JPH0240170B2 - - Google Patents
Info
- Publication number
- JPH0240170B2 JPH0240170B2 JP57189928A JP18992882A JPH0240170B2 JP H0240170 B2 JPH0240170 B2 JP H0240170B2 JP 57189928 A JP57189928 A JP 57189928A JP 18992882 A JP18992882 A JP 18992882A JP H0240170 B2 JPH0240170 B2 JP H0240170B2
- Authority
- JP
- Japan
- Prior art keywords
- storage tank
- pressure
- carbon dioxide
- liquid level
- liquefied carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 94
- 239000007788 liquid Substances 0.000 claims description 73
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 46
- 239000001569 carbon dioxide Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 8
- 238000007689 inspection Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000009835 boiling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010420 art technique Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F25/00—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
- G01F25/10—Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Description
本発明は、液化炭酸ガスが貯留される貯留槽の
液面高さを検出するために用いられる差圧式液面
計の検査方法に関する。
従来から、差圧式液面計を検査するにあたつて
は、既知の圧力を発生する圧力発生手段を差圧式
液面計に接続して、差圧式液面計の指示が正しい
か否かが検査されていた。このような検査では、
実際の液化炭酸ガスが貯留される貯留槽の液面高
さを正しく表示するか否かを確認できない。
そのため或る先行技術では、第1図に示すよう
な検査方法が用いられる。液化炭酸ガスが貯留さ
れる貯留槽1には、後述の差圧式液面計8と、貯
留槽1の上部と底部とを連結する連結管2とが含
まれる。連結管2には、貯留槽1の上部に近接し
てコツク3a,3bが介在され、貯留槽1の底部
に近接してコツク4a,4bが介在される。連結
管2には、垂直に延びる垂直管路2aが形成さ
れ、この垂直管路2aには、貯留槽1の高さに対
応して上下方向に複数のコツク5が配設される。
差圧式液面計によつて液面高さが求められたと
き、コツク3a,3b;4a,4bを開栓して、
垂直管路2aの液面高さを貯留槽1の液面高さと
一致させた後コツク3a,3b;4a,4bを閉
栓し、前記差圧式液面計で求められた液面高さに
対応するコツク5aを開栓する。このコツク5a
から液化炭酸ガスが流出し、このコツク5aの直
上に設けられたコツク5から液化炭酸ガスが流出
しないとき、前記差圧式液面計が正しいことが確
認される。このような方法では、液化炭酸ガスが
垂直管部2aの液面で沸騰して正確に貯留槽1の
液面高さを測定することが困難であつた。沸騰防
止のためには、垂直管部2aを保冷する必要があ
つた。そのため、垂直管部2aは大口径となり、
多大の費用が費やされた。
他の先行技術では、前述の先行技術の垂直管部
2aに代えて、第2図に示すような液面計2bが
用いられる。液面計2bには、上下に延びる長孔
5bにガラス窓が設けられる。このガラス窓から
貯留槽1の液面高さが直読される。この液面計2
bも前述の垂直管部2aと同様に保冷する必要が
あり、液面の沸騰防止のために多大の費用が費や
された。
本発明の目的は、このような先行技術の技術的
課題を解決して、差圧式液面計の精度を容易にか
つ正確に検査できる差圧式液面計の検査方法を提
供することである。
以下、図面によつて本発明の実施例を説明す
る。第3図は本発明の一実施例の差圧式液面計の
検査方法を説明するための簡略化した構成図であ
る。液化炭酸ガス6が貯留される貯留槽7には、
差圧式液面計8が接続されている。貯留槽7は、
船などに積載されており、貯留槽7には、タンク
ローリ9などから液化炭酸ガス6が注入される。
差圧式液面計8の作動状態を説明すると、貯留
槽7の底部7aから外部に引出された液管路12
側の圧力PLと、貯留槽7の上部から外部に引出
されるガス管路13側の圧力PGとの圧力差ΔPか
ら計算された液化炭酸ガスの液面高さHが指示計
14によつて直読される。以下、この圧力差ΔP
と圧力PL、PGとの関係を示す。
ΔP=PL−PG …(1)
∴ΔP=(h・γG+H・γL−H0・γG)
−{h・γG+(H−H0)・γG} …(2)
∴ΔP=H・(γL−γG) …(3)
ここで、ΔPは圧力差、PLは液側圧力、PGは
ガス側圧力、Hは液面高さ、hは気相高さ、H0
は貯留槽7の底部7aから指示計14までの高
さ、γLは液化炭酸ガス比重、γGは炭酸ガス比重
である。したがつて、第1式の圧力差ΔPは、第
2式のように変形され、第3式に示すように液化
炭酸ガスの液面高さHと、液化炭酸ガス比重γL
と炭酸ガス比重γGとの差の積として誘導される。
温度および圧力が一定のとき、液化炭酸ガス比重
γLと炭酸ガス比重γGは既知量である。差圧式液
面計8の指示計14には、液管路12とガス管路
13との圧力差によつて変形するベロー(図示せ
ず)が設けられ、このベロー変形割合に応じて指
示計14の指針15が液面高さHを指示するよう
に後述の目盛板16が設けられている。なお、こ
のベローは温度補償が施されている。
第1表は、前記第3式より計算された液化炭酸
ガスの液面高さH、液化炭酸ガス重量、炭酸ガス
重量、全炭酸ガス重量すなわち(液化炭酸ガス+
炭酸ガス)重量および水柱換算の液面高さの関係
を示す。
The present invention relates to a method for inspecting a differential pressure type liquid level gauge used to detect the liquid level height of a storage tank in which liquefied carbon dioxide gas is stored. Conventionally, when inspecting a differential pressure type level gauge, a pressure generating means that generates a known pressure is connected to the differential pressure type level gauge to check whether the indications of the differential pressure type level gauge are correct. It was being inspected. In such a test,
It cannot be confirmed whether the actual liquid level height of the storage tank where liquefied carbon dioxide gas is stored is displayed correctly. Therefore, in some prior art techniques, an inspection method as shown in FIG. 1 is used. The storage tank 1 in which liquefied carbon dioxide gas is stored includes a differential pressure type liquid level gauge 8, which will be described later, and a connecting pipe 2 that connects the top and bottom of the storage tank 1. In the connecting pipe 2, pots 3a and 3b are interposed close to the top of the storage tank 1, and pots 4a and 4b are interposed close to the bottom of the storage tank 1. A vertical conduit 2a extending vertically is formed in the connecting pipe 2, and a plurality of pots 5 are disposed in the vertical direction corresponding to the height of the storage tank 1 in this vertical conduit 2a. When the liquid level height is determined by the differential pressure type liquid level gauge, open the cocks 3a, 3b; 4a, 4b,
After matching the liquid level height of the vertical pipe 2a with the liquid level height of the storage tank 1, the pots 3a, 3b; 4a, 4b are closed to correspond to the liquid level height determined by the differential pressure type liquid level gauge. Open the container 5a. Kokotoku 5a
When liquefied carbon dioxide gas flows out from the tank 5a and liquefied carbon dioxide gas does not flow out from the tank 5 provided directly above the tank 5a, it is confirmed that the differential pressure type liquid level gauge is correct. In such a method, the liquefied carbon dioxide boils at the liquid level of the vertical pipe portion 2a, making it difficult to accurately measure the liquid level height of the storage tank 1. In order to prevent boiling, it was necessary to keep the vertical pipe portion 2a cold. Therefore, the vertical pipe portion 2a has a large diameter,
A great deal of money was spent. In another prior art, a liquid level gauge 2b as shown in FIG. 2 is used in place of the vertical pipe portion 2a of the prior art described above. The liquid level gauge 2b is provided with a glass window in an elongated hole 5b extending vertically. The liquid level height of the storage tank 1 can be directly read from this glass window. This liquid level gauge 2
Similarly to the above-mentioned vertical pipe portion 2a, it was also necessary to keep the pipe portion b cool, and a large amount of money was spent to prevent the liquid level from boiling. An object of the present invention is to solve the technical problems of the prior art and to provide a method for testing a differential pressure type liquid level gauge that allows the accuracy of the differential pressure type liquid level gauge to be easily and accurately tested. Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a simplified configuration diagram for explaining an inspection method of a differential pressure type liquid level gauge according to an embodiment of the present invention. The storage tank 7 in which the liquefied carbon dioxide gas 6 is stored includes:
A differential pressure type liquid level gauge 8 is connected. The storage tank 7 is
It is loaded on a ship or the like, and liquefied carbon dioxide gas 6 is injected into the storage tank 7 from a tank truck 9 or the like. To explain the operating state of the differential pressure type liquid level gauge 8, the liquid pipe line 12 drawn out from the bottom 7a of the storage tank 7
The liquid level H of the liquefied carbon dioxide calculated from the pressure difference ΔP between the pressure PL on the side and the pressure PG on the side of the gas pipe 13 drawn out from the upper part of the storage tank 7 is determined by the indicator 14. It is read directly. Below, this pressure difference ΔP
shows the relationship between pressure PL and PG. ΔP=PL−PG …(1) ∴ΔP=(h・γG+H・γL−H0・γG) −{h・γG+(H−H0)・γG} …(2) ∴ΔP=H・(γL−γG) ...(3) Here, ΔP is pressure difference, PL is liquid side pressure, PG is gas side pressure, H is liquid level height, h is gas phase height, H0
is the height from the bottom 7a of the storage tank 7 to the indicator 14, γL is the liquefied carbon dioxide specific gravity, and γG is the carbon dioxide specific gravity. Therefore, the pressure difference ΔP in the first equation is transformed as shown in the second equation, and as shown in the third equation, the liquid level height H of the liquefied carbon dioxide gas and the specific gravity γL of the liquefied carbon dioxide gas
It is derived as the product of the difference between γG and carbon dioxide specific gravity γG.
When the temperature and pressure are constant, the liquefied carbon dioxide specific gravity γL and the carbon dioxide specific gravity γG are known quantities. The indicator 14 of the differential pressure type liquid level gauge 8 is provided with a bellows (not shown) that deforms due to the pressure difference between the liquid pipe line 12 and the gas pipe line 13. A scale plate 16, which will be described later, is provided so that a pointer 15 of 14 indicates the liquid level height H. Note that this bellows is temperature compensated. Table 1 shows the liquid level H of liquefied carbon dioxide calculated from the third formula, the weight of liquefied carbon dioxide, the weight of carbon dioxide, and the total weight of carbon dioxide, i.e. (liquefied carbon dioxide +
The relationship between the weight of carbon dioxide gas and the liquid level height in terms of water column is shown.
【表】【table】
【表】
この計算において、貯留槽7内の圧力は21.5
Kg/cm2Gであり、液化炭酸ガス比重γLを
1.012ton/m3とし、炭酸ガス比重γGを0.058ton/
m3とする。なお、この貯留槽7は、たとえば内径
が2000mmであり、27ton槽として設計されている。
第4図は第3図に示す指示計14の目盛板16
の正面図である。目盛板16は円板状に形成され
る。この目盛板16には、周方向外方に第1表に
示された全炭酸ガス比重がton単位で目盛られ、
周方向内方に第1表に示された水柱換算された液
面高さがmmH2O単位でそれぞれ目盛られている。
目盛板16の中央部には、前記ベローに接続され
た駆動軸17が設けられ、指針15(第3図参
照)が回動自在に駆動軸17に固定される。
再び第3図を参照すると、液管路12の貯留槽
7寄りには、液側元弁18が設けられる。ガス管
路13の貯留槽7寄りには、ガス側元弁19が設
けられる。液管路12とガス管路13とは、貯留
槽7の底部7aから高さH0において、指示計1
4に接続される。この指示計14に接続される貯
留槽7寄りのガス管路13と液管路12との間に
バイパス管路20が設けられる。バイパス管路2
0には、バイパス弁21が介在される。ガス管路
13のガス側元弁19とバイパス管路20との間
には、ガス管路13の圧力を大気圧に一致させる
ための三方コツク22が介在される。
液管路12の前記液側元弁18とバイパス管路
20との間には、三方コツク23が介在される。
この三方コツク23には、可撓性を有する耐圧管
24が接続される。この耐圧管24は、圧力発生
手段としての微圧発生ポンプ25に接続される。
微圧発生ポンプ25はたとえば空気圧式手動プラ
ンジヤ型である。微圧発生ポンプ25は、耐圧管
26によつて圧力計27たとえばU字管形状水柱
圧力計の一端に接続される。このU字管内には水
が貯留され、圧力計27の他端は大気中に開放さ
れる。したがつて微圧発生ポンプ25によつて発
生される圧力は、圧力計27によつて水柱高さと
して直読される。
本発明に従う差圧式液面計8の検査は次のステ
ツプ1〜3によつて行なわれる。ステツプ1にお
いては、貯留槽7に液化炭酸ガス6が設定充填さ
れたときの差圧式液面計8の表示が正しいか否か
が確認される。ただし、ここで設定充填とは、貯
留槽7の底部7aから貯留槽7の内容積のたとえ
ば90%に対応する高さまで液化炭酸ガスが貯留さ
れた状態を称する。貯留槽7の底部7aから貯留
槽7の内容積の90%に対応する位置には、溢流口
10が開口される。溢流口10は、管28によつ
て貯留槽7の下方に設けられた溢流口弁11に連
通される。液化炭酸ガス6は、タンクローリ9か
ら前記設定充填の量よりもわずかに多く注入され
る。このとき、前記溢流口弁11をわずかに開栓
しておくと、過剰に注入された液化炭酸ガス6
は、溢流口弁11からドライアイスとなり、外部
に放出される。このドライアイスの白色が止ま
り、無色の炭酸ガスに変化したとき、溢流口弁1
1を開栓し、液管路12の液側元弁18とガス管
路13のガス側元弁19を開栓し、差圧式液面計
8の指示計14の指針15が指示する目盛板16
を直読する。この指針15が目盛板16に示され
た100%を正確に指示するか、または貯留槽7の
製造上の精度に起因する容積の誤差範囲内で指示
すればよい。なお、液化炭酸ガス6の注入直後の
液面は、沸騰によつて不安定であるので、指針1
5が安定してから目盛板16に表示された目盛を
読む。
ステツプ2においては、液管路12側とガス管
路13側の圧力差が零のとき、すなわち貯留槽7
に液化炭酸ガス6が無いときの差圧式液面計8の
表示を確認する。バイパス弁21を開栓すると前
記圧力差は零となり、指示計14の指針15が水
柱換算された圧力差の零を指示すればよい。ただ
し、圧力差が零のときも、貯留槽7には、炭酸ガ
スが残留されているとして全炭酸ガス比重は示さ
れている。なお、バイパス弁21を開栓するとき
は、まず液側元弁18を開栓した後にバイパス弁
21を開栓する。
ステツプ3においては、貯留槽7の液化炭酸ガ
ス6の液面高さが100%貯留よりも減少したとき
の差圧式液面計8の表示の確認をする。液管路1
2の液側元弁18と、ガス管路13のガス側元弁
19と、バイパス弁21とを閉栓し、ガス管路1
3に介在されるコツク22が大気圧下に開栓さ
れ、コツク23が耐圧管24と管路12とが連通
するように切換えられる。貯留槽7に液化炭酸ガ
ス6が設定充填量に対して一定量たとえば90%お
よび70%貯留されている場合の計算された圧力差
を微圧発生ポンプ25によつてそれぞれ発生さ
せ、差圧式液面計8の指示計14の指針15が目
盛板16のそれぞれの値を指示すればよい。圧力
計27が示す圧力と、この指示計14が指示する
目盛との差がたとえば±38mmH2Oの範囲である
とき、この差圧式液面計8によつて、貯留槽7内
の液化炭酸ガス6の液面高さを正確に測定するこ
とができる。なお、このステツプ3の検査を行な
うに先だつて、貯留槽7の液化炭酸ガス6が100
%貯留された状態での計算による圧力差を微圧発
生ポンプ25によつて発生させ、指示計14が正
しく作動しているか否かを確認する。
以上のように本発明によれば、差圧式液面計に
圧力発生手段を接続することによつて、差圧式液
面計の検査を正確にしかも容易に行なうことがで
きる。[Table] In this calculation, the pressure inside the storage tank 7 is 21.5
Kg/cm 2 G, and the specific gravity of liquefied carbon dioxide γL is
1.012ton/ m3 , and carbon dioxide specific gravity γG is 0.058ton/m3.
Let it be m3 . Note that this storage tank 7 has an inner diameter of 2000 mm, for example, and is designed as a 27 ton tank. Figure 4 shows the scale plate 16 of the indicator 14 shown in Figure 3.
FIG. The scale plate 16 is formed into a disk shape. On this scale plate 16, the total carbon dioxide specific gravity shown in Table 1 is graduated outward in the circumferential direction in units of tons.
The liquid level height converted into a water column shown in Table 1 is graduated in mmH 2 O inward in the circumferential direction.
A drive shaft 17 connected to the bellows is provided at the center of the scale plate 16, and a pointer 15 (see FIG. 3) is rotatably fixed to the drive shaft 17. Referring again to FIG. 3, a liquid side main valve 18 is provided in the liquid pipe line 12 near the storage tank 7. A gas side main valve 19 is provided on the gas pipe line 13 closer to the storage tank 7 . The liquid pipe line 12 and the gas pipe line 13 are connected to the indicator 1 at a height H0 from the bottom 7a of the storage tank 7.
Connected to 4. A bypass line 20 is provided between the gas line 13 near the storage tank 7 and the liquid line 12 connected to the indicator 14. Bypass line 2
0, a bypass valve 21 is interposed. A three-way cock 22 is interposed between the gas side main valve 19 of the gas line 13 and the bypass line 20 to make the pressure of the gas line 13 equal to atmospheric pressure. A three-way socket 23 is interposed between the liquid side main valve 18 of the liquid pipe line 12 and the bypass pipe line 20.
A flexible pressure tube 24 is connected to this three-way pot 23. This pressure-resistant pipe 24 is connected to a micro-pressure generating pump 25 as pressure generating means.
The low pressure generating pump 25 is, for example, a pneumatic manual plunger type. The low pressure generating pump 25 is connected to one end of a pressure gauge 27, for example, a U-shaped water column pressure gauge, through a pressure tube 26. Water is stored in this U-shaped tube, and the other end of the pressure gauge 27 is opened to the atmosphere. Therefore, the pressure generated by the low pressure generating pump 25 is directly read by the pressure gauge 27 as the height of the water column. Inspection of the differential pressure type liquid level gauge 8 according to the present invention is performed by the following steps 1 to 3. In step 1, it is confirmed whether or not the display on the differential pressure type liquid level gauge 8 when the storage tank 7 is filled with the liquefied carbon dioxide gas 6 is correct. However, here, the term "set filling" refers to a state in which liquefied carbon dioxide gas is stored from the bottom 7a of the storage tank 7 to a height corresponding to, for example, 90% of the internal volume of the storage tank 7. An overflow port 10 is opened at a position corresponding to 90% of the internal volume of the storage tank 7 from the bottom 7a of the storage tank 7. The overflow port 10 is communicated with an overflow port valve 11 provided below the storage tank 7 through a pipe 28 . The liquefied carbon dioxide gas 6 is injected from the tank truck 9 in an amount slightly larger than the set filling amount. At this time, if the overflow port valve 11 is left slightly open, the excess liquefied carbon dioxide gas 6
becomes dry ice from the overflow port valve 11 and is discharged to the outside. When this dry ice stops being white and changes to colorless carbon dioxide gas, the overflow port valve 1
1 is opened, the liquid side main valve 18 of the liquid pipe line 12 and the gas side main valve 19 of the gas pipe line 13 are opened, and the scale plate indicated by the pointer 15 of the indicator 14 of the differential pressure type liquid level gauge 8 is opened. 16
Read directly. The pointer 15 may accurately indicate 100% shown on the scale plate 16, or it may indicate within the error range of the volume caused by manufacturing precision of the storage tank 7. Note that the liquid level immediately after injection of the liquefied carbon dioxide gas 6 is unstable due to boiling, so please follow the guideline 1.
5 becomes stable, then read the scale displayed on the scale plate 16. In step 2, when the pressure difference between the liquid pipe line 12 side and the gas pipe line 13 side is zero, that is, the storage tank 7
Check the display on the differential pressure type liquid level gauge 8 when there is no liquefied carbon dioxide gas 6. When the bypass valve 21 is opened, the pressure difference becomes zero, and the pointer 15 of the indicator 14 may indicate the zero pressure difference converted into water column. However, even when the pressure difference is zero, the total carbon dioxide specific gravity is shown assuming that carbon dioxide remains in the storage tank 7. Note that when opening the bypass valve 21, first the liquid side main valve 18 is opened, and then the bypass valve 21 is opened. In step 3, the display on the differential pressure type liquid level gauge 8 is checked when the liquid level height of the liquefied carbon dioxide gas 6 in the storage tank 7 decreases below 100% storage. Liquid pipe line 1
2, the gas side main valve 19 of the gas pipe 13, and the bypass valve 21 are closed, and the gas pipe 1
The pot 22 interposed in the pipe 3 is opened under atmospheric pressure, and the pot 23 is switched so that the pressure tube 24 and the pipe line 12 communicate with each other. Calculated pressure differences when a certain amount of liquefied carbon dioxide 6 is stored in the storage tank 7 at a fixed amount, for example, 90% and 70% of the set filling amount, are generated by the micropressure generation pump 25, and the differential pressure liquid is generated. The pointer 15 of the indicator 14 of the face meter 8 may indicate each value on the scale plate 16. When the difference between the pressure indicated by the pressure gauge 27 and the scale indicated by this indicator 14 is, for example, in the range of ±38 mmH 2 O, this differential pressure type liquid level gauge 8 detects the liquefied carbon dioxide in the storage tank 7. It is possible to accurately measure the liquid level height of 6. Note that, prior to performing the inspection in step 3, the liquefied carbon dioxide gas 6 in the storage tank 7 must reach 100%
A calculated pressure difference in a state where % is stored is generated by the micro-pressure generating pump 25, and it is confirmed whether the indicator 14 is operating correctly. As described above, according to the present invention, by connecting the pressure generating means to the differential pressure type liquid level gauge, the differential pressure type liquid level gauge can be inspected accurately and easily.
第1図は或る先行技術を説明するための構成
図、第2図は他の先行技術を説明するための斜視
図、第3図は本発明の一実施例の差圧式液面計の
検査方法を説明するための簡略化した構成図、第
4図は第3図に示す指示計14の目盛板16の正
面図である。
6…液化炭酸ガス、7…貯留槽、7a…貯留槽
底部、8…差圧式液面計、10…溢流口、12…
液管路、13…ガス管路、14…指示計、15…
指針、16…目盛板、20…バイパス管路、21
…バイパス弁、22,23…三方コツク、25…
微圧発生ポンプ、27…圧力計。
Fig. 1 is a configuration diagram for explaining a certain prior art, Fig. 2 is a perspective view for explaining another prior art, and Fig. 3 is an inspection of a differential pressure type liquid level gauge according to an embodiment of the present invention. FIG. 4, a simplified configuration diagram for explaining the method, is a front view of the scale plate 16 of the indicator 14 shown in FIG. 3. 6... Liquefied carbon dioxide gas, 7... Storage tank, 7a... Storage tank bottom, 8... Differential pressure type liquid level gauge, 10... Overflow port, 12...
Liquid pipe line, 13... Gas pipe line, 14... Indicator, 15...
Pointer, 16... Scale plate, 20... Bypass conduit, 21
...Bypass valve, 22, 23...Three-way valve, 25...
Low pressure generation pump, 27...pressure gauge.
Claims (1)
を検出するために、貯留槽の下部から外部に引出
される液管路と、貯留槽上部から外部に引出され
るガス管路とが連結される途中に指示計を設け、
前記液管路側圧力と前記ガス管路側圧力との差に
応じて液面高さを表示するようにした差圧式液面
計の検査方法において、 前記貯留槽には液化炭酸ガスの設定充填量に対
応する高さに溢流口が設けられ、前記ガス管路に
はガス管路の圧力を大気圧に一致させるためのコ
ツクを介在させ、前記液管路には貯留槽と指示計
との間に圧力発生手段を介在させ、 前記溢流口の高さよりわずかに高く液化炭酸ガ
スを貯留槽に注入し、前記溢流口から流出する液
化炭酸ガスの状態を判断し、予め定められた液化
炭酸ガスの設定充填量に一致するようにして液化
炭酸ガスを貯留したときに、差圧式液面計の表示
が100%になつているか否かを確認し、 前記液管路側圧力とガス管路側圧力との差を零
にしたときに、差圧式液面計の表示が零になつて
いるか否かを確認し、 前記貯留槽から引出される液管路とガス管路と
を遮断した状態で前記コツクを開栓しガス管路側
の圧力を大気圧とし、前記圧力発生手段によつて
前記液管路側から貯留槽に液化炭酸ガスが存在す
ることを仮想して計算された圧力を加えたとき
に、差圧式液面計の表示が前記圧力に一致してい
るか否かを確認することを特徴とする差圧式液面
計の検査方法。[Claims] 1. In order to detect the liquid level height of a storage tank in which liquefied carbon dioxide gas is stored, a liquid pipe line led out from the lower part of the storage tank and a liquid pipe line led out from the upper part of the storage tank are provided. An indicator is installed on the way where the gas pipe is connected,
In the inspection method for a differential pressure type liquid level gauge that displays a liquid level height according to the difference between the liquid pipe side pressure and the gas pipe side pressure, the storage tank is filled with a set amount of liquefied carbon dioxide gas. An overflow port is provided at a corresponding height, a cock is interposed in the gas pipe line to match the pressure of the gas pipe line with atmospheric pressure, and an overflow port is provided in the liquid pipe line between the storage tank and the indicator. A pressure generating means is interposed in the tank, and liquefied carbon dioxide is injected into the storage tank at a level slightly higher than the height of the overflow port, and the state of the liquefied carbon dioxide flowing out from the overflow port is determined, and a predetermined amount of liquefied carbon dioxide is injected into the storage tank. When liquefied carbon dioxide gas is stored to match the set filling amount of gas, check whether the display on the differential pressure type liquid level gauge is 100%, and check the liquid pipe side pressure and gas pipe side pressure. Check whether the display on the differential pressure liquid level gauge is zero when the difference between When the bottle is opened, the pressure on the gas pipe side is set to atmospheric pressure, and the pressure generating means is applied from the liquid pipe side to a pressure calculated assuming that liquefied carbon dioxide gas exists in the storage tank. . A method for inspecting a differential pressure type liquid level gauge, comprising checking whether the display of the differential pressure type liquid level gauge matches the pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57189928A JPS5979119A (en) | 1982-10-27 | 1982-10-27 | Inspecting method of differential pressure type level gauge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57189928A JPS5979119A (en) | 1982-10-27 | 1982-10-27 | Inspecting method of differential pressure type level gauge |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5979119A JPS5979119A (en) | 1984-05-08 |
JPH0240170B2 true JPH0240170B2 (en) | 1990-09-10 |
Family
ID=16249551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57189928A Granted JPS5979119A (en) | 1982-10-27 | 1982-10-27 | Inspecting method of differential pressure type level gauge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5979119A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012125688A (en) * | 2010-12-15 | 2012-07-05 | Sanso Electric Co Ltd | Gas-liquid dissolving tank |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2821669B1 (en) * | 2001-03-02 | 2004-08-13 | Framatome Anp | METHOD AND DEVICE FOR CONTROLLING A SENSOR OF AN INDUSTRIAL INSTALLATION AND A SENSOR MEASUREMENT CHAIN |
CN101995315A (en) * | 2009-08-18 | 2011-03-30 | 华东电力试验研究院有限公司 | Field test method of precision of differential pressure transmitter |
-
1982
- 1982-10-27 JP JP57189928A patent/JPS5979119A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012125688A (en) * | 2010-12-15 | 2012-07-05 | Sanso Electric Co Ltd | Gas-liquid dissolving tank |
Also Published As
Publication number | Publication date |
---|---|
JPS5979119A (en) | 1984-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62223640A (en) | System for detecting leakage in liquid storage tank | |
KR102155382B1 (en) | Metering system and method for cryogenic liquids | |
US4823592A (en) | Test apparatus for proving the performance of mass flow meters | |
US4747062A (en) | Method and apparatus for detecting the level of a liquid in a tank | |
CN108627222B (en) | A kind of oil meter nucleus correcting system | |
JPS63261114A (en) | Method and device for measuring volume of liquid in tank | |
JPH0240170B2 (en) | ||
US1699812A (en) | Riquid-level-indicating system | |
CN109655370A (en) | Automobile-used LNG gas cylinder static evaporation rate pressure-maintaining test device and test method | |
US2559436A (en) | Apparatus for measuring liquid contents of tanks | |
US3221551A (en) | Liquid level gage for cryogenic fluids | |
US5088317A (en) | Method and apparatus for detecting liquid leaks from above-ground storage tanks | |
CN112197831A (en) | Method for measuring irregular large volume by using gas state change method | |
JPH0611407A (en) | Apparatus for measuring flow rate and leaking amount of fluid in body under inspection | |
US2353275A (en) | Container pressure withstanding testing device | |
SU1657975A1 (en) | Method and device for determination of weight of liquid in reservoirs | |
JP2002068398A (en) | Equipment and method for filling of liquefied natural gas | |
US2361440A (en) | Liquid level gauge | |
JP2001301900A (en) | Lorry delivery apparatus of liquefied gas fuel | |
US2231781A (en) | Apparatus for determining weight relationship | |
JPH11230818A (en) | Multi-function tank for calibrating flowmeter | |
JPH0814982A (en) | Method for measuring quantity of liquid | |
US3048037A (en) | Tank gauging device | |
US2019478A (en) | Liquid level indicator | |
CN116358742B (en) | Vacuum heat insulation pipe performance test method |