JPH02309616A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH02309616A
JPH02309616A JP13066989A JP13066989A JPH02309616A JP H02309616 A JPH02309616 A JP H02309616A JP 13066989 A JP13066989 A JP 13066989A JP 13066989 A JP13066989 A JP 13066989A JP H02309616 A JPH02309616 A JP H02309616A
Authority
JP
Japan
Prior art keywords
polymer
group
electrolytic capacitor
alkyl group
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13066989A
Other languages
Japanese (ja)
Inventor
Atsuko Kaneko
敦子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP13066989A priority Critical patent/JPH02309616A/en
Publication of JPH02309616A publication Critical patent/JPH02309616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To assure good characteristics as a capacitor and an excellent contact property to a positive electrode by impregnating the positive electrode with an organic silver solution comprising a specific polymer to form a fixed electrolyte film. CONSTITUTION:A solid electrolyte film is formed by employing a polymer being a monomer represented by a formula I and impregnating a positive electrode with a solution of said polymer utilizing the solubility of the polymer I, X is a sulfur atom or an NH group, R<1> and R<2> are substituents or atoms, each of which combines to three or four positions of a ring, each independently indicating a hydrogen atom, and an alkyl group and an alkoxy group of a four or more carbon number or a group indicated by a general formula-R<3>-O(R<4>- O)nR<5> (herein R<3> is a lower alkylene group or a single bond, R<4> a lower alkylene group, R<3> a lower alkyl group, and n a 1 to 5 integer), but R<1> and R<2> not indicating a hydrogen atom simultaneously. Hereby, there can easily be yielded a solid electrolytic capacitor with a high impregnation rate, with satisfactory contact property to the electrode, and with excellent electrical characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面に誘電体酸化物皮膜を有する陽極上に、
重合体薄膜層を有する固体電解コンデンサの製造方法に
関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides an anode having a dielectric oxide film on its surface.
The present invention relates to a method of manufacturing a solid electrolytic capacitor having a polymer thin film layer.

(従来の技術) 従来表面に誘電体酸化物皮膜を有する金属を陽極体とす
る固体電解コンデンサにおいて、固体電解質として二酸
化マンガン(MnO□)やテトラシアノキノジメタン(
TCNQ)錯塩を用いたものがよく知られている。これ
らの固体電解質は、被覆成分の浸漬、加熱固化のくり返
しによって行なわれ、るが工程が複雑であり固体電解質
の膜厚の制御も難しい、複雑な工程で生産性が低いので
小容量のコンデンサの製作には不適であり、逆に大容量
のコンデンサの製作には高温加熱を行うため熱歪の影響
が大きくなる。これらの固体電解質は浸漬し、相当な高
温で加熱固化するものであるから、陽極体表面に絶縁体
部材でパターンを設け、局所的に電解質層を形成するよ
うなプロセスは困難でありまた固体電解質は粒状体で、
固体電解質その他の形成後チップに切断するようなプロ
セスの実行もできない、従ってこれら技術は中容量のコ
ンデンサしか実現できないのが現状である。
(Prior art) Conventionally, in a solid electrolytic capacitor whose anode body is a metal having a dielectric oxide film on its surface, manganese dioxide (MnO□) or tetracyanoquinodimethane (
A method using a complex salt (TCNQ) is well known. These solid electrolytes are formed by repeatedly dipping the coating components and heating and solidifying them, but the process is complicated and it is difficult to control the film thickness of the solid electrolyte.Since the process is complicated and the productivity is low, it is difficult to manufacture small capacitors. It is unsuitable for manufacturing, and conversely, since high-temperature heating is required to manufacture large-capacity capacitors, the influence of thermal distortion becomes large. Since these solid electrolytes are immersed and solidified by heating at a considerably high temperature, it is difficult to create a pattern with an insulating material on the surface of the anode body and form an electrolyte layer locally. is a granular material,
It is also not possible to carry out processes such as forming a solid electrolyte or other materials and cutting them into chips, and therefore these technologies are currently only capable of realizing capacitors of medium capacity.

近年このような欠点を補うものとして、固体電解質とし
てポリチオフユン、ポリピロールなどの重合体薄膜層を
有する固体電解コンデンサが開発されている。
In recent years, to compensate for these drawbacks, solid electrolytic capacitors having a thin film layer of a polymer such as polythiophene or polypyrrole as a solid electrolyte have been developed.

この技術を用いれば上記問題点はほとんど解決され、プ
ロセス選択の自由度が大きく適当なプロセスによりチッ
プ型の小容量コンデンサから大容量のコンデンサまで幅
広い製品を製作することが可能となる。
If this technology is used, most of the above problems will be solved, and there will be a greater degree of freedom in process selection, making it possible to manufacture a wide range of products from chip-type small capacitance capacitors to large capacitance capacitors using appropriate processes.

(発明が解決しようとする課題) 重合体固体電解質層は、チオフェン、ビロールなどを例
えばアセトニトリルなどの溶媒に溶解した電解液中で、
表面に誘電体酸化物皮膜を有する陽極上に電解重合法に
より形成させるが、チオフェン重合体やピロール重合体
は誘電体酸化物被膜上の膜形成が悪く密着性に劣る傾向
がある。この理由は明確ではないが、重合反応より電極
の溶解反応が大きいためと考えられる。そして電解酸化
重合後にドーピングする場合には、更に膜の強度が低下
するものと考えられる。
(Problems to be Solved by the Invention) The polymer solid electrolyte layer is prepared by dissolving thiophene, virol, etc. in an electrolyte solution such as acetonitrile.
It is formed by electrolytic polymerization on an anode having a dielectric oxide film on its surface, but thiophene polymers and pyrrole polymers tend to form poorly on the dielectric oxide film and have poor adhesion. Although the reason for this is not clear, it is thought that the dissolution reaction of the electrode is larger than the polymerization reaction. When doping is performed after electrolytic oxidative polymerization, it is thought that the strength of the film further decreases.

本発明の目的は、上記欠点を除去し、陽極への密着性に
優れ、コンデンサーとして良好な特性を与える重合体固
体電解質膜を形成した固体電解コンデンサーを容易に製
造し得る方法を提供することにある。
An object of the present invention is to provide a method for easily manufacturing a solid electrolytic capacitor formed with a polymer solid electrolyte membrane that eliminates the above-mentioned drawbacks and has excellent adhesion to the anode and provides good characteristics as a capacitor. be.

(課題を解決するための手段) 本発明はかかる課題を解決するためになされたものであ
り、表面に誘電体酸化物被膜を有する陽極トに、重合体
薄膜層を有する固体電解コンデンサーの製造において、
一般式(H 〔式中、Xは硫黄原子又はNH基を示し、R1及びR2
は、3位ないし4位に結合する置換基又は原子であって
、それぞれ独立に水素原子、炭素数4以上のアルキル基
、アルコキシ基、又は一般式−R’−0(R’−0)n
R’で示される基(ここでR3は低級アルキレン基又は
単結合を、R4は低級アルキレン基を、R5は低級アル
キル基を、nは1ないし5の整数を示す。)を示すがR
1とR2が同時に水素原子を示すことはない、〕で表さ
れる単量体の重合体を用い、この重合体の有機溶媒への
可溶性を利用して、重合体の溶液を上記陽極上に含浸さ
せることにより固体電解質膜を形成させ、もって含浸率
が高く電極への密着性に優れ、電気的特性の優れた固体
電解コンデンサを容易に製造することができるようにし
たものである。
(Means for Solving the Problem) The present invention has been made to solve the problem, and is directed to the production of a solid electrolytic capacitor having a polymer thin film layer on an anode having a dielectric oxide film on the surface. ,
General formula (H [wherein, X represents a sulfur atom or NH group, R1 and R2
is a substituent or atom bonded to the 3rd or 4th position, and each independently represents a hydrogen atom, an alkyl group having 4 or more carbon atoms, an alkoxy group, or the general formula -R'-0(R'-0)n
A group represented by R' (where R3 represents a lower alkylene group or a single bond, R4 represents a lower alkylene group, R5 represents a lower alkyl group, and n represents an integer from 1 to 5), but R
1 and R2 do not exhibit hydrogen atoms at the same time, and by utilizing the solubility of this polymer in organic solvents, a solution of the polymer is placed on the anode. A solid electrolyte membrane is formed by impregnation, and a solid electrolytic capacitor with a high impregnation rate, excellent adhesion to electrodes, and excellent electrical characteristics can be easily manufactured.

本発明において、原料として使用される重合体は、一般
式(1)で表される単量体の電解重合法、又は化学重合
法により製造することができる。
In the present invention, the polymer used as a raw material can be produced by an electrolytic polymerization method or a chemical polymerization method of a monomer represented by general formula (1).

電解重合法は、上記単量体を溶解した電解液中、電流密
度0 、01〜100mA/cm2、電解電圧1〜30
0vで陽極酸化重合させればよい、化学重合法は例えば
重合触媒の存在下溶媒中に上記単量体を溶解し重合させ
ればよい。
The electrolytic polymerization method uses an electrolytic solution in which the above monomers are dissolved, a current density of 0, 01 to 100 mA/cm2, and an electrolytic voltage of 1 to 30 mA/cm2.
Anodic oxidation polymerization may be carried out at 0V.For chemical polymerization, for example, the above monomers may be dissolved in a solvent in the presence of a polymerization catalyst and polymerized.

また前記単量体をジハロゲノ単量体、例えば2゜5ジハ
ロゲノ単量体に変えた後、マグネシウムと共にテトラヒ
ドロフラン中で加熱し、NiCl□ (2,2′−ビピ
リジン)触媒下に脱ハロゲン重縮合、させて製造するこ
とも可能である。
In addition, after changing the monomer to a dihalogeno monomer, for example, a 2゜5 dihalogeno monomer, it is heated in tetrahydrofuran together with magnesium, and subjected to dehalogenation polycondensation under a NiCl□ (2,2'-bipyridine) catalyst. It is also possible to manufacture by

これらの方法に使用する一般式(1)で示される単量体
のうち好ましいものは、チオフェン又はピロールの3位
及び4位の一方にR1を有し他方にR2を有するもので
ある。
Among the monomers represented by general formula (1) used in these methods, preferred are those having R1 at one of the 3- and 4-positions of thiophene or pyrrole and R2 at the other.

R1及びR2の少なくとも一方がアルキル基であるとき
は、炭素数4〜20のアルキル基であることが好ましい
 R+及びR2の両方がアルキル基であるときは、これ
らの基は炭素数4〜6のアルキル基であることが特に好
ましく、一方が水素原子で他方がアルキル基であるとき
は、そのアルキル基は炭素数6〜15のアルキル基であ
ることが特に好ましい。
When at least one of R1 and R2 is an alkyl group, it is preferably an alkyl group having 4 to 20 carbon atoms.When both R+ and R2 are an alkyl group, these groups are preferably an alkyl group having 4 to 6 carbon atoms. An alkyl group is particularly preferred, and when one is a hydrogen atom and the other is an alkyl group, the alkyl group is particularly preferably an alkyl group having 6 to 15 carbon atoms.

R1及びR2の少なくとも一方がアルコキシ基であると
きは、炭素数1〜5のアルコキシであることが好ましい
When at least one of R1 and R2 is an alkoxy group, it is preferably an alkoxy group having 1 to 5 carbon atoms.

R1及びR2の少なくとも一方が−R’−0(R’−0
)nR’であるときは、R3は単結合又はメチレン基、
R4はメチレン基、エチレン基又はプロピレン基、nは
1〜3の整数、R5はメチル基、又はエチル基であるこ
とが 好ましい。
At least one of R1 and R2 is -R'-0 (R'-0
) nR', R3 is a single bond or a methylene group,
Preferably, R4 is a methylene group, ethylene group, or propylene group, n is an integer of 1 to 3, and R5 is a methyl group or an ethyl group.

これらの単量体の具体例を示すと、3−へキシルチオフ
ェン、3−ドデシルチオフェン、3−へ1チルビロール
、3−ノニルピロール、3.4−ジブチルチオフェン、
3−ブチル−4−ペンチル−チオフェン、3.4−ジブ
チルピロール、3.4−ジペンチルビロール、3−へキ
シルチオフェン、3.4−ジブチルチオフェン、3.4
−ジペンチルビロール、3−メトキシピロール、3−エ
トキシチオフェン、3−プロポキシチオフェン、3−メ
トキシエトキシメチルチオフェン、3−メトキシエトキ
シエトキシメチルビロールなどが挙げられる。
Specific examples of these monomers include 3-hexylthiophene, 3-dodecylthiophene, 3-hedylpyrrole, 3-nonylpyrrole, 3,4-dibutylthiophene,
3-Butyl-4-pentyl-thiophene, 3.4-dibutylpyrrole, 3.4-dipentylvirol, 3-hexylthiophene, 3.4-dibutylthiophene, 3.4
- Dipentylvirol, 3-methoxypyrrole, 3-ethoxythiophene, 3-propoxythiophene, 3-methoxyethoxymethylthiophene, 3-methoxyethoxyethoxymethylvirol, and the like.

重合体を溶解する有機溶媒としては、テトラヒドロナフ
タレンなどの炭化水素、テトラヒドロフランなどの環状
エーテル、ジクロロメタン、ジクロロエタン、クロロホ
ルムなどのハロゲン化炭化水素、ジメチルスルホキシド
などのジアルキルスルホキシド、ジメチルホルムアミド
などのジアルキルホルムアミド、アセトン、メチルエチ
ルケトンなどのジアルキルケトン、エタノール、プロパ
ツールなどのアルコールなど、重合体をある程度溶解し
得る有機溶媒であればいずれも使用することができる・
、またこれらの溶媒は2種以上混合して使用することも
できる。
Organic solvents for dissolving the polymer include hydrocarbons such as tetrahydronaphthalene, cyclic ethers such as tetrahydrofuran, halogenated hydrocarbons such as dichloromethane, dichloroethane, and chloroform, dialkyl sulfoxides such as dimethyl sulfoxide, dialkyl formamides such as dimethylformamide, and acetone. Any organic solvent that can dissolve the polymer to some extent can be used, such as dialkyl ketones such as methyl ethyl ketone, ethanol, and alcohols such as propatool.
Also, two or more of these solvents may be used in combination.

本発明において、誘電体酸化物被膜上に重合体の固体電
解質膜を形成させるには、その誘電体表面に、上記重合
体の溶液を含浸させる。この含浸処理は、常圧含浸法、
減圧含浸法のいずれの方法も実施することが可能である
0本発明において固体電解質膜の厚さは誘電体上に含浸
された重合体の濃度及び量に依存するから、使用する重
合体の濃度及び含浸量を必要に応じて選択することによ
り固体電解質膜の厚さを調節することができる。
In the present invention, in order to form a polymer solid electrolyte membrane on a dielectric oxide film, the dielectric surface is impregnated with a solution of the polymer. This impregnation treatment is carried out by normal pressure impregnation method,
It is possible to carry out any of the vacuum impregnation methods. In the present invention, the thickness of the solid electrolyte membrane depends on the concentration and amount of the polymer impregnated onto the dielectric material, so the concentration of the polymer used The thickness of the solid electrolyte membrane can be adjusted by selecting the amount of impregnation as necessary.

含浸後は溶媒を揮発させる。溶媒を揮発させるために加
熱処理してもよい。
After impregnation, the solvent is evaporated. Heat treatment may be performed to volatilize the solvent.

本発明において、単量体から重合体を製造する過程にお
いてドーパントとなり得る化合物を使用して重合体を製
造し得られた重合体に適当な電気伝導度が付与されてい
る場合を除き、ドーパントをドーピングして電気伝導度
を付与する必要がある。また、単量体と共にドーパント
になり得る化合物を使用して重合体を製造した場合、こ
のドーパントを脱ドーピングしたのち、新たにドーパン
トをドープしてもよい、ドーピングは、化学的ドーピン
グ、電気化学的ドーピングのいずれの方法も採用するこ
とができる。
In the present invention, the dopant is not used unless the polymer is manufactured using a compound that can be a dopant in the process of manufacturing the polymer from the monomer and the resulting polymer is given appropriate electrical conductivity. It is necessary to dope it to give it electrical conductivity. In addition, when a polymer is produced using a compound that can be a dopant together with a monomer, this dopant may be undoped and then a new dopant may be doped. Doping may be done by chemical doping or electrochemical doping. Any method of doping can be employed.

例えば、化学的ドーピングのドーパントとしては、種々
の電子受容性化合物及び電子供与性化合物、即ち(1)
ヨウ素、臭素及びヨウ化臭素等のハロゲン、(n)五フ
ッ化ヒ素、五フッ化アンチモン、四フッ化ケイ素、五塩
化リン、塩化アルミニウム、臭化アルミニウム等の金属
ハロゲン化物、(III)硫酸、硝酸、フルオロ硫酸、
クロロ硫酸等のプロトン酸、(1’/)二酸化イオウ、
二酸化窒素、ジフルオロスルホニルパーオキシドのごと
き酸化剤、(V)AgC−IQ <  、(V[)テト
ラシアノエチレン、テトラシアノキノジメタン1.2.
3−ジブロム−5゜6−ジシアツバラベンゾキノン、2
.3−ジブロム−5,6−ジシアツパラベンゾキノン、
(■)Li、Na、に等のアルカリ金属等が挙げられる
For example, dopants for chemical doping include various electron-accepting compounds and electron-donating compounds, namely (1)
Halogens such as iodine, bromine and bromine iodide, (n) metal halides such as arsenic pentafluoride, antimony pentafluoride, silicon tetrafluoride, phosphorus pentachloride, aluminum chloride, aluminum bromide, (III) sulfuric acid, Nitric acid, fluorosulfuric acid,
Protonic acids such as chlorosulfuric acid, (1'/) sulfur dioxide,
Oxidizing agents such as nitrogen dioxide, difluorosulfonyl peroxide, (V)AgC-IQ<, (V[)tetracyanoethylene, tetracyanoquinodimethane 1.2.
3-dibrome-5゜6-dicyatsubarabenzoquinone, 2
.. 3-dibromo-5,6-dicyazparabenzoquinone,
(■) Alkali metals such as Li, Na, etc. can be mentioned.

一方、電気化学的にドーピングするドーパントとしては
、(1)P F @−+  SbF I−、AsF s
−、5bc1.− 等のVa族元素のハロゲン化物アニ
オン、BF4− 等のI[[a族元素のハロゲン化物ア
ニオン、r−(13−)、Br−1C1−等のハロゲン
アニオン、CIO,−等の過ハロゲン酸アニオン等の陰
イオンドーパント、及び(II)Li’ 、Na” 、
K”等のアルカリ金属イオン、4級アンモニウムイオン
等の陽イオンドーパント、p−トルエンスルホンM4級
アンモニウム塩、ナフタレン−2−スルホン酸4級アン
モニウム塩等を挙げることができるが必ずしもこれらに
限定されるものではない、またこれらのドーパントは一
種類、又は二種類以上混合して使用してもよい。
On the other hand, as dopants to be electrochemically doped, (1) P F @-+ SbF I-, AsF s
-, 5bc1. - Halide anions of group Va elements such as BF4-; Anionic dopants such as anions, and (II) Li', Na'',
Examples include, but are not necessarily limited to, alkali metal ions such as K'', cationic dopants such as quaternary ammonium ions, p-toluenesulfone M quaternary ammonium salts, naphthalene-2-sulfonic acid quaternary ammonium salts, etc. These dopants may be used alone or in combination of two or more.

本発明の方法で使用する陽極上の誘電体酸化被膜には、
Al2O3からなる被膜のほかTa、Os、Nb2o、
、T i O2、ZrO2等が挙げられ、例えばA I
 203被膜はアルミニウム層の表面を酸化外°理して
形成することができる。その酸化方法とじては公知の種
々の方法を用いることが、例えば電圧70Vで陽極酸化
する方法が挙げられる。この電気的酸化条件はその酸化
被膜の厚さをどの程度のものにするか、あるいはその使
用するアルミニウム層の材質がどのようなものであるか
により使用電圧酸化時間等の条件を調整することができ
る。
The dielectric oxide film on the anode used in the method of the present invention includes:
In addition to the coating made of Al2O3, Ta, Os, Nb2o,
, T i O2, ZrO2, etc., for example, A I
The 203 coating can be formed by oxidizing the surface of the aluminum layer. As the oxidation method, various known methods may be used, such as anodic oxidation at a voltage of 70V. The electrical oxidation conditions can be adjusted depending on the thickness of the oxide film or the material of the aluminum layer used, such as the operating voltage and oxidation time. can.

本発明における陽極基板となる例えばアルミニウム等の
層はアルミニウム箔等をエツチング処理し多孔質化した
ものが好ましい、このエツチング処理もアルミニウム層
をどの程度まで多孔質化するかにより適宜任意の条件を
選んで行うことができる。
It is preferable that the layer of aluminum, etc., which becomes the anode substrate in the present invention, be made by etching an aluminum foil or the like to make it porous.The conditions for this etching treatment may also be selected as appropriate depending on the degree to which the aluminum layer is made porous. It can be done with

(実施例) 以下に実施例にて本発明を具体的に説明するが、本発明
はこれら実施例のみに限定されるものではない。
(Examples) The present invention will be specifically explained below using Examples, but the present invention is not limited to these Examples.

実施例1: プロピレンカーボネートに対し、3−へキシルチオフェ
ン及びテトラエチルアンモニウムへキサフルオロホスフ
ェイト(T E A P F s)を溶解し、3−へキ
シルチオフェン濃度0.2モル/1、TEAPFs濃度
0.05モル/lの電解液を調整した。ついでこの電解
液中で白金電極を用い、電流密度10mA/am”で1
時間電解重合した後、電位を反転させて重合体の脱ドー
ピングを行った0次に重合体をテトラヒドロナフタレン
に溶解し、重合体濃度1重量%の溶液を調整した。この
溶液を用い、アルミ箔にエツチングを施した後、陽極酸
化により形成した誘電体酸化物被膜上に含浸処理を施し
固体電解質膜を形成させた。その後、減圧下に三酸化硫
黄を用いて化学ドーピングを行い、洗浄、乾燥し、カー
ボンペーストと銀ペーストで陰極を取り出しケースに入
れて樹脂封口して固体電解コンデンサとした。
Example 1: 3-hexylthiophene and tetraethylammonium hexafluorophosphate (TEAPFs) were dissolved in propylene carbonate, and the concentration of 3-hexylthiophene was 0.2 mol/1 and the TEAPFs concentration was 0. An electrolyte solution of .05 mol/l was prepared. Then, using a platinum electrode in this electrolyte, a current density of 10 mA/am'' was applied.
After time electrolytic polymerization, the zero-order polymer was dedoped by reversing the potential and was dissolved in tetrahydronaphthalene to prepare a solution having a polymer concentration of 1% by weight. After etching aluminum foil using this solution, an impregnation treatment was performed on the dielectric oxide film formed by anodic oxidation to form a solid electrolyte membrane. Thereafter, chemical doping was performed using sulfur trioxide under reduced pressure, washing and drying, and the cathode was taken out using carbon paste and silver paste, placed in a case, and sealed with resin to form a solid electrolytic capacitor.

実施例2・ 3.4−ジブチルチオフェン0.05モル、塩化第二鉄
0,1モルをエーテルに溶解して化学重合させ、ポリ(
3,4−ジブチル−2,5−チェニレン)を合成した。
Example 2 0.05 mol of 3.4-dibutylthiophene and 0.1 mol of ferric chloride were dissolved in ether and chemically polymerized to form poly(
3,4-dibutyl-2,5-chenylene) was synthesized.

この重合体はテトラヒドロフランに対し室温下1.9重
量%溶解した。この重合体溶液を用い実施例1と同様に
処理したアルミ化成箔に対して含浸処理し固体電解質膜
を形成させた。この膜の電気伝導度はI X 10−’
S、 Cs−’であったため、0.1モル/1のテトラ
エチルアンモニウムへキサフルオロホスフェイトのアセ
トニトリル溶液中、+1.7V  vs  SCEで電
気化学的ドーピングを行った。その後、洗浄、乾燥を行
い、カーボンペースト、銀ペーストを用いて陰極を取り
出し、ケースに入れて樹脂封口して電解コンデンサを作
成した。
This polymer was dissolved in tetrahydrofuran in an amount of 1.9% by weight at room temperature. A chemically formed aluminum foil treated in the same manner as in Example 1 was impregnated with this polymer solution to form a solid electrolyte membrane. The electrical conductivity of this membrane is I x 10-'
S, Cs-', electrochemical doping was performed at +1.7 V vs SCE in a 0.1 mol/1 solution of tetraethylammonium hexafluorophosphate in acetonitrile. Thereafter, it was washed and dried, and the cathode was taken out using carbon paste and silver paste, and the cathode was placed in a case and sealed with resin to create an electrolytic capacitor.

実施例3: ベンゾニトリルに対し、3−メトキシエ?−4ジェトキ
シメチルチオフェン(単量体)及びテトラブチルアンモ
ニウムへキサフルオロホスフェイト(TBAPF、)を
溶解し、単量体濃度0.28モル/1、テトラエチルア
ンモニウムp−トルエンスルホ712 (T E A 
P F s )濃度0.03モル/1の電解液を調整し
た。この電解液中、白金電極を用い、1!流密度2 m
A / cm”で2時間電解重合した。得られた重合体
の電気伝導度は101050S−e’であつなので、こ
の重合体をドーピング状態のまま、テトラヒドロフラン
:ジクロロメタン、1−ジクロロ−2−モノクロロエタ
ン=1:4:1の混合溶液に2重量の濃度に溶解し、実
施例1と同様に処理したアルミ化成箔に対して含浸処理
し固体電解質膜を形成させた。この膜の電気伝導度は0
.38・Cl111であった0次いで、洗浄・乾燥を行
い、カーボンペースト、銀ペーストを用いて陰極を収り
出し、ケースに入れて樹脂封口して電解コンデンサを作
成した。
Example 3: 3-methoxyer versus benzonitrile? -4 Jetoxymethylthiophene (monomer) and tetrabutylammonium hexafluorophosphate (TBAPF) were dissolved, monomer concentration 0.28 mol/1, tetraethylammonium p-toluenesulfo 712 (TEA
An electrolytic solution having a concentration of 0.03 mol/1 (P F s ) was prepared. In this electrolyte, using a platinum electrode, 1! Flow density 2 m
Electrolytic polymerization was carried out for 2 hours at A/cm". Since the electrical conductivity of the obtained polymer was 101050S-e', the polymer was diluted with tetrahydrofuran: dichloromethane, 1-dichloro-2-monochloroethane, while it was in the doped state. It was dissolved in a mixed solution of = 1:4:1 at a concentration of 2 weights and impregnated onto chemically formed aluminum foil treated in the same manner as in Example 1 to form a solid electrolyte membrane.The electrical conductivity of this membrane was 0
.. 38.Cl111 was then washed and dried, and the cathode was taken out using carbon paste and silver paste, placed in a case, and sealed with resin to produce an electrolytic capacitor.

実施例4ニ ジメチルホルムアミドに対し、3−メI−キシビロール
Qtffi体とドーパント付与剤としてテトラブチルア
ンモニウムへキサフルオロホスフェイトを溶解し、甲1
.を体濃度0.2モル/I、ドーパント付与剤濃度0.
01モル/1の電解液を調整した。
Example 4 In dimethylformamide, 3-MeI-xyvirol Qtffi and tetrabutylammonium hexafluorophosphate as a dopant imparting agent were dissolved, and A1
.. body concentration 0.2 mol/I, dopant imparting agent concentration 0.
An electrolytic solution of 0.01 mol/1 was prepared.

この電解液中、白金電極を用い、電流密度1.5mA/
am2で1時間電解重合してポリ(3−メトキシ−2,
5−ピロリレン)を合成した。この重合体をジメチルス
ルホキシドに溶解して1.1重量%の溶液とし、この溶
液を用い実施例1と同様に処理したアルミ化成箔に対し
て含浸処理し固体電解質膜を形成させた。この膜の電気
伝導度は0.018−am−’であった。
In this electrolyte, using a platinum electrode, the current density was 1.5 mA/
Poly(3-methoxy-2,
5-pyrrorylene) was synthesized. This polymer was dissolved in dimethyl sulfoxide to form a 1.1% by weight solution, and a chemically formed aluminum foil treated in the same manner as in Example 1 was impregnated with this solution to form a solid electrolyte membrane. The electrical conductivity of this film was 0.018-am-'.

次いで、洗浄・乾燥を行い、カーボンペースト、銀ペー
ストを用いて陰極を取り出し、ケースに入れて樹脂封口
して電解コンデンサを作成した。
Next, it was washed and dried, and the cathode was taken out using carbon paste and silver paste, and the cathode was placed in a case and sealed with resin to create an electrolytic capacitor.

実施例5: 二トロベンゼンに対し、3−ドデシルチオフェン単量体
とドーパント付与剤としてテトラエチルアンモニウムへ
キサフルオロホスフェイトを溶解し、単量体濃度0.2
モル/I、ドーパント付与剤濃度0.05モル/1の電
解液をxmした。この電解液中、3cmX3cmの白金
板電極を用い、電流密度101aA/cI112で電解
重合した。生成した重合体をろ過し、洗浄・乾燥させた
のち、テトラヒドロナフタレンに溶解して重合体濃度2
重量%の溶液とし、以下実施PA4と同様に処理して電
解コンデンサを作成した。
Example 5: 3-dodecylthiophene monomer and tetraethylammonium hexafluorophosphate as a dopant imparting agent were dissolved in nitrobenzene, and the monomer concentration was 0.2.
An electrolytic solution having a dopant-imparting agent concentration of 0.05 mol/I and a dopant-imparting agent concentration of 0.05 mol/1 was used. Electrolytic polymerization was carried out in this electrolytic solution at a current density of 101 aA/cI112 using a 3 cm x 3 cm platinum plate electrode. The produced polymer was filtered, washed and dried, and then dissolved in tetrahydronaphthalene to give a polymer concentration of 2.
A solution of % by weight was prepared and treated in the same manner as in Example PA4 to produce an electrolytic capacitor.

上記実施例で製造された電気的特性を第1表及び第2表
に示す。
The electrical characteristics of the products manufactured in the above examples are shown in Tables 1 and 2.

表中、比敦例は従来の二酸化マンガンを電解質とする固
体電解コンデンサで、硝酸マンガンを含浸し、250°
Cで20分間焼成したものである。
In the table, the specific example is a conventional solid electrolytic capacitor using manganese dioxide as the electrolyte, impregnated with manganese nitrate, and 250°
It was fired at C for 20 minutes.

また第1表は初期値を示し、第2表は10V、110℃
で2000時間経過後の結果を示す。
Table 1 shows the initial values, and Table 2 shows the values at 10V and 110°C.
The results are shown after 2000 hours.

第1表 第2表 第1表、第2表からみて、本発明の固体電解コンデンサ
は比較例のものに比べて単位面積当たりの容量が高く、
損失値、等価直列抵抗値及び漏れ電流が低い特性を示し
、また熱安定性及び耐久性に優れたものであることが判
る。
Table 1 Table 2 Tables 1 and 2 show that the solid electrolytic capacitor of the present invention has a higher capacity per unit area than that of the comparative example.
It can be seen that the loss value, equivalent series resistance value, and leakage current are low, and the material has excellent thermal stability and durability.

(発明の効果) 以上詳細に説明した通り、本発明の方法によれば、重合
体を電解法などにより別途製造するので量産が可能であ
り、また重合体を有機溶媒に溶解して誘電体酸化被膜に
含浸させて固体電解質を形成するので、含浸率が高く、
密着性のよい固体電解質膜を形成することができ、その
結果、電気的特性、熱安定性、耐久性の優れた電解コン
デンサを容易に製造することができる。
(Effects of the Invention) As explained in detail above, according to the method of the present invention, mass production is possible because the polymer is separately produced by electrolysis, and dielectric oxidation is possible by dissolving the polymer in an organic solvent. Since the film is impregnated to form a solid electrolyte, the impregnation rate is high.
A solid electrolyte membrane with good adhesion can be formed, and as a result, an electrolytic capacitor with excellent electrical properties, thermal stability, and durability can be easily manufactured.

Claims (3)

【特許請求の範囲】[Claims] (1)表面に誘電体酸化物皮を有する陽極上に、重合体
薄膜層を有する固体電解コンデンサの製造において下記
一般式(I) ▲数式、化学式、表等があります▼(I) [式中、Xは硫黄原子又はNH基を示し、R^1及びR
^2は、3位ないし4位に結合する置換基又は原子であ
つて、それぞれ独立に水素原子,炭素数4以上のアルキ
ル基,アルコキシ基,又は一般式−R^3−O(R^4
−O)nR^5で示される基(ここでR^3は低級アル
キレン基又は単結合を、R^4は低級アルキレン基を、
R^5は低級アルキル基を、nは1ないし5の整数を示
す)を示すがR^1とR^2が同時に水素原子を示すこ
とはない] で表わされる単量体の重合体を用い、この重合体の有機
溶媒溶液を上記陽極上に含浸させて固体電解質膜を形成
させることを特徴とする固体電解コンデンサの製造方法
(1) In the production of solid electrolytic capacitors that have a polymer thin film layer on an anode with a dielectric oxide skin on the surface, the following general formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) [In the formula , X represents a sulfur atom or NH group, R^1 and R
^2 is a substituent or atom bonded to the 3rd or 4th position, and each independently represents a hydrogen atom, an alkyl group having 4 or more carbon atoms, an alkoxy group, or the general formula -R^3-O(R^4
-O) A group represented by nR^5 (where R^3 is a lower alkylene group or a single bond, R^4 is a lower alkylene group,
R^5 represents a lower alkyl group, n represents an integer from 1 to 5), but R^1 and R^2 do not represent a hydrogen atom at the same time] A method for manufacturing a solid electrolytic capacitor, comprising impregnating the anode with an organic solvent solution of the polymer to form a solid electrolyte membrane.
(2)一般式(I)において、R^1が4位の水素原子
であり、R^2が3位の炭素数6〜15のアルキル基、
炭素数1〜5のアルコキシ基、又は−CH_2O(C_
2H_4O)_2CH_3基である単量体の重合体を用
いる請求項1記載の固体電解コンデンサの製造方法。
(2) In general formula (I), R^1 is a hydrogen atom at the 4th position, R^2 is an alkyl group having 6 to 15 carbon atoms at the 3rd position,
An alkoxy group having 1 to 5 carbon atoms, or -CH_2O(C_
2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein a polymer of monomers having 2H_4O)_2CH_3 groups is used.
(3)一般式(I)において、R^1が3位の炭素数4
〜6のアルキル基でありR^2が4位の炭素数4〜6の
アルキル基である単量体の重合体を用いる請求項1記載
の固体電解コンデンサの製造方法。
(3) In general formula (I), R^1 has 4 carbon atoms at the 3rd position
2. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein a polymer of a monomer is used, wherein R^2 is an alkyl group having 4 to 6 carbon atoms at the 4-position.
JP13066989A 1989-05-24 1989-05-24 Manufacture of solid electrolytic capacitor Pending JPH02309616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13066989A JPH02309616A (en) 1989-05-24 1989-05-24 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13066989A JPH02309616A (en) 1989-05-24 1989-05-24 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02309616A true JPH02309616A (en) 1990-12-25

Family

ID=15039785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13066989A Pending JPH02309616A (en) 1989-05-24 1989-05-24 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02309616A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283879A (en) * 1998-03-31 1999-10-15 Nichicon Corp Solid electrolytic capacitor and manufacture thereof
US7510672B2 (en) 2004-05-18 2009-03-31 Merck Patent Gmbh Formulation for ink-jet printing comprising semiconducting polymers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283879A (en) * 1998-03-31 1999-10-15 Nichicon Corp Solid electrolytic capacitor and manufacture thereof
US7510672B2 (en) 2004-05-18 2009-03-31 Merck Patent Gmbh Formulation for ink-jet printing comprising semiconducting polymers

Similar Documents

Publication Publication Date Title
US6056899A (en) Preparation of conductive polymers from stabilized precursor solutions
KR20110107748A (en) Conductive polymer and method for producing the same, conductive polymer dispersion, and solid electrolytic capacitor and method for producing the same
JPH0546693B2 (en)
JP2006024708A (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0632845A (en) Production of electrically conductive high molecular complex material
JP2907131B2 (en) Conductive polymer, solid electrolytic capacitor using the same, and method of manufacturing the same
JP4565730B2 (en) Solid capacitor and manufacturing method thereof
JP2011228636A (en) Solid-state capacitor and manufacturing method of the same
JPH02309616A (en) Manufacture of solid electrolytic capacitor
JP2011258808A (en) Method of manufacturing solid electrolytic capacitor
JP4618631B2 (en) Manufacturing method of solid electrolytic capacitor
JPH03291909A (en) Solid-state electrolytic capacitor
JP5296860B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0682590B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2006310384A (en) Process for producing porous electrode, porous electrode, and electrochemical device
JP2016124889A (en) Conductive composite material and solid electrolytic capacitor prepared therewith
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JP2012077218A (en) Polymerizable monomer composition, method for producing solid electrolytic capacitor
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JPH033310A (en) Manufacture of solid electrolytic capacitor
JPH0448709A (en) Manufacture of solid electrolytic capacitor
JPH0419688B2 (en)
JP2005259807A (en) Solid electrolytic capacitor and its manufacturing method
JPH0445966B2 (en)
JP2013161842A (en) Polymerizable monomer composition, and method for manufacturing solid electrolytic capacitor using the same