JPH02309567A - Sealed type lead storage battery - Google Patents

Sealed type lead storage battery

Info

Publication number
JPH02309567A
JPH02309567A JP1130892A JP13089289A JPH02309567A JP H02309567 A JPH02309567 A JP H02309567A JP 1130892 A JP1130892 A JP 1130892A JP 13089289 A JP13089289 A JP 13089289A JP H02309567 A JPH02309567 A JP H02309567A
Authority
JP
Japan
Prior art keywords
plates
battery
cathode
separator
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1130892A
Other languages
Japanese (ja)
Other versions
JPH0654681B2 (en
Inventor
Mikihiko Kushibe
櫛部 幹彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1130892A priority Critical patent/JPH0654681B2/en
Publication of JPH02309567A publication Critical patent/JPH02309567A/en
Publication of JPH0654681B2 publication Critical patent/JPH0654681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve the battery performance and the service life by forming cathode plates with a glass fiber less than a specific size, covering them with separators with built-in ribs, and covering the both ends of the electrode plate group with sheets which consist of glass fibers made in a specific size. CONSTITUTION:Both ends of an electrode plate group which consists of cathode plates 3 and anode plates 4 are formed of cathode plates 4A and 4C. A cathode plate 3 is formed of a glass fiber of the diameter less than 2mum, it is covered with a separator 5 with a builtin rib of an acid-proof thermal-plastic resin, and the outer sides of the anode plates 4A and 4C are covered with sheets 6 made by attaching glass fibers with the diameter 13-25mum with an organic binder. As a result, the separators 5 have a high liquid absorption rate and a high liquid holding amount to improve the battery performance, and the thickness of them is kept constant by the ribs and the interval between electrode plates is kept constant. Furthermore, the sheets 6 have a low liquid holding rate to improve the oxygen absorbing capacity of the anode plates, and the battery life is extended. Consequently, a storage battery of an excellent performance and a long service life can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は密閉形鉛蓄電池に係り、特に過充電寿命性能に
優れ、極板ピッチが一定である高特性密閉形鉛蓄電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sealed lead-acid battery, and particularly to a high-performance sealed lead-acid battery that has excellent overcharge life performance and a constant plate pitch.

[従来の技術] 蓄電池の陽極の形式としては、従来よりペースト式極板
とクラッド式極板とが知られている。近年、蓄電池につ
いてその密閉化が試みられつつあり、ペースト式密閉電
池は極板間に平均直径2μm以下の微細ガラス繊維を主
体とするセパレータに流動する遊離した電解液が存在し
ないように吸収させて構成されている。
[Prior Art] Paste-type electrode plates and clad-type electrode plates have been known as types of anodes for storage batteries. In recent years, attempts have been made to seal storage batteries, and paste-type sealed batteries have a separator between the electrode plates that is mainly made of fine glass fibers with an average diameter of 2 μm or less, which absorbs any free electrolyte that flows. It is configured.

この密閉電池では、従来のものに比べ製型が少なくなる
ので電解液比重を高くしなければならない。その結果、
自己放電は増加傾向となり、それに加えて陰極活物質内
に不還元性硫酸鉛が生成されやすくなる。
This sealed battery requires less molding than conventional batteries, so the specific gravity of the electrolyte must be increased. the result,
Self-discharge tends to increase, and in addition, non-reducible lead sulfate is more likely to be generated within the cathode active material.

このように、折角の高比重電解液の電池も製造後の在庫
期間、工場出荷後の輸送状況と保管状況1期間によって
、電池内の硫酸分は電池にとってなんの役にもたたない
自己放電によって消耗し、この結果電池の開路電圧は低
下する。電池内部抵抗も次第に増加して来て、電池の放
電性能は低下傾向をたどる。
In this way, even batteries with high-density electrolytes can undergo self-discharge, which is of no use to the battery due to the sulfuric acid content within the battery, depending on the inventory period after manufacture, transportation conditions and storage conditions after shipment from the factory. As a result, the open circuit voltage of the battery decreases. The battery's internal resistance also gradually increases, and the battery's discharge performance tends to decline.

従って、電解液の比重を高くする事には限界があるので
、できるだけ液量は多くしたい、また、電解液量を極度
に少なく抑えている為、極板とセパレータの接触が可成
りの緊圧塵で接しておらないと、電池の充電・放電のと
きに必要なイオンの移動が電解液中を経由して十分出来
ない事になる。この恐れの為、緊圧塵は強くするほうが
安全と必要以上に強くなり楢入れ組み立ての生産性は悪
くなり、しかも、セパレータにがかる緊圧塵も極板・セ
パレータの厚みのバラツキのこともあって、極板の局部
・局部の活物質面に対応したセパレータの多孔度も影響
を受けて、緊圧を強く受けたところは多孔度が小さくな
り、電解液の含み具合がまちまちになる。これは電池の
放電性能のバラツキを生ずる。
Therefore, since there is a limit to increasing the specific gravity of the electrolytic solution, we want to increase the amount of the electrolyte as much as possible.Also, because the amount of electrolyte is kept extremely low, the contact between the electrode plate and the separator is under considerable pressure. If there is no contact with dust, the movement of ions necessary for charging and discharging the battery through the electrolyte will not be possible. Because of this fear, it is safer to make the pressure dust stronger than necessary, and the productivity of the assembling of the oak case deteriorates.Moreover, the pressure dust that falls on the separator may also be caused by variations in the thickness of the electrode plate and separator. Therefore, the porosity of the separator corresponding to the local active material surface of the electrode plate is also affected, and the porosity becomes smaller in areas that are subjected to strong pressure, and the electrolyte content varies. This causes variations in the discharge performance of the battery.

陽極板の両面に接するセパレータには電池の放電・充電
の繰り返し使用に必要な電解液の入り込める十分な多孔
が均一に存在することが好ましい。
Preferably, the separator in contact with both surfaces of the anode plate has sufficient pores uniformly present to allow the electrolyte required for repeated use of discharging and charging the battery to enter.

ところで、密閉形鉛蓄電池の場合、電池充電時、陽極板
から発生してくる酸素ガスを陰極活物質に化学反応によ
って吸収させるのが、活物質の表面に液膜が存在したの
では、実用になるような反応はおこらない。
By the way, in the case of sealed lead-acid batteries, when the battery is charged, oxygen gas generated from the anode plate is absorbed by the cathode active material through a chemical reaction, but if a liquid film exists on the surface of the active material, it is not practical. No such reaction occurs.

陰極活物質表面の電解液の薄膜を遺して陽極から発生し
た酸素ガスが陰極活物質と化学反応することが知られて
おり、この化学反応が主力反応となってガス吸収が進行
すると解釈される。しかし、本発明者の研究では、液膜
を透しての酸素ガスと陰極活物質との化学反応は極めて
スローモーションで、微量しか反応せず、主力反応とは
なり得す、主力反応は、乾いたフレッシュな状態の陰極
活物質が適度の湿気を帯びた酸素ガスとが適度の温度雰
囲気中で出会って反応した時、急激におこるのである。
It is known that oxygen gas generated from the anode leaves behind a thin film of electrolyte on the surface of the cathode active material and undergoes a chemical reaction with the cathode active material, and this chemical reaction is interpreted to be the main reaction that causes gas absorption to proceed. . However, in the research conducted by the present inventors, the chemical reaction between oxygen gas and the cathode active material that passes through the liquid film is extremely slow motion, only a small amount of reaction occurs, and the main reaction can be the main reaction. This occurs rapidly when a dry, fresh cathode active material encounters and reacts with moderately moist oxygen gas in an atmosphere at a moderate temperature.

また、密閉形鉛蓄電池では、電解液が制限され、自由電
解液を持たないため、過充電領域(水素ガス発生を抑制
する)での使用を避ける必要があり、主に温度範囲を限
定した定電圧充電方式を採用してきた。そのため、不適
切な温度、充電条件以外では、陰極板での酸素ガス吸収
能力以上の酸素ガスが発生蓄積して電池内圧が上昇する
。この場合安全弁の作動と同時に、電池外部にガス並に
応々に電解液中の水分が電池外部に逸散して電解液が減
少する。更に、陽、陰極板の活物質表面と微細なガラス
繊維マットからなる隔離体との密看性低下による容量低
下を生じていた。従って、密閉形鉛蓄電池では、陰極板
での酸素ガス吸収能力が電池寿命の支配要因となり、優
れた寿命性能が得られないという欠点もある。
In addition, sealed lead-acid batteries have a limited electrolyte and do not have a free electrolyte, so it is necessary to avoid using them in the overcharge region (to suppress hydrogen gas generation), and it is mainly necessary to use a regulated battery with a limited temperature range. A voltage charging method has been adopted. Therefore, unless the temperature and charging conditions are inappropriate, oxygen gas exceeding the oxygen gas absorption capacity of the cathode plate is generated and accumulated, and the internal pressure of the battery increases. In this case, at the same time as the safety valve is activated, gas and, if necessary, water in the electrolytic solution escape to the outside of the battery, resulting in a decrease in the electrolytic solution. Furthermore, the capacity was reduced due to poor sealing between the active material surfaces of the positive and negative electrode plates and the separator made of a fine glass fiber mat. Therefore, in a sealed lead-acid battery, the ability of the cathode plate to absorb oxygen gas becomes a dominant factor in battery life, and there is also the drawback that excellent life performance cannot be obtained.

ところで、電解液中に極板群が浸漬された状態の鉛蓄電
池では、充電中の発熱は主として極板の充電が完了して
水の電気分解により酸素ガス、水素ガスが発生する反応
で起こる。しかし、稀硫酸を主成分とする電解液を使用
し、実質的に遊離の電解液が殆どない状態で、充電時に
陽極板から発生する酸素ガスと陰極板が反応する機構を
利用した密閉形鉛蓄電池においては、陽極板から発生す
る酸素ガスが、陰極板と反応するときの発熱は大きい。
By the way, in a lead-acid battery with a group of electrode plates immersed in an electrolytic solution, heat generation during charging is mainly caused by a reaction in which oxygen gas and hydrogen gas are generated by electrolysis of water after charging of the electrode plates is completed. However, a sealed lead-acid battery that uses an electrolyte containing dilute sulfuric acid as its main component, and utilizes a mechanism in which oxygen gas generated from the anode plate reacts with the cathode plate during charging, with virtually no free electrolyte. In storage batteries, a large amount of heat is generated when oxygen gas generated from the anode plate reacts with the cathode plate.

この反応は、完全に電解液に覆われた陰極板では起こり
難く、半乾燥状態の部分でよく起こるため、極板群の端
部陰極板の外側面において局部的に温度上昇が大きくな
り易い。このため5寸法調整として極板群に当接された
合成樹脂板や合成樹脂性電槽が変形したり破損したりす
ることがあるという欠点もある。
This reaction is difficult to occur in a cathode plate that is completely covered with an electrolytic solution, but often occurs in a semi-dry area, so that the temperature rise tends to be large locally on the outer surface of the cathode plate at the end of the electrode plate group. For this reason, there is also a drawback that the synthetic resin plate or synthetic resin battery case that is brought into contact with the electrode plate group may be deformed or damaged during the five-dimensional adjustment.

このように、従来の密閉形鉛蓄電池では、■ 極板間隔
が不揃いとなり易い。又、緊圧により電解液の量が不足
又不均−となりやすい。
As described above, in conventional sealed lead-acid batteries, (1) the electrode plate spacing is likely to be uneven. In addition, the amount of electrolyte tends to be insufficient or uneven due to the pressure.

■ 陰極板の酸素吸収能力が電池寿命を支配するため、
寿命が短い。特に陰極板の表面を乾いた状態としにくい
■ Since the oxygen absorption capacity of the cathode plate governs battery life,
It has a short lifespan. In particular, it is difficult to keep the surface of the cathode plate dry.

■ 電池内の発熱により電槽が変形、破損することもあ
る。
■ The battery case may become deformed or damaged due to heat generation within the battery.

といった欠点があり、その解決が望まれていた。There are some shortcomings, and it was hoped that they would be resolved.

■〜■の問題点のうち、■については、陰極板の外側に
特定の多孔板を設けることにより陰極板の酸素吸収能力
を向上させ、電池寿命を延長することが提案されている
(特開昭63−155259号)。しかしながら多孔板
の孔でない部分についての陰極板面積が活用されないと
の不満がある。
Among the problems in ■~■, regarding ■, it has been proposed to improve the oxygen absorption capacity of the cathode plate and extend the battery life by providing a specific porous plate on the outside of the cathode plate (Unexamined Japanese Patent Publication No. (Sho 63-155259). However, there is a complaint that the cathode plate area of the non-hole portion of the perforated plate is not utilized.

また、■については、孔径の小さい液吸収体を極板群の
外側に設けることにより、熱を吸収して電槽の変形や破
損を防ぐことが提案されている(特開昭63−1521
82号)、シかしながらこの方法では陰極板の表面を乾
いた状態にする事は難しい。
Regarding (2), it has been proposed that a liquid absorber with a small pore diameter be provided outside the electrode plate group to absorb heat and prevent deformation and damage of the battery case (Japanese Patent Laid-Open No. 63-1521
However, it is difficult to keep the surface of the cathode plate dry using this method.

[発明が解決しようとする課題] このように、上記■〜■の問題点を同時に解決し得る密
閉形鉛蓄電池は未だ提供されておらず、その改善が強く
望まれている。
[Problems to be Solved by the Invention] As described above, a sealed lead-acid battery that can simultaneously solve the above-mentioned problems (1) to (3) has not yet been provided, and an improvement thereof is strongly desired.

本発明は上記従来の実情に鑑みてなされたものであって
、上記■〜■の問題点を同時に解決し得る、即ち、極板
ピッチが一定で、緊圧に耐え、過充電寿命性能に優れ、
陰極板の表面を乾いた状態としてガス吸収能力を高め、
しかも発熱による電槽の変形の問題もない高特性密閉形
鉛蓄電池を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and can simultaneously solve the above-mentioned problems (1) to (3). Namely, the pitch of the electrode plates is constant, it can withstand stress, and it has excellent overcharge life performance. ,
The surface of the cathode plate is kept dry to increase its gas absorption capacity.
Moreover, it is an object of the present invention to provide a high-performance sealed lead-acid battery that does not have the problem of deformation of the battery case due to heat generation.

[課題を解決するための手段J 本発明の密閉形鉛蓄電池は、交互に配列された陽極板、
セパレータ及び陰極板を電槽内に備え、陽極板及び陰極
板よりなる極板群の両端部の極板は陰極板とされている
密閉形鉛蓄電池に関する。
[Means for Solving the Problems J] The sealed lead-acid battery of the present invention includes alternately arranged anode plates,
The present invention relates to a sealed lead-acid battery in which a separator and a cathode plate are provided in a battery case, and the plates at both ends of a plate group consisting of an anode plate and a cathode plate are used as cathode plates.

本発明では、陽極板は、平均直径2μm以下のガラス繊
維を主体として構成され、かつ、耐酸性熱可塑性樹脂よ
りなるリブを内蔵するセパレータで被包されている。こ
れにより前記■の問題が解決される。
In the present invention, the anode plate is mainly composed of glass fibers having an average diameter of 2 μm or less, and is covered with a separator having built-in ribs made of acid-resistant thermoplastic resin. This solves the problem (2) above.

また、本発明では、前記極板群の両端部の陰極板の外側
面は平均13〜25μmのガラス繊維を有機系バインダ
で接着してなるシートで被われている。
Further, in the present invention, the outer surfaces of the cathode plates at both ends of the electrode plate group are covered with a sheet formed by bonding glass fibers having an average diameter of 13 to 25 μm with an organic binder.

陽極板の両面のシートは電池が各種レートで放電をする
とき、十分に実力が発揮出来るように配慮したもので外
側面の活物質に乾きを生じさせて、酸素を吸収しやすく
させるためのものである。13〜25μmの太い繊維の
配列はマパラであり、陰極板の全面積が有効に働くので
前記■の問題が解決され、又この層は断熱層となるので
前記■の問題も解決される。
The sheets on both sides of the anode plate are designed to allow the battery to fully demonstrate its potential when discharging at various rates, and are designed to dry out the active material on the outer surface and make it easier to absorb oxygen. It is. The arrangement of thick fibers of 13 to 25 .mu.m is mapara, and the entire area of the cathode plate is used effectively, so the above problem (2) is solved, and since this layer becomes a heat insulating layer, the above problem (2) is also solved.

以下、本発明につき図面を参照して更に詳細に説明する
Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は本発明の実施例に係る密閉形鉛蓄電池を示す概
略断面図、第2図は本発明の密閉形鉛蓄電池に用いられ
るセパレータの一例を示す斜視図である。
FIG. 1 is a schematic cross-sectional view showing a sealed lead-acid battery according to an embodiment of the present invention, and FIG. 2 is a perspective view showing an example of a separator used in the sealed lead-acid battery of the present invention.

図示の如く、本発明の密閉形鉛蓄電池1は、電槽2内に
、交互に配列された陽極板3及び陰極板4と、セパレー
タ5とを備える。陽極板3及び陰極板4よりなる極板群
(第1図においては2枚の陽極板3A、3Bと3枚の陰
極板4A、4B、4Cよりなる極板群)の両端部の極板
は陰極板4A、4Cとされている。陽極板3A、3Bは
、それぞれ直径2μm以下のガラス繊維を主体として構
成され、耐酸性熱可塑性樹脂よりなるリブを内蔵するセ
パレータ5A、5Bで被包されている。また、前記極板
群の両端部の陰極板4A、4Cの外側面は、それぞれ、
直径13〜25μmのガラス繊維を有機系バインダで接
着してなるシート6A、8Bで被われている。
As shown in the figure, the sealed lead-acid battery 1 of the present invention includes an anode plate 3 and a cathode plate 4 arranged alternately in a battery case 2, and a separator 5. The plates at both ends of the plate group consisting of the anode plate 3 and the cathode plate 4 (in FIG. 1, the plate group consists of two anode plates 3A, 3B and three cathode plates 4A, 4B, 4C) are as follows. These are cathode plates 4A and 4C. The anode plates 3A and 3B are each mainly composed of glass fibers having a diameter of 2 μm or less, and are covered with separators 5A and 5B each having a built-in rib made of an acid-resistant thermoplastic resin. Further, the outer surfaces of the cathode plates 4A and 4C at both ends of the electrode plate group are, respectively,
It is covered with sheets 6A and 8B made of glass fibers having a diameter of 13 to 25 μm bonded together with an organic binder.

第1図において、陽極板4を被包するセパレータ5は、
例えば、第2図に示す如く、平均直径2μm以下のガラ
ス繊維を主体として構成されたセパレータ本体7内に耐
酸性熱可塑性樹脂よりなるリブ8を内蔵するものである
In FIG. 1, the separator 5 enclosing the anode plate 4 is
For example, as shown in FIG. 2, ribs 8 made of acid-resistant thermoplastic resin are built into a separator body 7 mainly composed of glass fibers with an average diameter of 2 μm or less.

第2図に示すセパレータ5は、セパレータ本体フの厚さ
方向と直交する方向であって、その長さ方向(図面にお
ける上下方向)に2本のリブ8が設けられているが、リ
ブの本数には特に制限はなく、3本或いは4本以上であ
っても良い。
The separator 5 shown in FIG. 2 is provided with two ribs 8 in the longitudinal direction (vertical direction in the drawing) in a direction perpendicular to the thickness direction of the separator main body. There is no particular restriction on the number of lines, and the number of lines may be three or four or more.

通常の場合、2本又は3本のリブを対称位置に設けるの
が好ましい、またその配設方向にも特に制限はないが、
セパレータ本体の厚さ方向のほぼ中心位置であって、電
池の正立方向(セパレータの長さ方向)とするのが好ま
しい、もちろん、リブは、セパレータの幅方向又は長さ
方向と交叉する斜め方向に設けることもできる。また、
リブは直線状に配置させなくても良く、セパレータ平面
内であれば、曲がっていても良い。
In normal cases, it is preferable to provide two or three ribs in symmetrical positions, and there is no particular restriction on the direction in which they are arranged.
It is preferable to place the ribs at approximately the center position in the thickness direction of the separator body, in the upright direction of the battery (the length direction of the separator). It can also be provided in Also,
The ribs do not have to be arranged in a straight line, but may be curved as long as they are within the plane of the separator.

一方、セパレータ本体7を構成するガラス繊維は、平均
直径2μm以下、好ましくは平均直径1μm以下のガラ
ス繊維を主体とするものである。
On the other hand, the glass fibers constituting the separator body 7 are mainly glass fibers with an average diameter of 2 μm or less, preferably 1 μm or less.

このようなセパレータ5であれば、例えば、第3図に示
す装置を用い、次のようにして製造することができる。
Such a separator 5 can be manufactured in the following manner using, for example, the apparatus shown in FIG.

即ち、ガラス繊維又は必要に応じて有機繊維を配合した
ガラス繊維20を抄紙タンク21より抄造用ネット22
上に供給して抄造する過程で、第3図のように、ノズル
23からホットメルト樹脂を熱溶解したもの24を幅方
向に所定間隔で帯状に流出して並列供給して、押えロー
ル25にて抄紙マット26中に埋め込む。抄造後は、例
えばドラムドライヤにて乾燥される。
That is, glass fibers or glass fibers 20 mixed with organic fibers as necessary are transferred from a papermaking tank 21 to a papermaking net 22.
As shown in FIG. 3, hot-melt resin 24 flows out from a nozzle 23 in the form of a band at predetermined intervals in the width direction and is fed in parallel to a presser roll 25, as shown in FIG. and embed it in the papermaking mat 26. After papermaking, it is dried using, for example, a drum dryer.

本発明において、セパレータの厚さは0.5〜3.5m
m程度、リブの厚さはセパレータの厚さの50〜95%
程度、その体積割合は1〜5%程度とするのが好ましい
In the present invention, the thickness of the separator is 0.5 to 3.5 m.
m, the thickness of the rib is 50-95% of the thickness of the separator
It is preferable that the volume ratio is about 1 to 5%.

なお、リブを形成する耐酸性熱可塑性樹脂としては粘度
が150〜200℃の溶解温度で1300ないし10,
000センチボイズで、常温でのショアー硬度70度以
上、好ましくは85度以上のホットメルト樹脂が好まし
い。このようなホットメルト樹脂の好ましい例として、
エチレン酢酸ビニル共重合樹脂(東洋インキ製「トプコ
H−01)」)及びアタックティックポリプロピレン樹
脂の数種混合物を挙げることができる。
In addition, the acid-resistant thermoplastic resin forming the ribs has a viscosity of 1300 to 10 at a melting temperature of 150 to 200°C.
000 centivoise and a Shore hardness of at least 70 degrees, preferably at least 85 degrees, at room temperature is preferred. Preferred examples of such hot melt resins include:
Examples include mixtures of several types of ethylene vinyl acetate copolymer resin (Toyo Ink "Topco H-01") and attack polypropylene resin.

ホットメルトは吐出ノズルの径を大きくしたり小さくし
たりして必要な直径のリブを容易に作り出す事ができる
With hot melt, ribs with the required diameter can be easily created by increasing or decreasing the diameter of the discharge nozzle.

一方、極板群の両端部の陰極板4A、4Cの外側面を被
覆するシート6A、6Bは、平均直径13〜25μmの
ガラス繊維を有機系バインダで接着してなるものである
On the other hand, the sheets 6A and 6B covering the outer surfaces of the cathode plates 4A and 4C at both ends of the electrode plate group are made by bonding glass fibers with an average diameter of 13 to 25 μm with an organic binder.

このシート6を構成するガラス繊維としては、特に平均
直径18μ〜22μ、繊維長さ6〜25mmの湿式法で
製造されたものでも、フェルト展綿法で得られる乾式法
のマットでもよい。また、用いられる有機系バインダと
してはアクリル系バインダ、コーンスターチ等が挙げら
れる。これらの有機系バインダの使用量はガラスwAl
a重量の10〜25重量%であることが好ましい。
The glass fibers constituting this sheet 6 may be those manufactured by a wet process with an average diameter of 18 .mu.m to 22 .mu.m and a fiber length of 6 to 25 mm, or a dry mat obtained by a felted cotton method. Furthermore, examples of the organic binder that can be used include acrylic binders, cornstarch, and the like. The amount of these organic binders used is
It is preferable that it is 10 to 25% by weight of the weight of a.

また、本発明において、このシート6は、密度0、 1
2〜0. 18 g/cm’程度であることが好ましい
Further, in the present invention, this sheet 6 has a density of 0, 1
2-0. It is preferably about 18 g/cm'.

このようなシートは、通常、厚さ0.3〜3.5mm程
度のガラスマットとするのが好ましい。
Such a sheet is usually preferably a glass mat having a thickness of about 0.3 to 3.5 mm.

なお、第1図において、極板群の枚数は合計5枚としで
あるが、実際の電池においては、隔板枚数+1枚讃陰板
枚数を配設する。
In FIG. 1, the total number of electrode plates is five, but in an actual battery, the number of partition plates plus one negative plate is provided.

[作用] 本発明の密閉形鉛蓄電池において、陽極板を被包するセ
パレータは、平均直径2μm以下の細径ガラス繊維を主
体とするため、吸液率、保液量が高く、電池性能の向上
に有効である。しかも、リブを内蔵するため、耐圧迫力
が高く、セパレータ厚さを一定に保ち、従って、極板間
隔を一定に保つことができる。
[Function] In the sealed lead-acid battery of the present invention, since the separator enclosing the anode plate is mainly made of thin glass fiber with an average diameter of 2 μm or less, the liquid absorption rate and liquid holding capacity are high, and the battery performance is improved. It is effective for Furthermore, since the ribs are built-in, the pressure resistance is high, and the thickness of the separator can be kept constant, so the gap between the electrode plates can be kept constant.

また、極板群の両端部の陰極板の外側面を被覆するシー
トは、平均直径13〜25μmのガラス繊維を有機系バ
インダで接着してなる、保液率の非常に低い、かつ気孔
率の高いシートであるため、陰極板の外側面全面を被う
ことなく、また、このシートが接する陰極板面は電解液
で濡れることも少なく、所々乾いている状態であるため
、#極板表面の活用化率を高めることができる。従って
、陰極板の酸素吸収能力が向上され、電池寿命が延長さ
れる。
In addition, the sheet covering the outer surface of the cathode plates at both ends of the electrode plate group is made by bonding glass fibers with an average diameter of 13 to 25 μm with an organic binder, and has a very low liquid retention rate and a low porosity. Because it is a high sheet, it does not cover the entire outer surface of the cathode plate, and the surface of the cathode plate in contact with this sheet is rarely wet with electrolyte, and is dry in places, so the surface of the #electrode plate is Utilization rate can be increased. Therefore, the oxygen absorption capacity of the cathode plate is improved and the battery life is extended.

更に、このシート及びシート中の電解液による断熱効果
で電槽等の熱変形等も防止される。
Furthermore, thermal deformation of the battery case etc. is also prevented due to the heat insulating effect of this sheet and the electrolyte in the sheet.

[実施例] 以下、実施例及び比較例について説明する。[Example] Examples and comparative examples will be described below.

実施例1 陽極板3、陰極板4、セパレータ5及びシート6として
、下記のものを用い、第1図に示す密閉形鉛蓄電池(6
VX6A)I)を組立てた。
Example 1 The following materials were used as the anode plate 3, cathode plate 4, separator 5, and sheet 6, and a sealed lead-acid battery (6
VX6A)I) was assembled.

l五玉   3枚/単セル 幅  m43   mm 厚さ=3.4mm 長さm64  mm 陰極板   4枚/単セル 幅  m43   mm 厚さ=2.4mm 長ざm64  mm セパレータ 幅  =   53mm 厚さ=2.0mm 長さw144mm 平均直径0.8μmのガラス繊維よりなり、第2図に示
す如く、直径1.85mmの2本のリブ(東洋インキ族
「トプコH−017J )を内蔵するもの。密度0.1
4g/crn’ シート 幅  m   53mm 厚さxo、5mm 長さw  62mm 平均直径19μmのガラス繊維を15重量%のアクリル
樹脂で扱者したガラスマット、密度0.14g/crn
’ 得られた密閉形鉛蓄電池について、極板間隔のバラツキ
、過充電寿命特性等を調べ、結果を第1表、第4図、第
5図に示した。
5 pieces / single cell width m43 mm Thickness = 3.4 mm Length m64 mm 4 cathode plates / single cell width m43 mm Thickness = 2.4 mm Length m64 mm Separator width = 53 mm Thickness = 2. 0 mm Length w 144 mm Made of glass fiber with an average diameter of 0.8 μm, as shown in Figure 2, it has two built-in ribs (Toyo Ink Group "Topco H-017J") with a diameter of 1.85 mm.Density 0.1
4g/crn' Sheet width m 53mm Thickness xo, 5mm Length w 62mm Glass mat made of glass fibers with an average diameter of 19μm treated with 15% by weight acrylic resin, density 0.14g/crn
'The obtained sealed lead-acid battery was examined for variations in electrode spacing, overcharge life characteristics, etc., and the results are shown in Table 1, FIG. 4, and FIG. 5.

比較例1 セパレータとしてリブのないものを用い、またシートを
配設しなかったこと以外は実施例1と同様にして密閉形
鉛蓄電池を組立て、得られた密閉形鉛蓄電池について、
比較し結果を第1表、第4図、第5図に示した。
Comparative Example 1 A sealed lead-acid battery was assembled in the same manner as in Example 1, except that a separator without ribs was used and no sheet was provided. Regarding the obtained sealed lead-acid battery,
The comparison results are shown in Table 1, FIG. 4, and FIG. 5.

第1表 *1:最大間隔と最小間隔との差 *2:JIS  C8702−1988解説より密閉反
応効率 この蓄電池は補水ができない構造となっており
、電解液の減少が寿命の原因のひとつであるので、蓄電
池の信頼性を確認するために規定した。
Table 1 *1: Difference between maximum interval and minimum interval *2: Sealed reaction efficiency from JIS C8702-1988 commentary This storage battery has a structure that does not allow water replenishment, and the decrease in electrolyte is one of the causes of shortened life. Therefore, it was specified to confirm the reliability of storage batteries.

一般的にこの蓄電池は単電池当り2 g/A −h以上
の水の減少が起こると電解液の枯渇によって寿命が尽き
るとされている。0.005CaAの充電電流で密閉反
応効率が90%の場合、2g/A−hの水の減少が起こ
るのに要する時間は*3:5BA3018−1987に
定める1時間率容量試験を終了した蓄電池を用いて次の
方法により試験を行う (1) 完全充電状態の電池を1.5mA(0,000
25C21A)の一定電流で連続の充電を行う。
It is generally believed that the life of this storage battery will end if the water decreases by 2 g/A-h or more per cell due to depletion of the electrolyte. When the sealing reaction efficiency is 90% with a charging current of 0.005 CaA, the time required for a water reduction of 2 g/A-h to occur is *3:5 for a storage battery that has completed the 1 hour rate capacity test specified in BA3018-1987. (1) A fully charged battery is tested at 1.5 mA (0,000 mA) using the following method.
Continuous charging is performed with a constant current of 25C21A).

(2) 3ケ月毎に0.25CaAで放電し終止電圧5
.10Vの容量試験を行う。
(2) Discharge at 0.25CaA every 3 months to reach a final voltage of 5
.. Perform a 10V capacity test.

第4図及び第5図は約60ケ月弱の過充電テストを常温
環境下で行った結果である(図中、温度は室温を示す、
)。これを日本蓄電池工業会規格(SBA3018過充
電寿命による総過充電量(AH))に準じて計算すると
(c、Hzo時間率容量)、 実施例1 : 0.0O025C3X 24h /日x
3G月/月当りX6G月= 1(1,8ca以上 比較例1 : 0.00025C21X 24h /日
×30月/月当りX40月−7,2C21 という数値に実験結果は括められ、実施例1の過充電寿
命性能は格段に改良された。
Figures 4 and 5 show the results of an overcharge test conducted for about 60 months at room temperature (in the figure, temperature indicates room temperature).
). When this is calculated according to the Japan Storage Battery Industry Association standard (SBA3018 total overcharge amount (AH) due to overcharge life) (c, Hzo hourly rate capacity), Example 1: 0.00025C3X 24h / day x
3G month/month x 6G month = 1 (over 1.8ca Comparative Example 1: 0.00025C21X 24h/day x 30 month/month x 40 month - 7,2C21) Overcharge life performance has been significantly improved.

第1表、第4図、第5図より明らかなように、本発明に
よれば、極板間隔のバラツキが低減され、極板間隔がほ
ぼ一定となる上に、過充電寿命性能が大幅に向上した。
As is clear from Table 1, FIG. 4, and FIG. 5, according to the present invention, the variation in the electrode plate spacing is reduced, the electrode plate spacing becomes almost constant, and the overcharge life performance is significantly improved. Improved.

[発明の効果] 以上詳述した通り、本発明の密閉形鉛蓄電池によれば、
極板間隔が一定で、従って、電池性能に優れた密閉形鉛
蓄電池であって、その過充電寿命が著しく長い、優れた
特性を有する密閉形鉛蓄電池が提供される。
[Effects of the Invention] As detailed above, according to the sealed lead acid battery of the present invention,
Provided is a sealed lead-acid battery in which the electrode plate spacing is constant, and therefore has excellent battery performance, and has excellent characteristics such as a significantly long overcharge life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る密閉形鉛蓄電池を示す概
略断面図、第2図は本発明に用いられるセパレータの一
例を示す斜視図、第3図は本発明のセパレータを製造す
るに好適な装置の概略的な側面図、第4図は実施例1の
過充電寿命測定結果を示す図、第5図は比較例1の過充
電寿命測定結果を示す図である。 1・・・密閉形鉛蓄電池、   2・・・電槽、3・・
・陽極板、       4・・・陰極板、5・・・セ
パレータ、     6・・・シート。 代理人  弁理士  重 野  剛 第1図 第2図 第3図 第4図
FIG. 1 is a schematic sectional view showing a sealed lead-acid battery according to an embodiment of the present invention, FIG. 2 is a perspective view showing an example of a separator used in the present invention, and FIG. A schematic side view of a preferred device, FIG. 4 is a diagram showing the overcharge life measurement results of Example 1, and FIG. 5 is a diagram showing the overcharge life measurement results of Comparative Example 1. 1... Sealed lead-acid battery, 2... Battery case, 3...
- Anode plate, 4... Cathode plate, 5... Separator, 6... Sheet. Agent Patent Attorney Tsuyoshi Shigeno Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)交互に配列された陽極板、セパレータ及び陰極板
を電槽内に備え、陽極板及び陰極板よりなる極板群の両
端部の極板は陰極板とされている密閉形鉛蓄電池におい
て、 平均直径2μm以下のガラス繊維を主体として構成され
、かつ、耐酸性熱可塑性樹脂よりなるリブを内蔵するセ
パレータで前記陽極板が被包されると共に、 平均直径13〜25μmのガラス繊維を有機系バインダ
で接着してなるシートで前記極板群の両端部の陰極板の
外側面が被われていることを特徴とする密閉形鉛蓄電池
(1) In a sealed lead-acid battery, which has anode plates, separators, and cathode plates arranged alternately in a battery case, and the plates at both ends of the plate group consisting of the anode plates and cathode plates are used as cathode plates. The anode plate is encapsulated with a separator mainly composed of glass fibers with an average diameter of 2 μm or less and having built-in ribs made of acid-resistant thermoplastic resin, and the glass fibers with an average diameter of 13 to 25 μm are covered with an organic-based separator. A sealed lead-acid battery characterized in that the outer surfaces of the cathode plates at both ends of the electrode plate group are covered with a sheet bonded with a binder.
JP1130892A 1989-05-24 1989-05-24 Sealed lead acid battery Expired - Lifetime JPH0654681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1130892A JPH0654681B2 (en) 1989-05-24 1989-05-24 Sealed lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1130892A JPH0654681B2 (en) 1989-05-24 1989-05-24 Sealed lead acid battery

Publications (2)

Publication Number Publication Date
JPH02309567A true JPH02309567A (en) 1990-12-25
JPH0654681B2 JPH0654681B2 (en) 1994-07-20

Family

ID=15045154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1130892A Expired - Lifetime JPH0654681B2 (en) 1989-05-24 1989-05-24 Sealed lead acid battery

Country Status (1)

Country Link
JP (1) JPH0654681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296464A (en) * 1991-03-26 1992-10-20 Shin Kobe Electric Mach Co Ltd Sealed-type lead-acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296464A (en) * 1991-03-26 1992-10-20 Shin Kobe Electric Mach Co Ltd Sealed-type lead-acid battery

Also Published As

Publication number Publication date
JPH0654681B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US5047300A (en) Ultra-thin plate electrochemical cell
EP0961336B1 (en) Ultra-thin plate electromechanical cell
US7981818B2 (en) Battery separator structures
CA2410721C (en) Ultra-thin plate electrochemical cell and method of manufacture
MX2014004385A (en) Flooded lead-acid battery with electrodes comprising a pasting substrate.
US5576116A (en) Sealed storage cell operating at low pressure
US3272653A (en) Electrode assembly
US3207630A (en) Electrode assembly
US3764387A (en) Non treeing electrolyte wick
JPS60198055A (en) Manufacture of plate for lead storage battery
KR20210049156A (en) Battery separator, electrode assembly, system and related methods
JPH02309567A (en) Sealed type lead storage battery
JP2003036831A (en) Sealed lead storage battery having gel electrolyte
GB2084790A (en) Lead-acid batteries
JPH08329975A (en) Sealed lead-acid battery
US3790409A (en) Storage battery comprising negative plates of a wedge-shaped configuration
KR0137304B1 (en) Lead-battery
JPH0531270B2 (en)
JP3511858B2 (en) Lead storage battery
AU530843B2 (en) Electric storage batteries
JPH0766791B2 (en) Recombinable battery and its separator
JP2022152915A (en) lead acid battery
JP2022152916A (en) lead acid battery
CN114651346A (en) Lead-acid battery with fibrous electrode having lead-calcium strip
JP3118718B2 (en) Sealed lead-acid battery