設されてい
る。そしてダイヤフラム19の下面には、保持体11内
の磁石17に対向するとともに、磁石17の上下移動に
対応して上下移動を行なう磁石18が取付けられている
Furthermore, a display body 27 is provided at the upper part of the holding body 11, and the display body 27 has a diaphragm chamber 27a and a liquid chamber 27b formed therein, which communicate with each other. A diaphragm 19 is disposed within the diaphragm chamber 27a of the display body 27. A magnet 18 is attached to the lower surface of the diaphragm 19 so as to face the magnet 17 in the holder 11 and move up and down in response to the up and down movement of the magnet 17.

さらに、ダイヤフラム室27a内のダイヤフラム19の
上方には不揮発性液体20が収納され、この不揮発性液
体20はダイヤフラム室27gから液体室27bまで達
している。また表示体27は外部から内部に収納された
不揮発性液体20を確認することができるようになって
おり、表示体27は全体としてガラス付覆い管28で覆
われている。なお、このガラス付覆い管28内には不活
性ガス、例えばアルゴンガスが充てんされている。
Furthermore, a non-volatile liquid 20 is stored above the diaphragm 19 in the diaphragm chamber 27a, and this non-volatile liquid 20 reaches from the diaphragm chamber 27g to the liquid chamber 27b. Further, the display body 27 is configured such that the nonvolatile liquid 20 stored therein can be confirmed from the outside, and the display body 27 is entirely covered with a glass cover tube 28. Note that this glass covered tube 28 is filled with an inert gas, for example, argon gas.

この不活性ガスは不揮発性液体20と空気との化学反応
による腐蝕を防止するものである。
This inert gas prevents corrosion due to chemical reaction between the nonvolatile liquid 20 and air.

次にこのような構成からなる本実施例の作用について説
明する。
Next, the operation of this embodiment having such a configuration will be explained.

まず、第2図に水素吸蔵合金13,32、例えばLaN
i4.Al、3の特性について説明する。
First, FIG. 2 shows a hydrogen storage alloy 13, 32, for example, LaN.
i4. The characteristics of Al, 3 will be explained.

第2図は横軸に水素吸蔵量(水素組成)を縦軸に体積変
化率をそれぞれとり、各水素吸蔵放出回数N−5,10
,15に対応する体積変化率を示したものである。
Figure 2 shows the amount of hydrogen storage (hydrogen composition) on the horizontal axis and the volume change rate on the vertical axis, and the number of hydrogen storage and release times N-5, 10
, 15 shows the volume change rate corresponding to .

この体積変化率は一軸方向(開放方向)の移動量として
検出されたものであり、側壁方向への変化は無視して算
出されている。
This rate of volume change is detected as the amount of movement in the uniaxial direction (opening direction), and is calculated ignoring changes in the side wall direction.

第2図に示すように、水素吸蔵合金の体積変化率、すな
わち開放方向の移動量は水素吸蔵量の変化に応じて直線
的に変化する。このため水素吸蔵合金の体積変化率を検
出することにより、水素吸蔵量を測定することができる
As shown in FIG. 2, the volume change rate of the hydrogen storage alloy, that is, the amount of movement in the opening direction changes linearly in accordance with the change in the amount of hydrogen storage. Therefore, by detecting the volume change rate of the hydrogen storage alloy, the amount of hydrogen storage can be measured.

すなわち、第1図において、水素貯蔵タンク31内に貯
蔵された水素吸蔵合金32から水素が放出されて水素が
消費されると、水素吸蔵合金32内の水素吸蔵量が低下
する。この場合、焼結金属フィルタ14は水素ガス透過
性となっているので、焼結金属フィルタ14内の水素吸
蔵合金13の水素吸蔵量は、水素貯蔵タンク31内の水
素吸蔵合金32と同様低下しその体積を減少させる。
That is, in FIG. 1, when hydrogen is released from the hydrogen storage alloy 32 stored in the hydrogen storage tank 31 and hydrogen is consumed, the amount of hydrogen stored in the hydrogen storage alloy 32 decreases. In this case, since the sintered metal filter 14 is permeable to hydrogen gas, the hydrogen storage capacity of the hydrogen storage alloy 13 in the sintered metal filter 14 decreases in the same way as the hydrogen storage alloy 32 in the hydrogen storage tank 31. Decrease its volume.

焼結金属フィルタ14内の水素吸蔵合金13が、水素吸
蔵量の低下に伴ってその体積を直線的に減少させると、
水素吸蔵合金13の上面に接触して設けられた磁石17
が、空間11a内で皿ばね16に押圧されて下方へ移動
する。この磁石17の下方への移動に伴い、磁石18も
下方へ移動しダイヤフラム19が下方へ押下げられる。
When the hydrogen storage alloy 13 in the sintered metal filter 14 linearly decreases its volume as the amount of hydrogen storage decreases,
Magnet 17 provided in contact with the upper surface of hydrogen storage alloy 13
is pressed by the disc spring 16 within the space 11a and moves downward. As the magnet 17 moves downward, the magnet 18 also moves downward, pushing the diaphragm 19 downward.

このようにダイヤフラム19が下方へ押下げられると、
ダイヤフラム室27aおよび液体室27b内に収納され
た不揮発性液体20が下方へ降下する。この場合、不揮
発性液体20の上面は、ガラス付覆い管28の外側から
確認でき、この不揮発性液体20の上面をガラス付覆い
管28の表面に描かれた水素残量表示部29と対比して
検出することにより水素残量を測定することができる。
When the diaphragm 19 is pushed down in this way,
Nonvolatile liquid 20 stored in diaphragm chamber 27a and liquid chamber 27b falls downward. In this case, the upper surface of the non-volatile liquid 20 can be confirmed from the outside of the glass covered tube 28, and the upper surface of the non-volatile liquid 20 can be compared with the remaining hydrogen amount display section 29 drawn on the surface of the glass covered tube 28. The remaining amount of hydrogen can be measured by detecting the amount of hydrogen.

このように本実施例によれば、水素吸蔵量よってその体
積を直線的に変化させる水素吸蔵合金13を利用し、こ
の水素吸蔵合金13の体積変化を検出することにより水
素貯蔵タンク31内の水素残量を測定することができる
ので、安価で精度良く水素残量をn1定することができ
る。
As described above, according to this embodiment, the hydrogen storage alloy 13 whose volume changes linearly depending on the amount of hydrogen storage is used, and by detecting the volume change of the hydrogen storage alloy 13, the hydrogen in the hydrogen storage tank 31 is detected. Since the remaining amount can be measured, the remaining amount of hydrogen can be determined n1 at low cost and with high accuracy.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、収納箱内に収納
された水素吸蔵合金の体積変化を検出装置によって検出
することにより、水素貯蔵タンク内の水素残量を測定す
ることができるので、安価で精度良く水素残量を測定す
ることができる。
As explained above, according to the present invention, the remaining amount of hydrogen in the hydrogen storage tank can be measured by detecting the volume change of the hydrogen storage alloy stored in the storage box using the detection device. It is possible to measure the remaining amount of hydrogen at low cost and with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水素残量計の一実施例を示す側断
面図、第2図は水素吸蔵合金の特性を示す図、第3図は
水素吸蔵合金のVan’t  Hof’f線図、第4図
は水素吸蔵合金のPCT曲線を示す図である。 10・・・水素残量計、13・・・水素吸蔵合金、14
・・・焼結金属フィルタ、17・・・磁石、18・・・
磁石、19・・・ダイヤフラム、20・・・不揮発性液
体。
Fig. 1 is a side cross-sectional view showing an embodiment of the hydrogen remaining amount meter according to the present invention, Fig. 2 is a diagram showing the characteristics of the hydrogen storage alloy, and Fig. 3 is a Van't Hof'f diagram of the hydrogen storage alloy. , FIG. 4 is a diagram showing a PCT curve of a hydrogen storage alloy. 10...Hydrogen remaining amount meter, 13...Hydrogen storage alloy, 14
...Sintered metal filter, 17...Magnet, 18...
Magnet, 19...Diaphragm, 20...Nonvolatile liquid.

Claims (1)

【特許請求の範囲】[Claims] 水素貯蔵タンク内に設けられた水素ガス透過材料製の収
納箱と、この収納箱内に収納され水素吸蔵量の変化によ
って体積変化を生じさせる水素吸蔵合金と、前記水素吸
蔵合金の体積変化を検出する検出装置とを備えたことを
特徴とする水素残量計。
A storage box made of a hydrogen gas permeable material provided in a hydrogen storage tank, a hydrogen storage alloy that is stored in the storage box and causes a volume change due to a change in the amount of hydrogen storage, and detects the volume change of the hydrogen storage alloy. A hydrogen residual quantity meter characterized by being equipped with a detection device for detecting the amount of hydrogen.
JP63272077A 1988-10-28 1988-10-28 Hydrogen fuel gauge Expired - Lifetime JP2737082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63272077A JP2737082B2 (en) 1988-10-28 1988-10-28 Hydrogen fuel gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272077A JP2737082B2 (en) 1988-10-28 1988-10-28 Hydrogen fuel gauge

Publications (2)

Publication Number Publication Date
JPH02118417A true JPH02118417A (en) 1990-05-02
JP2737082B2 JP2737082B2 (en) 1998-04-08

Family

ID=17508772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272077A Expired - Lifetime JP2737082B2 (en) 1988-10-28 1988-10-28 Hydrogen fuel gauge

Country Status (1)

Country Link
JP (1) JP2737082B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423647A (en) * 1993-02-01 1995-06-13 Sumitomo Wiring Systems, Ltd. Stud bolt clip
JP2008005581A (en) * 2006-06-20 2008-01-10 Nissan Motor Co Ltd Structure for attaching harness protector
JP2018169225A (en) * 2017-03-29 2018-11-01 株式会社日本製鋼所 Hydrogen quantity detector and hydrogen storage alloy container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766357A (en) * 1980-10-09 1982-04-22 Sekisui Chem Co Ltd Reaction measuring device for metal hydride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766357A (en) * 1980-10-09 1982-04-22 Sekisui Chem Co Ltd Reaction measuring device for metal hydride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423647A (en) * 1993-02-01 1995-06-13 Sumitomo Wiring Systems, Ltd. Stud bolt clip
JP2008005581A (en) * 2006-06-20 2008-01-10 Nissan Motor Co Ltd Structure for attaching harness protector
JP2018169225A (en) * 2017-03-29 2018-11-01 株式会社日本製鋼所 Hydrogen quantity detector and hydrogen storage alloy container

Also Published As

Publication number Publication date
JP2737082B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US7254983B2 (en) Fuel gauge for hydrogen storage media
US6981426B2 (en) Method and apparatus to measure gas amounts adsorbed on a powder sample
Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)
Joy Methods and techniques for the determination of specific surface by gas adsorption
JP2007047125A (en) Hydrogen quantity sensor, and hydrogen storage device
CN110291325A (en) Device and method for determining the insulation quality of double walled vacuum thermally insulated container
JP2737082B2 (en) Hydrogen fuel gauge
Ma et al. Experimental study of multilayer adsorption on fractal surfaces in porous media
JP2686521B2 (en) Hydrogen fuel gauge
Pierce et al. Physical adsorption in the multilayer region on heterogeneous and homogeneous surfaces
JP2686522B2 (en) Hydrogen fuel gauge
JP3756919B2 (en) How to measure dead volume fluctuation
JP2686523B2 (en) Hydrogen fuel gauge
Mukaida Density measurement of small porous particles by mercury porosimetry
CN109490139A (en) A kind of device and method based on physical adsorption appearance test material real density
JP3147968B2 (en) Hydrogen remaining detector
US5942684A (en) Buoyancy force sensor for a hydrometer and interlock for a storage tank used in containing a respirable liquid cryogen
US3783697A (en) Method of determining small surface areas
ES2776379T3 (en) Measuring device and procedure for determining the amount of a gas received in an accumulator in a porous storage material
Faeth Adsorption and vacuum technique
Zikánová et al. A study of internal diffusion during the physical adsorption of benzene on active charcoal
JP7211205B2 (en) Device for detecting deterioration of hydrogen storage alloy, method for detecting deterioration thereof, and hydrogen absorption and desorption system
Rouquerol et al. Aix Marseille University-CNRS, MADIREL Laboratory, Marseille, France
Voth et al. An Electronic Balance for Weighing Foams at Cryogenic Temperatures
Allen et al. Gas adsorption