JPH02309303A - Semiconductor device having heterostructure - Google Patents

Semiconductor device having heterostructure

Info

Publication number
JPH02309303A
JPH02309303A JP13234489A JP13234489A JPH02309303A JP H02309303 A JPH02309303 A JP H02309303A JP 13234489 A JP13234489 A JP 13234489A JP 13234489 A JP13234489 A JP 13234489A JP H02309303 A JPH02309303 A JP H02309303A
Authority
JP
Japan
Prior art keywords
gap
layer
alxga1
small
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13234489A
Other languages
Japanese (ja)
Other versions
JP2619717B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Ken Sudo
建 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Research Foundation
Original Assignee
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Research Foundation filed Critical Semiconductor Research Foundation
Priority to JP1132344A priority Critical patent/JP2619717B2/en
Publication of JPH02309303A publication Critical patent/JPH02309303A/en
Application granted granted Critical
Publication of JP2619717B2 publication Critical patent/JP2619717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the device having high transmittance and high efficiency by specifying the transverse size and waveform characteristics of a core formed of a GaP core layer and an AlxGa1-xP clad layer to prescribed values. CONSTITUTION:The 1st clad layer 2 consisting of the AlxGa1-xP (where, for example, x=0.095) is grown by a liquid phase growth method due to a temp. difference on a GaP substrate crystal 1 having a (100) face orientation. The GaP core layer 3 is then grown by applying an optimum phosphorus vapor pressure P onto a soln. to obtain the core layer 3 having less defects. This layer is then etched to a stripe shape having 50mum or smaller width by a reac tive on-etching method using a gaseous PCl3 discharge and further, a 2nd clad layer 4 consisting of the AlxGa1-xP is formed and a buffer layer 5 consisting of GaP is formed thereon by an ordinary wet etching. The loss of this optical waveguide is small as the absorption of the GaP itself is small. The device which is extremely small by the scattering and absorbing of the heterobounary of the GaP and the AlxGa1-xP and is small in the absorption loss from 600nm to 1.6mum wavelength, i.e. from visible to near IR regions is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体オプトエレクトロニクス月光導波路に
関し、特に光波変復調、光スイッチング、光非線形混合
等に用いられる高透過率の先導波路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor optoelectronic lunar light waveguide, and particularly to a high transmittance leading waveguide used for optical modulation/demodulation, optical switching, optical nonlinear mixing, etc.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

従来、光波の変復調、光スイッチング等のデバイスとし
て化合物半導体、特にGaAs−GaAgAs系の光導
波形構造を有する各種デバイスが提案されている。これ
らのデバイスにあっては、化合物半導体内の電気光学効
果、吸収変調効果、光非線形効果などの効果を用いるの
であるが、これらの効果は非常に小さいため1mmから
10mmあるいはそれ以上の相当の長さを有する光閉じ
こめ効果を有する導波路内で相互作用させることが必要
であった。しかるにGaAs−GaA2As系光導波路
はこのように長い場合、結晶内部及びヘテロ界面による
吸収が大きく、10mmもの長さにわたって実質的に減
衰なく光を透過させることが困難であったため実用的で
なかった。特に、透過する光波が、GaAsレーザダイ
オードの光である場合、媒質の吸収端と一致するためほ
とんど透過せず実用にならなかった。本発明は前述の問
題点を解決する半導体先導波路を提供するものであって
極めて高い光透過率を有するとともに光閉じこめ効果が
GaAs−GaAAAs系と同等程度あり、電気光学効
果、吸収変調効果、光非線形効果などの利用される効果
も同等の大きさを有するものである。本発明によフて0
.5db / c m以下すなわち損失10%以下の実
質的に減衰のない10mmにわたって各種の前記相互作
用効果を生ぜしめたデバイスが提供される(課題を解決
するための手段〕 第1図は本発明の光導波路であってGaPエピタキシャ
ル層を光導波部すなわちコアとして、またGa、−、A
J□Pをコアを囲むクラッド層、 としGaP結晶基板
上に形成されている。GaPコア層は結晶内部吸収をき
わめて小さくするべく低キヤリア密度すなわち2X10
  /am−3以下のキャリア密度にすることが望まし
い。
Conventionally, various devices having optical waveguide structures of compound semiconductors, particularly GaAs-GaAgAs, have been proposed as devices for modulation/demodulation of light waves, optical switching, etc. These devices use effects such as electro-optic effects, absorption modulation effects, and optical nonlinear effects within compound semiconductors, but these effects are very small and require a considerable length of 1 mm to 10 mm or more. It was necessary to interact within a waveguide that has a light confinement effect with a certain degree of strength. However, such a long GaAs-GaA2As optical waveguide was impractical because absorption was large within the crystal and at the heterointerface, making it difficult to transmit light substantially without attenuation over a length of 10 mm. In particular, when the transmitted light wave is light from a GaAs laser diode, the light wave coincides with the absorption edge of the medium, so almost no light is transmitted, making it impractical. The present invention provides a semiconductor guided waveguide that solves the above-mentioned problems, and has an extremely high light transmittance, a light confinement effect comparable to that of the GaAs-GaAAAs system, an electro-optic effect, an absorption modulation effect, and an optical waveguide. The effects used, such as nonlinear effects, are also of comparable magnitude. According to the present invention, zero
.. A device is provided that produces the various interaction effects over 10 mm with substantially no attenuation of 5 db/cm or less, that is, a loss of 10% or less (Means for Solving the Problems) FIG. The optical waveguide has a GaP epitaxial layer as the optical waveguide section or core, and Ga, -, A
J□P is a cladding layer surrounding the core, which is formed on a GaP crystal substrate. The GaP core layer has a low carrier density, i.e. 2X10, to minimize internal crystal absorption.
It is desirable to have a carrier density of /am-3 or less.

また、G a、−、A J−z P層はA、//の組成
Xが0゜25〜0.03の範囲で光閉じこめ効果のある
、かつ結晶性の良好な結晶層がt得られるが本発明の目
的たる高い透過率すなわち、0.5db/ c m以下
の損失にするためには0.1>xン0.03の範囲にす
る。第1図において1はGaP基板、2は第1クラッド
層、3はGaPコア層、4は第2クラッド層、5はGa
Pバッファ層である。
In addition, in the G a, -, A J-z P layer, a crystal layer with a light confinement effect and good crystallinity can be obtained when the composition X of A, // is in the range of 0°25 to 0.03. However, in order to achieve a high transmittance, which is the objective of the present invention, that is, a loss of 0.5 db/cm or less, the range should be 0.1>x<0.03. In FIG. 1, 1 is a GaP substrate, 2 is a first cladding layer, 3 is a GaP core layer, 4 is a second cladding layer, and 5 is a GaP substrate.
This is a P buffer layer.

〔作用〕[Effect]

GaP及びG a+−z”l Pは共に間接遷移半導体
であるため基礎吸収端より長波長での透過率は吸収端の
ごく近傍の波長まで直接遷移形半導体に比べ極めて透過
率が高くかつ吸収端は、550nmであり、GaASレ
ーザダイオードの波長840nmに対して高い透過率を
有する。またGaAsと同じ■I−V族化合物半導体で
あるため電気光波効果、吸収変調効果、各種の光非線形
効果などの諸効果も同等の大きな値を有する。更にGa
PとAノPの相対格子定数差讐は3 x JO−3であ
り、GaAsとAZAsの格子定数差τ=1.5X10
  とほぼ同等で極めて小さく、他の全ての■−V族化
合物半導体の二元系同志の差が10 のオーダー以上で
あるのに対して格子整合度が著しく高い。そのためヘテ
ロ界面に深い準位や転位などの損失、劣化の原因となる
ものをほとんど無くし導波構造の界面損失を無くするこ
とができる。また格子整合度が高いため歪が小さく、光
弾性効果による偏光方向の変化などの悪い効果をさける
ことができる。特に、前述の諸効果を大ならしめるには
コア層の厚みは10μ以下とするだけでなくストライブ
巾はできるだけ小さく50μm以下にする必要があるが
、このようにするとGaPとA、&、Ga、−エPの組
合せが極めて優れているとは言っても10mmもの長さ
を伝播するとヘテロ界面、特に側面での光散孔と光漏波
のため場合によっては数十%以上の損失を生ずる。
Since both GaP and G a+-z"l P are indirect transition semiconductors, their transmittance at wavelengths longer than the fundamental absorption edge is extremely high compared to direct transition semiconductors up to wavelengths very close to the absorption edge. is 550 nm, and has high transmittance for the wavelength of 840 nm of GaAs laser diode.Also, since it is an IV group compound semiconductor like GaAs, it has high transmittance such as electro-optical wave effect, absorption modulation effect, and various optical nonlinear effects. The various effects also have similarly large values.Furthermore, Ga
The relative lattice constant difference between P and AnoP is 3 x JO-3, and the lattice constant difference between GaAs and AZAs is τ = 1.5X10
The lattice matching degree is extremely high compared to that of all other 1-V group compound semiconductors in which the difference between binary systems is on the order of 10 or more. Therefore, it is possible to almost eliminate deep levels, dislocations, and other causes of loss and deterioration at the heterointerface, thereby eliminating interface loss of the waveguide structure. Furthermore, since the degree of lattice matching is high, distortion is small, and bad effects such as changes in polarization direction due to photoelastic effects can be avoided. In particular, in order to maximize the aforementioned effects, it is necessary not only to make the thickness of the core layer 10 μm or less, but also to make the stripe width as small as possible, 50 μm or less. Even though the combination of , -EP is extremely excellent, when propagating over a length of 10 mm, a loss of several tens of percent or more occurs due to light scattering holes and light leakage at the hetero interface, especially on the sides. .

これを避けるにはA7の組成Xを0.03≦Xく0.1
の範囲に限定すると、ヘテロ界面の散孔が10mm程度
の距離にわたっては検出できないほどに小さくすること
もでき、光ファイバや、対物レンズによって集光して導
入した光が完全に閉じ込められて伝播するような屈折率
差による全反射臨界角が得られる。
To avoid this, set the composition X of A7 to 0.03≦X by 0.1
If it is limited to the range of A total internal reflection critical angle can be obtained due to the refractive index difference.

〔実施例1〕 (100)面方位を有するGaP基板結晶上に温度差法
液相成長法でALo、oqsGao、qoxPの第1ク
ラッド層を成長する。温度差法液相成長法は、成長中徐
冷しないので成分A−6のOx折折数数成長中一定に保
つことができ、A/e組成はEPMA法などの測定によ
り決定しておけば再現性良く前述の通りの値を維持する
ことができる。
[Example 1] A first cladding layer of ALo, oqsGao, and qoxP is grown on a GaP substrate crystal having a (100) plane orientation by a temperature difference liquid phase growth method. In the temperature difference liquid phase growth method, since slow cooling is not performed during growth, the Ox fold number of component A-6 can be kept constant during growth, and the A/e composition can be determined by measurements such as the EPMA method. The aforementioned values can be maintained with good reproducibility.

次にコア層GaPは、溶液上にin燐蒸気圧PoPcを
加えて成長する。これによってコア層の欠陥は著しく減
少し、キャリア密度も極小となってこれらによる内部吸
収の著しく小さいコア層が得られる。次に、これをpc
、g、ガス放電を用いたりアクティブイオンエツチング
法(RIE)で、50μあるいはそれ以下の幅を有する
ストライブ状にエツチングし、更に通常のウェットエツ
チング行程を経て、再び”o、o9sG”o9o!。
Next, the core layer GaP is grown by adding in phosphorus vapor pressure PoPc onto the solution. As a result, defects in the core layer are significantly reduced, carrier density is also minimized, and a core layer with extremely low internal absorption due to these is obtained. Next, put this on pc
, g, etched into stripes with a width of 50 μm or less using gas discharge or active ion etching (RIE), and then through a normal wet etching process to form “o, o9sG” o9o! .

Pの第2クラッド層及び必要に応じてその上にGaPの
バッファ層を成長すれば第1図に断面を示したような先
導波路が形成される。このようにして形成される先導波
路の損失はGaP自体の吸収も少なく、またGaPと9
’−z、 G a H−zPのヘテロ界面の散乱や吸収
による損失も著しく小さい。GaPのクラッド層はun
dopeの場合lXl0  am  以下となり、これ
による吸収損失は長さ10mm、波長600nmから1
.6μmにわたって、つまり可視から近赤外の領域で5
%程度、又ヘテロ界面による損失は同程度の5%で総合
して損失10%/ c mすなわち0,46db/cm
が得られる。この光導波路への光導入は光ファイバや対
物レンズを使って第5図と類似にすなわち端面から入射
すればよい。x=0.095の上記例ではNA(num
erical aperture) 0. 6で入射し
ても完全な光閉じ込めが行なわれる。
By growing a second cladding layer of P and, if necessary, a buffer layer of GaP thereon, a leading waveguide as shown in cross section in FIG. 1 is formed. The loss of the leading wavepath formed in this way is due to the small absorption of GaP itself, and
'-z, GaH-zP losses due to scattering and absorption at the heterointerface are also extremely small. The GaP cladding layer is un
In the case of dope, it is less than lXl0 am, and the absorption loss due to this is 1 from a length of 10 mm and a wavelength of 600 nm.
.. 5 μm over 6 μm, i.e. in the visible to near-infrared region.
%, and the loss due to the hetero interface is about 5%, so the total loss is 10%/cm or 0.46db/cm
is obtained. Light may be introduced into this optical waveguide using an optical fiber or an objective lens in a manner similar to that shown in FIG. 5, that is, from the end surface. In the above example where x=0.095, NA(num
erical aperture) 0. Even if the light is incident at 6, complete optical confinement is achieved.

GaPの蒸気圧制御温度差法、特に最適蒸気圧と成長温
度の関係は、J、ニシザワ アンドY4 オクノ、“リ
キッド フェイズエビタキシーオブ GaP  バイ 
ア テンパラチャーディファレンスメソッド アンダー
 コンドロールド ベイバープレッシャーパ アイ イ
ー イーイー トランスアクションズ オンエレクトロ
ン デバイセズ Ed−22巻 716ページ(197
5)  (J、 NiN15hiza and Y、 
0kuno。
The vapor pressure control temperature difference method for GaP, especially the relationship between the optimal vapor pressure and growth temperature, is discussed in J. Nishizawa and Y4 Okuno, “Liquid phase epitaxy of GaP”.
Temperature Chart Difference Method Under Condroldo Baber Pressure Pa I E E E E E E I E E I E E I E E I E E I E E I E E I E E I E E I E E I E E I E E I E E E I E E I E E I E E E E E E E E E I E E I E I E E E E E E E I E E I E E I E E E E E E E E L E D thaner Ed-22 Page 716 (197
5) (J, NiN15hiza and Y,
0kuno.

”Liquid Phase Epitaxy of 
GaP by a Temperature Diff
erence Method tinder Cont
rolledVapor Pressure+’ IE
EE Transactions on Electr
on Devices、  Vol、 ED−22P、
 71B (1975))に記されている。上記例では
成長温度850°CコアGaP層のキャリア密度n=l
X10”cづ m 、印加するa3am蒸気圧は150 T Or’ 
r’である。また第1クラツド、コア、第2クラツド各
層の厚みは0.5μ〜2μ、5μ〜10μ、0.5μ〜
2μである。蒸気圧制御温度差法で成長したGaP層は
吸収の原因となる深い準位が実質的にないため残りの吸
収は自由キャリアによって生じ、従って自由キャリア密
度に内部吸収がほぼ比例する。この自由キャリア密度も
最逍燗蒸気圧にて極小となるが、極小キャリア密度は成
長温度を低下させるほど小さくなる〔実施例2〕 成長法の大略は実施例1と同じであるが更に損失を低下
させるべくA、e−の組成Xを0.06とする。また、
GaPコア層の内部吸収を減らすため成長温度770°
C最逍燐蒸気圧40TOrrとし、キャリア密度0.5
xlOamを得る。この結果、光の損失は実施例1に比
し、更に小さくまで減少しストライプ幅10μ、コア厚
み1μ〜2μ、クラッド層厚み0.5μ〜1μにてコア
層の内部吸収損失1.3%、ヘテロ界面の散乱吸収損失
2%以下、総合して2.3%/ c m、0.1db/
am以下という低い値が帰られる。もちろんXを小さく
したため光閉じこめに必要な屈折率差が小さくなり、N
A=0.6では光閉じこめが完全でないが、NA=0.
4程度で入射した光は完全に閉じこめることができ多モ
ード光ファイバからの入射には十分である。
”Liquid Phase Epitaxy of
GaP by a Temperature Diff
erence Method tinder Cont
rolled Vapor Pressure+' IE
EE Transactions on Electr
on Devices, Vol, ED-22P,
71B (1975)). In the above example, the growth temperature is 850°C and the carrier density of the core GaP layer is n=l.
X10"cdm, the applied a3am vapor pressure is 150 T Or'
It is r'. The thickness of each layer of the first cladding, core, and second cladding is 0.5μ to 2μ, 5μ to 10μ, and 0.5μ to
It is 2μ. Since the GaP layer grown by the vapor pressure controlled temperature difference method has virtually no deep levels responsible for absorption, the remaining absorption is caused by free carriers, and therefore the internal absorption is approximately proportional to the free carrier density. This free carrier density also becomes minimum at the highest vapor pressure, but the minimum carrier density becomes smaller as the growth temperature is lowered [Example 2] The general outline of the growth method is the same as in Example 1, but the loss is further reduced. The composition X of A and e- is set to 0.06 in order to lower it. Also,
Growth temperature 770° to reduce internal absorption of GaP core layer
C maximum phosphorus vapor pressure is 40 TOrr, carrier density is 0.5
Obtain xlOam. As a result, the optical loss was further reduced compared to Example 1, and the internal absorption loss of the core layer was 1.3% when the stripe width was 10μ, the core thickness was 1μ to 2μ, and the cladding layer thickness was 0.5μ to 1μ. Scattering and absorption loss at the hetero interface is 2% or less, total 2.3%/cm, 0.1db/
A low value below am is returned. Of course, by making X smaller, the refractive index difference necessary for light confinement becomes smaller, and N
At A=0.6, light confinement is not perfect, but at NA=0.
The incident light at about 4 can be completely confined, which is sufficient for input from a multimode optical fiber.

〔実施例3〕 第2図は本実施例における先導波路の断面を示す。成長
法等は実施例1.2のいずれでもよいが、断面のヘテロ
界面コーナーを鋭い角のない丸みを持った構造にする。
[Example 3] FIG. 2 shows a cross section of a leading waveguide in this example. Although the growth method and the like may be any of those in Examples 1 and 2, the heterointerface corners of the cross section are made to have a rounded structure without sharp corners.

このような丸みのない矩形のコーナーの場合第3図に示
すようにコーナ°−による光の散乱又は漏洩損失が無視
しえず微小な断面はどその効果が著しい。第2図のよう
な構造を製作するには実施例1で述べたRIEプロセス
後のウェットエッチにてHN○、: HF: H2O:
 =1:  1:  1液を用い比較的長い時間、例え
ば3分程度エツチングするとヘテロ界面近傍が特にエツ
チングされ丸みを帯びる。更に第2クラッド層の成長速
度を通常の20 μm / h rより遅イ5 μm 
/ h r程度に低下させるとコア層の上側のエツジも
成長に際して丸みを帯び第2図のような形状が得られる
In the case of such a rectangular corner with no roundness, as shown in FIG. 3, the scattering or leakage loss of light due to the corner cannot be ignored, and the effect is remarkable even when the cross section is small. To manufacture the structure shown in Fig. 2, wet etching after the RIE process described in Example 1 was performed to form HN○,: HF: H2O:
=1: 1: When etching is performed for a relatively long time, for example, about 3 minutes using a 1 solution, the vicinity of the hetero interface is particularly etched and becomes rounded. Furthermore, the growth rate of the second cladding layer was reduced to 5 μm, slower than the normal 20 μm/hr.
/ hr, the upper edge of the core layer also becomes rounded during growth, resulting in the shape shown in FIG. 2.

このようにするとことにより実施例1に対してはストラ
イプ幅20μ程度まで狭めることができ、また実施例2
に対してはストライブ#13μ程度まで減少させること
ができる。この丸みは光の波長に対して充分大なる曲率
半径たとえばR〜2μmになるよう、適当にエツチング
時間、成長速度をコントロールすればよい。
By doing this, the stripe width can be narrowed to about 20μ compared to Example 1, and also Example 2
For example, the stripe can be reduced to about #13μ. This roundness can be achieved by appropriately controlling the etching time and growth rate so that the radius of curvature is sufficiently large relative to the wavelength of light, for example, R~2 .mu.m.

本発明の光導波路で変調器、復N器、光非線形効果によ
る差周波混合、和周波混合等に用いるには通常知られて
いる方法を用いればよい。
In order to use the optical waveguide of the present invention for a modulator, a double-N unit, difference frequency mixing by optical nonlinear effect, sum frequency mixing, etc., a commonly known method may be used.

たとえば第4図のごときpn接合を逆バイアスにした構
造の電気光学的効果を用いた光変調器においては、コア
GaPは前の実施例のごとくn形のundope層とし
第2クラッド層4をGeあるいはZnをドープしたp形
層(p=3XIOcm’)、第1クラッド層2をTeド
ープn形GaP (1x 1017cm−3)とし通常
の方法にてp形層、Lxaa、−□P又はその上のp形
GaPバッファ層上にpmlE極6を形成しn形(n−
1xlO”cm−3)基板GaPの裏側にn彫型fi7
を形成し逆バイアスを1〜3■印加すればコア層のQa
Pは空乏化し、高い電界が加わり透過するGaAsレー
ザダイオードからの光8に電気光学効果による変調を与
えることができる。利用すべき効果の方4tL選択則は
知られているのでそれによって基板結晶の方位及びスト
ライブ方向の結晶方位を適宜選べば良い実IM例2にて
更にhLの組成を0.03まで低下させることもできる
がNAO大なる光の入射は困難となる。このような場合
、第5図のように多モード光ファイバと光導波路端を1
μm程度まで接近させマツチング用高屈折率液体を中間
に充填して光を導入させることができる。
For example, in an optical modulator using an electro-optic effect having a structure in which the pn junction is reverse biased as shown in FIG. 4, the core GaP is an n-type undoped layer as in the previous embodiment, and the second cladding layer 4 is made of Alternatively, the p-type layer (p=3XIOcm') doped with Zn, the first cladding layer 2 is Te-doped n-type GaP (1x 1017cm-3), and the p-type layer, Lxaa, - A pmlE electrode 6 is formed on the p-type GaP buffer layer of the n-type (n-
1xlO”cm-3) n-shaped fi7 on the back side of the GaP substrate
By applying a reverse bias of 1 to 3 cm, the Qa of the core layer can be reduced.
P is depleted, and a high electric field is applied to the transmitted light 8 from the GaAs laser diode, which can be modulated by the electro-optic effect. Since the 4tL selection rule for the effect to be utilized is known, the orientation of the substrate crystal and the crystal orientation of the stripe direction can be appropriately selected using it.In actual IM example 2, the composition of hL is further reduced to 0.03. Although it is possible to do so, it becomes difficult for large amounts of light to enter the NAO. In such a case, as shown in Figure 5, the multimode optical fiber and the optical waveguide end may be
Light can be introduced by bringing the light close to the order of μm and filling the middle with a high refractive index liquid for matching.

差周波混合の場合はファイバ6によって2つの周波数の
異なるレーザ光を導入する。たとえば波長が860nm
及び800nmのGaAs −Ga1gAs系レーザダ
イオードの光を導入し、波長が11.5μの遠赤外光を
Iiる。第5図にて、6は光ファイバ、7は導波路を有
するGaPウェーハ、8は本発明記載導波路のストライ
ブ、9は高屈折率液体である。
In the case of differential frequency mixing, two laser beams of different frequencies are introduced through the fiber 6. For example, the wavelength is 860 nm
Then, light from a GaAs-Ga1gAs laser diode with a wavelength of 800 nm is introduced, and far-infrared light with a wavelength of 11.5 μ is emitted. In FIG. 5, 6 is an optical fiber, 7 is a GaP wafer having a waveguide, 8 is a stripe of the waveguide according to the present invention, and 9 is a high refractive index liquid.

〔発明の効果〕〔Effect of the invention〕

以上示したように本発明のデバイスは高い透過率を有し
、特にGaAs系その他+11−V族化合物半導体レー
ザダイオードの出力光をほとんど吸収することなく、G
aAs自体と同程度の電気光学効果、光非線形効果、吸
収4変調効果等杏その内部で効率良く生ゼしぬる高能゛
率の先導波路形デバイスである。
As shown above, the device of the present invention has a high transmittance, and in particular does not absorb much of the output light from GaAs-based and other +11-V group compound semiconductor laser diodes.
It is a high-efficiency leading waveguide device that efficiently generates electro-optic effects, optical nonlinear effects, absorption modulation effects, etc. comparable to those of aAs itself.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の先導波路、第2図はコアのコーナーが
丸みを帯びた形状を有する本発明のる方式の一実施例で
ある。
FIG. 1 shows a leading waveguide of the present invention, and FIG. 2 shows an embodiment of the method of the present invention, in which the core has rounded corners.

Claims (3)

【特許請求の範囲】[Claims] (1)GaPコア層、Al_xGa_1_−_xPクラ
ッド眉より形成されコアの幅が、50μm以下でかつ波
長が、600nm以上及び近赤外領域の導波光の損失が
小さいことを特徴とする光導波路を有する半導体ヘテロ
構造デバイス。
(1) It has an optical waveguide formed of a GaP core layer and an Al_xGa_1_-_xP cladding layer, the core width being 50 μm or less, the wavelength being 600 nm or more, and the loss of guided light in the near-infrared region being small. Semiconductor heterostructure device.
(2)Alの組成xが0.03≦x<0.1であること
を特徴とする前記特許請求の範囲第1項記載の半導体ヘ
テロ構造デバイス。
(2) The semiconductor heterostructure device according to claim 1, wherein the composition x of Al is 0.03≦x<0.1.
(3)コア断面のコーナーが丸みを帯びたことを特徴と
する前記特許請求の範囲第1項又は第2項記載の半導体
ヘテロ構造デバイス。
(3) The semiconductor heterostructure device according to claim 1 or 2, wherein the corners of the core cross section are rounded.
JP1132344A 1989-05-25 1989-05-25 Light modulator Expired - Fee Related JP2619717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132344A JP2619717B2 (en) 1989-05-25 1989-05-25 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132344A JP2619717B2 (en) 1989-05-25 1989-05-25 Light modulator

Publications (2)

Publication Number Publication Date
JPH02309303A true JPH02309303A (en) 1990-12-25
JP2619717B2 JP2619717B2 (en) 1997-06-11

Family

ID=15079147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132344A Expired - Fee Related JP2619717B2 (en) 1989-05-25 1989-05-25 Light modulator

Country Status (1)

Country Link
JP (1) JP2619717B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341392A (en) * 2001-05-18 2002-11-27 Telecommunication Advancement Organization Of Japan Device and method for emitting teraheltz light
JP2007133339A (en) * 2005-11-09 2007-05-31 Semiconductor Res Found Method and device for generating terahertz wave by phonon polariton excitation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159107A (en) * 1983-03-02 1984-09-08 Hitachi Ltd Optical waveguide
JPS60135949A (en) * 1983-12-23 1985-07-19 Matsushita Electric Works Ltd Production for optical formed article
JPH01105589A (en) * 1987-10-17 1989-04-24 Semiconductor Res Found Semiconductor raman laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159107A (en) * 1983-03-02 1984-09-08 Hitachi Ltd Optical waveguide
JPS60135949A (en) * 1983-12-23 1985-07-19 Matsushita Electric Works Ltd Production for optical formed article
JPH01105589A (en) * 1987-10-17 1989-04-24 Semiconductor Res Found Semiconductor raman laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341392A (en) * 2001-05-18 2002-11-27 Telecommunication Advancement Organization Of Japan Device and method for emitting teraheltz light
JP2007133339A (en) * 2005-11-09 2007-05-31 Semiconductor Res Found Method and device for generating terahertz wave by phonon polariton excitation

Also Published As

Publication number Publication date
JP2619717B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
Dagli Wide-bandwidth lasers and modulators for RF photonics
Carter et al. Nonlinear optical coupling between radiation and confined modes
US4708423A (en) Optical wave guides and coupling member monolithically integrated on a semiconductor substrate
US5165105A (en) Separate confinement electroabsorption modulator utilizing the Franz-Keldysh effect
US6162655A (en) Method of fabricating an expanded beam optical waveguide device
KR20150097306A (en) Quantum dot laser device integrated with semiconductor optical amplifier on silicon substrate
EP3963677B1 (en) Monolithically integrated gain element
JPH0897504A (en) Semiconductor laser
JPH02309303A (en) Semiconductor device having heterostructure
US20150185582A1 (en) Mask design and method of fabricating a mode converter optical semiconductor device
Butler et al. Mode characteristics of nonplanar double-heterojunction and large-optical-cavity laser structures
Henry et al. Single mode operation of buried heterostructure lasers by loss stabilization
CN114649745A (en) Buried structure semiconductor laser and preparation method thereof
JPH08248364A (en) Light intensity modulation element and semiconductor laser with light intensity modulation element
US20200381899A1 (en) Semiconductor device with Selective Area Epitaxy growth utilizing a mask to suppress or enhance growth at the edges
Ueno et al. Transverse mode stabilized InGaAsP/InP (λ= 1.3 µm) piano-convex waveguide lasers
JPS62156617A (en) Electrooptic element
US20240210623A1 (en) Optical Circuit
US20230035055A1 (en) Electroabsorption Modulated Laser
Leonberger et al. Oxide-confined GaAs optical waveguides formed by lateral epitaxial growth
JPS6184888A (en) Buried hetero type semiconductor laser
KR100198424B1 (en) Optical modulator integrated device with vertical taper spot size converter and fabricating method for the same
JPH03222387A (en) Monolithically integrated type semiconductor optical element and manufacture thereof
JP3154419B2 (en) Semiconductor optical amplifier
JPH02221941A (en) Cherenkov radiation type secondary higher harmonic generation device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees