JPH02309101A - Waste heat recovery heat exchanger - Google Patents

Waste heat recovery heat exchanger

Info

Publication number
JPH02309101A
JPH02309101A JP12872189A JP12872189A JPH02309101A JP H02309101 A JPH02309101 A JP H02309101A JP 12872189 A JP12872189 A JP 12872189A JP 12872189 A JP12872189 A JP 12872189A JP H02309101 A JPH02309101 A JP H02309101A
Authority
JP
Japan
Prior art keywords
heat exchanger
flow
feed water
economizer
exchanger tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12872189A
Other languages
Japanese (ja)
Inventor
Tsuneo Suzuki
恒夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12872189A priority Critical patent/JPH02309101A/en
Publication of JPH02309101A publication Critical patent/JPH02309101A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1615Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits being inside a casing and extending at an angle to the longitudinal axis of the casing; the conduits crossing the conduit for the other heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Abstract

PURPOSE:To prevent water hammering or instability in the quantity of feed water to a steam drum from occurring and enable a uniform distribution of exhaust gas temperature to be obtained at an outlet of an economizer, by a construction wherein all flows of feed water in heat exchanger tubes on the upstream side with respect to an exhaust gas flow on which steam bubbles might be generated in the heat exchanger tubes during a low-load operation are upward flows, and downward flow of the feed water is permitted in non-heating connection tubes. CONSTITUTION:Feed water 4 first flows upward through heat exchanger tubes 51 in a heat exchanger tube panel 54b into an upper header, then flows through a connection tubes 55a into an upper header 52 of an adjacent heat exchanger tube panel 54b on the upstream side with respect to an exhaust gas flow, and flows downward through heat exchanger tubes 51. Then the feed water 4 flows upward and downward repeatedly in the panels 54b, and flows through a connection tube 55b or 55c into a lower header 53 of a heat exchanger tube panel 54a. The feed water 4 then repeats upward flow through the heat exchanger tubes 51 and downward flow through the connection tube 55b or 55c, and is fed out from an economizer 23 to a stream drum. Variations in the flow of feed water due to generation of steam bubbles and the accompanying water hammering or instability in the quantity of feed water supplied to the steam drum can be prevented from occurring, and a substantially uniform temperature distribution on a practical basis can be obtained at an outlet of the economizer 23.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明はガスタービンの排ガス等を利用して蒸気を発
生する排熱回収熱交換器に係り、特に低負荷運転時、に
おいてもウォータハンマを生ずることなく安定した管内
流動の得られる節炭器を有する排熱回収熱交換器に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an exhaust heat recovery heat exchanger that generates steam using exhaust gas from a gas turbine, and particularly during low load operation. The present invention also relates to an exhaust heat recovery heat exchanger having a fuel economizer that allows stable flow in the pipes without causing water hammer.

(従来の技術) 近年、エネルギーの有効利用の観点がらコンバインドサ
イクル発電や熱併給発電といった、ガスタービンやディ
ーゼルエンジンと、その排ガスを高温熱源として蒸気タ
ービンの駆動蒸気やプロセス用蒸気を生成する排熱回収
熱交換器とを組み合わせた発電システムが注目されてい
る。
(Conventional technology) In recent years, from the perspective of effective energy use, combined cycle power generation and cogeneration power generation have been developed to generate exhaust heat from gas turbines and diesel engines and their exhaust gas, which is used as a high-temperature heat source to generate drive steam for steam turbines and process steam. Power generation systems that combine a recovery heat exchanger are attracting attention.

第3図には従来公知のコンバインドサイクル発電システ
ムの構成の一例を示す。このシステムはガスタービン装
置10、その排ガスを熱源として蒸気を生成する排熱回
収熱交換器20.排熱回収熱交換器20にて生成された
蒸気により駆動される蒸気タービン装置30及び前記両
タービン装置IO及び30と直結されている発電機40
及び41により構成されている。ガスタービン装置10
は圧縮機11、燃焼器12及びガスタービン13により
構成されている。燃焼用空気1は圧縮器11で加圧され
て燃焼器12に送られ、ここで燃料2と混合されて燃焼
し、高温の燃焼ガスとなる。この燃焼ガスはガスタービ
ン13に送られて仕事をした後、排ガス3となって排熱
回収熱交換器20に導かれる。
FIG. 3 shows an example of the configuration of a conventionally known combined cycle power generation system. This system includes a gas turbine device 10, an exhaust heat recovery heat exchanger 20 that generates steam using its exhaust gas as a heat source. A steam turbine device 30 driven by steam generated in the exhaust heat recovery heat exchanger 20 and a generator 40 directly connected to both the turbine devices IO and 30.
and 41. Gas turbine device 10
is composed of a compressor 11, a combustor 12, and a gas turbine 13. Combustion air 1 is pressurized by a compressor 11 and sent to a combustor 12, where it is mixed with fuel 2 and combusted to become high-temperature combustion gas. After this combustion gas is sent to the gas turbine 13 and does work, it becomes exhaust gas 3 and is led to the exhaust heat recovery heat exchanger 20.

排熱回収熱交換器20は例えば排ガス3の流れの上流側
から順に過熱器21、蒸発器22及び節炭器23を備え
ており、節炭器23を出た排ガス3は図示しない煙突よ
り大気中に放出される。
The exhaust heat recovery heat exchanger 20 includes, for example, a superheater 21, an evaporator 22, and a economizer 23 in order from the upstream side of the flow of the exhaust gas 3, and the exhaust gas 3 exiting the economizer 23 is sent to the atmosphere from a chimney (not shown). released inside.

一方、蒸気タービン31を出た排気蒸気は復水器32に
て凝縮されたのち、給水ポンプ33で加圧されて節炭器
23に給水される。この給水4は節炭器28にて飽和温
度近くまで過熱された後蒸気ドラム24の缶水部に導か
れる。蒸気ドラム24の缶水は蒸発器22に送られて一
部が蒸気となった後再び蒸気ドラム24に戻り、ここで
湿分を除去されて過熱器21に送られる。過熱器21で
過熱された蒸気は主蒸気5として蒸気タービン31に送
られ、ここで膨張して仕事をした後に復水器32に排出
される。
On the other hand, exhaust steam exiting the steam turbine 31 is condensed in a condenser 32, then pressurized by a water supply pump 33 and supplied to the energy saver 23. This feed water 4 is superheated to near the saturation temperature in the economizer 28 and then introduced to the canned water section of the steam drum 24. The canned water in the steam drum 24 is sent to the evaporator 22, where a part of it becomes steam, and then returns to the steam drum 24 again, where moisture is removed and sent to the superheater 21. The steam superheated in the superheater 21 is sent as main steam 5 to the steam turbine 31, where it expands and performs work, and then is discharged to the condenser 32.

(発明が解決しようとする課題) 以上のような構成のコンバインドサイクル発電システム
の持つ特徴の一つとして幅広い負荷帯で効率のよい運転
が可能である点が挙げられるが、その反面次に述べるよ
うな問題がある。
(Problem to be solved by the invention) One of the characteristics of the combined cycle power generation system configured as described above is that it is capable of efficient operation in a wide range of load bands. There is a problem.

前述したように節炭器では給水ポンプにより送りこまれ
た給水が蒸気ドラムの器内圧力に対する飽和温度近傍ま
で加熱される。節炭器出口での給水温度と前記飽和温度
との差(以下ではFアプローチポイント温度差」と称す
る)は定格負荷時で一般的には6〜10℃となるように
設計されることが多いが、アプローチポイント温度差は
負荷の低下に伴って減少していく。そして負荷があるレ
ベルを下回るようになるとこの温度差は0℃となり、節
炭器の伝熱管内で蒸気泡が発生する、いわゆるスティー
ミングが生じるようにな゛る。この時の節炭器での給水
温度と伝熱面積との関係を第4図を用いてより詳細に説
明する。第4図は節炭器内における給水温度の変化の様
子を示したもので、横軸には給水の流れに沿った伝熱面
積を、縦軸には節炭器内での給水温度を飽和温度と入口
給水温度との温度差に対して相対的に示している。節炭
器に流入した給水は排ガスと熱交換をすることにより節
炭器の入口から出口に向かって通過した伝熱面積の増加
に伴って加温されていく。定格負荷時には節炭器伝熱管
内でスティーミングが発生しないよう、前述のようにア
プローチポイント温度差が6〜10°Cになるように設
定されているのが一般的である。しかし、負荷が低下す
ると排ガスの温度及び流量が減少するものの、蒸発量の
低下にともなって給水流量も減少し、また、蒸気ドラム
器内圧力も低下するために飽和温度と入口給水温度との
差に対する相対的な単位伝熱面積当りの給水温度上昇率
は増加する。このために負荷が低下してくるとアプロー
チポイント温度差は減少し、一定の負荷レベル以下では
給水が節炭器出口に到達する前に給水温度が飽和温度に
達してしまい、節炭器伝熱管の中で蒸気泡が発生するよ
うになるのである。
As mentioned above, in the economizer, the water fed by the water pump is heated to a temperature close to the saturation temperature of the steam drum relative to the internal pressure. The difference between the water supply temperature at the exit of the economizer and the saturation temperature (hereinafter referred to as "F approach point temperature difference") is often designed so that it is generally 6 to 10 degrees Celsius at rated load. However, the approach point temperature difference decreases as the load decreases. When the load falls below a certain level, this temperature difference becomes 0°C, and steam bubbles occur in the heat exchanger tubes of the economizer, so-called steaming. The relationship between the water supply temperature and the heat transfer area in the economizer at this time will be explained in more detail using FIG. 4. Figure 4 shows how the feed water temperature changes in the economizer, with the horizontal axis representing the heat transfer area along the flow of the feed water, and the vertical axis representing the temperature of the feed water at saturation within the economizer. It is shown relative to the temperature difference between the temperature and the inlet water supply temperature. The feed water that has flowed into the economizer exchanges heat with the exhaust gas, and is heated as the heat transfer area increases as it passes from the inlet to the exit of the economizer. In order to prevent steaming from occurring within the economizer heat transfer tubes during rated load, the approach point temperature difference is generally set to 6 to 10°C as described above. However, when the load decreases, the temperature and flow rate of the exhaust gas decrease, but the flow rate of the feed water also decreases as the amount of evaporation decreases, and the pressure inside the steam drum also decreases, so the difference between the saturation temperature and the inlet feed water temperature decreases. The rate of increase in feed water temperature per unit heat transfer area relative to increases. For this reason, as the load decreases, the approach point temperature difference decreases, and below a certain load level, the feed water temperature reaches the saturation temperature before it reaches the economizer outlet, causing the This causes steam bubbles to form inside.

一方、従来の排ガスが水平方向に流れる排熱回収熱交換
器の節炭器の構造は例えば第5図に示すようになってい
る。複数の伝熱管51は上部管寄せ52と下部管寄せ5
3で接続されて伝熱管パネル54が形成されている。節
炭器はこの伝熱管パネル54の複数個を以て構成される
が、隣接した伝熱管パネル54の間は上部管寄せ52同
士あるいは下部管寄せ53同士が連絡管55aによって
接続されている。このようにして構成された節炭器に入
った給水4は、先ず、伝熱管内を上昇(下降)して上部
管寄せ52(下部管寄せ53)に入り、連絡管55aを
通って隣接した排ガス3流れの上流側の伝熱管パネル5
4の上部管寄せ52(下部管寄せ53)に送られる。そ
の後給水4は伝熱管51を下降(上昇)して下部管寄せ
53(上部管寄せ52)に入り、連絡管55aを通って
更にガス流上流側の伝熱管パネル54の下部管寄せ53
(上部管寄せ52)に送られる。その後給水4は同様に
して節炭器伝熱管内を上昇、下降を交互に繰り返して流
れた後に節炭器の出口に至る(例えば実開昭61−13
5105号公報など)。
On the other hand, the structure of a conventional energy saver of an exhaust heat recovery heat exchanger in which exhaust gas flows horizontally is as shown in FIG. 5, for example. The plurality of heat transfer tubes 51 are an upper header 52 and a lower header 5.
3 to form a heat exchanger tube panel 54. The economizer is constituted by a plurality of heat exchanger tube panels 54, and the upper header 52 or the lower header 53 between adjacent heat exchanger tube panels 54 are connected by a connecting pipe 55a. The feed water 4 that has entered the energy saver configured in this way first rises (descends) inside the heat transfer tube, enters the upper header 52 (lower header 53), passes through the connecting pipe 55a, and then flows into the adjacent header. Heat exchanger tube panel 5 on the upstream side of the flow of exhaust gas 3
4 is sent to the upper header 52 (lower header 53). Thereafter, the feed water 4 descends (rises) through the heat transfer tubes 51, enters the lower header 53 (upper header 52), passes through the connecting pipe 55a, and further passes through the lower header 53 of the heat exchanger tube panel 54 on the upstream side of the gas flow.
(upper header 52). Thereafter, the feed water 4 flows through the heat exchanger tube of the economizer by repeating rising and falling in the same manner, and then reaches the outlet of the economizer (for example, Utility Model No. 61-13
5105, etc.).

このような節炭器の給水が下降流となる伝熱管(例えば
第5図では排ガス流の上流側から2番目の伝熱管パネル
)において低負荷運転時に蒸気泡が発生した場合、給水
は下降しようとするのに対して蒸気泡は浮力によって上
昇しようとする。この給水と蒸気泡との間の相反する動
きにより節炭器内の給水流れに変動が生じて、所謂ウォ
ータハンマが発生したり、蒸気ドラムへの給水流量が不
安定になったりする。
If steam bubbles are generated during low-load operation in the heat transfer tube where the feed water of such a economizer flows downward (for example, the second heat transfer tube panel from the upstream side of the exhaust gas flow in Figure 5), the feed water will flow downward. In contrast, vapor bubbles tend to rise due to buoyancy. This contradictory movement between the feed water and the steam bubbles causes fluctuations in the flow of the feed water in the economizer, causing so-called water hammer or making the flow rate of the water feed to the steam drum unstable.

この問題を解決するためにこれまでに例えば第6図に示
すような構造の節炭器が用いられている。
To solve this problem, an energy saver having a structure as shown in FIG. 6, for example, has been used so far.

伝熱管51と上部管寄せ52及び下部管寄せ53より形
成される伝熱管パネル54の複数個をもって節炭器が構
成されるのは前述した第5図の場合と同じである。しか
し、伝熱管パネル54間の接続は異なり、節炭器のガス
流下流側のガス通路部内を通る連絡管55bまたはガス
通路部の外側を通る連絡管55cにより上部管寄せ52
と隣接したガス流上流側の伝熱管パネル54の下部管寄
せ53とを接続している。
As in the case of FIG. 5 described above, the economizer is constituted by a plurality of heat exchanger tube panels 54 formed by heat exchanger tubes 51, upper header 52, and lower header 53. However, the connections between the heat exchanger tube panels 54 are different, and the upper pipe header 52 is connected to the connecting pipe 55b passing through the gas passage on the downstream side of the gas flow of the economizer or through the communicating pipe 55c passing outside the gas passage.
and the lower header 53 of the adjacent heat exchanger tube panel 54 on the upstream side of the gas flow.

この構造の節炭器では給水4は伝熱管51を上昇して上
部管寄せ52に入り、連絡管55bまたは55cを通っ
て下降して、隣接した伝熱管パネル54の下部管寄せ5
3に送られる。その後給水4は同様にして節炭器伝熱管
内を上昇して連絡管内を下降する流れを繰り返した後に
節炭器の出口に至る。即ち、この構造では伝熱管内の給
水流れは全て上昇流となる。従って、このような構造の
節炭器では低負荷運転時に伝熱管内で蒸気泡が発生して
も給水流れの方向と蒸気泡に働く浮力の方向が一致して
いるために前述のような給水流れの変動やこれに伴う諸
問題が生じることはなく、また、連絡管内は下降流とな
るものの排ガスにより加熱されないため、蒸気泡が新た
に発生することはなく給水の下降は良好に行われる(例
えば特開昭57−188904号公報、特開昭81−2
52401号公報など)。
In the economizer with this structure, the water supply 4 ascends through the heat exchanger tubes 51, enters the upper header 52, descends through the connecting pipe 55b or 55c, and flows through the lower header 52 of the adjacent heat exchanger tube panel 54.
Sent to 3. Thereafter, the feed water 4 repeats the flow of rising in the heat exchanger tube of the economizer and descending in the communication pipe, and then reaches the outlet of the economizer. That is, in this structure, all of the water supply flow within the heat exchanger tube becomes an upward flow. Therefore, in an energy saver with this structure, even if steam bubbles are generated in the heat transfer tubes during low-load operation, the direction of the feed water flow and the direction of the buoyant force acting on the steam bubbles are the same, so the water supply as described above is Fluctuations in the flow and related problems do not occur, and although the flow in the connecting pipe is downward, it is not heated by the exhaust gas, so no new steam bubbles are generated and the supply water descends smoothly ( For example, JP-A-57-188904, JP-A-81-2
52401, etc.).

このように第6図のような構造の節炭器を採用すれば低
負荷運転時の給水のスティーミングによる諸問題を解決
できるが、その反面次に述べるような問題が生じる。即
ち、第2図に一例を示すように、第6図に示すような構
造の節炭器を採用した場合、節炭器の出口における排ガ
スの温度分布においてガス通路部上部と同下部との間で
大きな温度差が生じてしまい、節炭器のガス流下流側に
設置された熱交換器の伝熱性能に悪影響を及ぼすことに
なる。これは伝熱管内の流れが全て上昇流であるために
全ての伝熱管で給水の温度分布がガス通路部上部で高く
、同下部で低くなっていることに起因している。
As described above, if the energy saver having the structure as shown in FIG. 6 is adopted, various problems caused by steaming of the water supply during low load operation can be solved, but on the other hand, the following problems occur. In other words, as shown in Fig. 2 as an example, when a economizer having the structure shown in Fig. 6 is adopted, the temperature distribution of the exhaust gas at the exit of the economizer is such that the temperature distribution between the upper part of the gas passage and the lower part thereof is This results in a large temperature difference, which has a negative impact on the heat transfer performance of the heat exchanger installed downstream of the gas flow of the economizer. This is because all the flows in the heat exchanger tubes are upward flows, so the temperature distribution of the feed water in all the heat exchanger tubes is high at the upper part of the gas passage section and low at the lower part thereof.

この発明の目的は前述した問題点を除去し、低負荷運転
時に伝熱管内で蒸気泡が発生した場合でも給水流れの変
動及びこれに伴うウォータハンマや蒸気ドラムへの給水
流量の不安定が生じることがなく、また、出口排ガス温
度の不均一な分布によってガス流下流側の熱交換器の伝
熱性能に悪影響を及ぼすことのない節炭器を有する排熱
回収熱交換器を提供することにある。
The purpose of this invention is to eliminate the above-mentioned problems, and even if steam bubbles are generated in the heat transfer tubes during low-load operation, fluctuations in the flow of water supply and accompanying instability in the flow rate of water supply to the water hammer and steam drum occur. An object of the present invention is to provide an exhaust heat recovery heat exchanger having a cost saving device that does not cause the heat transfer performance of the heat exchanger on the downstream side of the gas flow to be adversely affected by non-uniform distribution of outlet exhaust gas temperature. be.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この目的を達成するために本発明では高温の排ガスが水
平方向に流れ、ガス通路部内に設置された伝熱管を上部
管寄せ及び下部管寄せで接続して形成される伝熱管パネ
ルの複数個により構成される節炭器を有する排熱回収熱
交換器において、ガス流の上流側に設置される一部の伝
熱管パネルについては給水流れの上流側の伝熱管パネル
の上部管寄せと、隣接したこの給水流れの下流側の伝熱
管パネルの下部管寄せとの間を連絡管で接続することに
より管内流が全て上昇流となるように構成され、一方、
残りの下流側の伝熱管パネルについては給水流れに沿っ
て隣接した伝熱管パネルの上部管寄せ同士あるいは下部
管寄せ同士を連絡管にて接続することにより管内流が上
昇流となる伝。
(Means for solving the problem) In order to achieve this object, in the present invention, high-temperature exhaust gas flows horizontally, and heat transfer tubes installed in the gas passage are connected by an upper header and a lower header. In an exhaust heat recovery heat exchanger that has an energy saver made up of a plurality of heat exchanger tube panels, some of the heat exchanger tube panels installed upstream of the gas flow have heat exchanger tubes installed upstream of the feed water flow. By connecting the upper header of the panel and the lower header of the adjacent heat exchanger tube panel on the downstream side of this water supply flow with a connecting pipe, all the flow in the pipe is configured to be an upward flow.
For the remaining downstream heat exchanger tube panels, the upper headers or the lower headers of adjacent heat exchanger tube panels are connected along the water supply flow by connecting pipes, so that the flow inside the tubes becomes an upward flow.

熱管パネルと下降流となる伝熱管パネルとが排ガス流れ
に沿って交互に配置された節炭器を有することを特徴と
する。
It is characterized in that the heat tube panels and the downward flow heat transfer tube panels have economizers arranged alternately along the exhaust gas flow.

(作 用) 即ち、本発明においては低負荷運転時において伝熱管内
で蒸気泡が発生する可能性のある節炭器の排ガス流上流
側の伝熱管パネルについては隣接した伝熱管パネルの間
を排ガス流下流側のパネルの上部管寄せと同上流側のパ
ネルの下部管寄せとを下降連絡管にて接続することによ
り該伝熱管パネルに属する伝熱管内の給水流れは全て上
昇流とする。また、残りのガス流下流側の伝熱管パネル
については隣接した伝熱管パネルの上部管寄せ同士また
は下部管寄せ同士を連絡管で接続することにより伝熱管
内の給水流れが上昇流となる伝熱管パネルと下降流とな
る伝熱管パネルを排ガス流に沿って交互に配置する。
(Function) That is, in the present invention, for the heat exchanger tube panels on the upstream side of the exhaust gas flow of the economizer, where steam bubbles may occur in the heat exchanger tubes during low-load operation, the space between adjacent heat exchanger tube panels is By connecting the upper header of the panel on the downstream side of the exhaust gas flow and the lower header of the panel on the upstream side of the exhaust gas flow by a descending connecting pipe, all the water flow in the heat exchanger tubes belonging to the heat exchanger tube panel is made to be an upward flow. In addition, for the remaining heat exchanger tube panels on the downstream side of the gas flow, the upper headers of adjacent heat exchanger tube panels or the lower headers of adjacent heat exchanger tube panels are connected with connecting pipes, so that the water flow in the heat exchanger tubes becomes an upward flow. Panels and heat exchanger tube panels that flow downward are arranged alternately along the exhaust gas flow.

(実施例) 以下、この発明の実施例を図面を用いて説明する。第1
図は本発明の一実施例である節炭器の系統を示したもの
である。複数の伝熱管51は上部管寄せ52と下部管寄
せ53で接続されて伝熱管パネル54a 、 54bが
形成されており、節炭器はこの伝熱管パネル54a 、
 54bの複数個(第1図の場合は5個)を以て構成さ
れる。これらの伝熱管パネルの内、給水流れの上流側の
伝熱管パネル54b同士の間は上部管寄せ52同士ある
いは下部管寄せ53同士に連絡管55aを設けることに
より接続されている。また、給水流れの下流側の伝熱管
パネル54a同士の間および給水流れに沿って隣接する
伝熱管パネル54bと54aとの間は給水流れの上流側
の伝熱管パネルの上部管寄せ52と同下流側の下部管寄
せ53との間に節炭器の排ガス流下流側のガス通路部内
を通る連絡管55bあるいはガス通路部外を通る連絡管
55cを設けることにより接続されている。
(Example) Hereinafter, an example of the present invention will be described using the drawings. 1st
The figure shows a system of a economizer which is an embodiment of the present invention. The plurality of heat exchanger tubes 51 are connected by an upper header 52 and a lower header 53 to form heat exchanger tube panels 54a, 54b, and the energy saver is connected to the heat exchanger tube panels 54a, 54b.
54b (five in the case of FIG. 1). Among these heat exchanger tube panels, the heat exchanger tube panels 54b on the upstream side of the water supply flow are connected by providing communication pipes 55a between the upper headers 52 or between the lower headers 53. Further, between the heat exchanger tube panels 54a on the downstream side of the water supply flow and between the heat exchanger tube panels 54b and 54a adjacent along the water supply flow, the upper header 52 of the heat exchanger tube panels on the upstream side of the water supply flow and the same downstream It is connected to the lower header 53 by providing a communication pipe 55b passing through the gas passage on the downstream side of the exhaust gas flow of the economizer or a communication pipe 55c passing outside the gas passage.

なお、節炭器を構成する伝熱管パネルの内、排ガス流の
上流側から何番目のパネルまでを前述した54aのパネ
ルとするかについては次のようにして決定する。即ち、
第4図に示すように低負荷運転時に伝熱管内で蒸気泡が
発生するのは給水流れの下流側、即ち、排ガス流れの上
流側の伝熱管パネルのみであるから、最低負荷での運転
時に蒸気泡の発生し始める伝熱管パネルを予測して該伝
熱管パネルより上流側に位置するパネル全てを54aの
パネルとする。
The number of panels from the upstream side of the exhaust gas flow to be used as the panel 54a described above among the heat exchanger tube panels constituting the economizer is determined as follows. That is,
As shown in Figure 4, steam bubbles are generated in the heat exchanger tubes only in the heat exchanger tube panels on the downstream side of the feed water flow, that is, on the upstream side of the exhaust gas flow, during low load operation. The heat exchanger tube panel where steam bubbles start to be generated is predicted, and all the panels located upstream from the heat exchanger tube panel are designated as panels 54a.

このような構成の節炭器において、給水4は、まず、伝
熱管パネル54bの伝熱管51を上昇して上部管寄せに
入った後、連絡管55aを通って隣接した排ガス流れ上
流側の伝熱管パネル54b上部管寄せ52に入り、伝熱
管51を下降する。その後給水4は伝熱管パネル54b
内の上昇下降を繰り返した後連絡管55bまたは55c
を通って伝熱管パネル54aの下部管寄せ53に入る。
In the energy saver with such a configuration, the water supply 4 first rises through the heat exchanger tubes 51 of the heat exchanger tube panel 54b and enters the upper header, and then passes through the connecting pipe 55a to the adjacent exhaust gas flow on the upstream side. The heat tube panel 54b enters the upper header 52 and descends through the heat transfer tubes 51. After that, the water supply 4 is connected to the heat exchanger tube panel 54b.
After repeating the rise and fall within the connecting pipe 55b or 55c
and enters the lower header 53 of the heat exchanger tube panel 54a.

そして給水4は伝熱管51内を上昇、連絡管55bまた
は55c内を下降という過程を繰り返した後に節炭器を
出て図示されない蒸気ドラムへ送られる。
After the feed water 4 repeats the process of rising in the heat transfer tube 51 and descending in the communication pipe 55b or 55c, it exits the economizer and is sent to a steam drum (not shown).

以上述べた本実施例の節炭器においては低負荷運転時に
伝熱管内で蒸気泡が発生した場合でも該伝熱管内の排ガ
ス上流側の給水流れは全て上昇流であり、給水流れが下
降流となる連絡管では排ガスとの間の熱交換が行われず
、新たに蒸気が発生することはないため、蒸気泡の発生
に起因する給水流れの変動及びこれに伴うウォータハン
マや蒸気ドラムへの給水量の不安定を防止することがで
きる。また、蒸気泡が発生する恐れのない排ガス流下流
側の伝熱管群では給水流れが上昇、下降を交互に繰り返
すために第2図に示すように節炭器出口における排ガス
温度分布は最大となるガス通路部上部と最低となる同下
部との間で3°C程度と小さく、実用上はぼ均一な温度
分布が得られ、排ガス流下流側の熱交換器の伝熱性能に
悪影響を及ぼすことはない。
In the energy saver of this embodiment described above, even if steam bubbles are generated in the heat transfer tube during low load operation, the feed water flow on the upstream side of the exhaust gas in the heat transfer tube is all upward flow, and the feed water flow is downward flow. Because there is no heat exchange with the exhaust gas in the connecting pipe, and no new steam is generated, fluctuations in the water supply flow due to the generation of steam bubbles and the accompanying water supply to the water hammer and steam drum It is possible to prevent the amount from becoming unstable. In addition, in the heat exchanger tube group on the downstream side of the exhaust gas flow where there is no risk of generating steam bubbles, the feed water flow alternately rises and falls, so the exhaust gas temperature distribution at the exit of the economizer reaches its maximum as shown in Figure 2. The temperature distribution between the upper part of the gas passage section and the lower part thereof, which is the lowest, is as small as 3°C, and in practical terms, a nearly uniform temperature distribution is obtained, which adversely affects the heat transfer performance of the heat exchanger on the downstream side of the exhaust gas flow. There isn't.

〔発明の効果] 以上説明したように本発明によれば低負荷運転時に伝熱
管内で蒸気泡が発生する恐れのある排ガス流上流側の伝
熱管では給水流れは全て上昇流とし、給水の下降・は非
加熱の連絡管にて行うようにしたので、蒸気泡の発生に
よる給水流れの変動やこれに伴うウォータハンマや蒸気
ドラムへの給水量の不安定を防止して安定した給水流れ
を実現でき、また、蒸気泡が発生する恐れのない排ガス
下流側の伝熱管では給水流れが上昇、下降を交互に繰り
返すために節炭器出口で実用上十分に均一な排ガス温度
分布が得られ、排ガス流下流側の熱交換器でも良好な熱
交換を実現させることができる。
[Effects of the Invention] As explained above, according to the present invention, in the heat exchanger tubes on the upstream side of the exhaust gas flow where steam bubbles may be generated in the heat exchanger tubes during low-load operation, all feed water flows are upward flows, and the feed water flows downward.・Since this is done using an unheated connecting pipe, a stable water supply flow is achieved by preventing fluctuations in the water supply flow due to the generation of steam bubbles and the resulting instability in the amount of water supplied to the water hammer and steam drum. In addition, since the feed water flow alternately rises and falls in the heat exchanger tube downstream of the exhaust gas, where there is no risk of generating steam bubbles, a sufficiently uniform exhaust gas temperature distribution can be obtained at the outlet of the economizer, and the exhaust gas Good heat exchange can also be achieved with the heat exchanger on the downstream side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による排熱回収熱交換器の節炭器の系統
図、第2図は本発明および従来の節炭器の出口における
排ガス温度分布、第3図はコンバインドサイクル発電プ
ラントの主要な構成を示す系統図、第4図は節炭器内の
給水温度と伝熱面積との関係を示す線図、第5図および
第6図は従来の排熱回収熱交換器の節炭器の系統図であ
る。 3・・・排ガス      4・・・給水23・・・節
炭器      51・・・伝熱管52・・・上部管寄
せ    53・・・下部管寄せ54.54a、54b
・・・伝熱管パネル55a、55b、55c −・・連
絡管代理人 弁理士 則 近 憲 佑 同    第子丸   健 第1図 第5図
Fig. 1 is a system diagram of the economizer of the waste heat recovery heat exchanger according to the present invention, Fig. 2 is the exhaust gas temperature distribution at the outlet of the present invention and the conventional economizer, and Fig. 3 is the main part of the combined cycle power plant. Fig. 4 is a diagram showing the relationship between the feed water temperature and heat transfer area in the energy saver, and Figures 5 and 6 are the energy economizer of a conventional exhaust heat recovery heat exchanger. This is a system diagram of 3... Exhaust gas 4... Water supply 23... Energy saver 51... Heat exchanger tube 52... Upper header 53... Lower header 54.54a, 54b
... Heat exchanger tube panels 55a, 55b, 55c ... Liaison management agent Patent attorney Yudo Nori Chika Ken Daishimaru Figure 1 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1、高温の排ガスが水平方向に流れ、ガス通路部内に設
置された伝熱管を上部管寄せ及び下部管寄せで接続して
形成される伝熱管パネルの複数個により構成される節炭
器を有する排熱回収熱交換器において、ガス流の上流側
に設置される一部の伝熱管パネルについては給水流れの
上流側の伝熱管パネルの上部管寄せと、隣接したこの給
水流れの下流側の伝熱管パネルの下部管寄せとの間を連
絡管で接続することにより、管内流が全て上昇流となる
ように構成され、一方、残りの下流側の伝熱管パネルに
ついては給水流れに沿って隣接した伝熱管パネルの上部
管寄せ同士あるいは下部管寄せ同士を連絡管にて接続す
ることにより、管内流が上昇流となる伝熱管パネルと下
降流となる伝熱管パネルとがガス流れに沿って交互に配
置された節炭器を有することを特徴とする排熱回収熱交
換器。
1. High-temperature exhaust gas flows horizontally, and it has an economizer made up of a plurality of heat transfer tube panels formed by connecting heat transfer tubes installed in the gas passage section with an upper header and a lower header. In the waste heat recovery heat exchanger, for some heat exchanger tube panels installed upstream of the gas flow, there is a By connecting the lower pipe header of the heat pipe panel with a connecting pipe, all the flow in the pipe is configured to be an upward flow, while the remaining heat pipe panels on the downstream side are connected with the lower pipe header along the water supply flow. By connecting the upper headers or the lower headers of heat exchanger tube panels with connecting pipes, the heat exchanger tube panels in which the flow in the tubes is upward flow and the heat exchanger tube panels in which flow is downward can be alternated along the gas flow. An exhaust heat recovery heat exchanger characterized by having a disposed energy saver.
JP12872189A 1989-05-24 1989-05-24 Waste heat recovery heat exchanger Pending JPH02309101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12872189A JPH02309101A (en) 1989-05-24 1989-05-24 Waste heat recovery heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12872189A JPH02309101A (en) 1989-05-24 1989-05-24 Waste heat recovery heat exchanger

Publications (1)

Publication Number Publication Date
JPH02309101A true JPH02309101A (en) 1990-12-25

Family

ID=14991790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12872189A Pending JPH02309101A (en) 1989-05-24 1989-05-24 Waste heat recovery heat exchanger

Country Status (1)

Country Link
JP (1) JPH02309101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154391A1 (en) * 2007-06-06 2008-12-18 Alcoa Inc. Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154391A1 (en) * 2007-06-06 2008-12-18 Alcoa Inc. Heat exchanger

Similar Documents

Publication Publication Date Title
US5293842A (en) Method for operating a system for steam generation, and steam generator system
CN1074084C (en) Combined combustion and steam turbine power plant
US4572110A (en) Combined heat recovery and emission control system
US4466241A (en) Waste heat recovery boiler
RU2124672C1 (en) Waste-heat boiler and method of its operation
GB2145477A (en) Dual fuel combined cycle turbine plant
JPH0429923B2 (en)
US6615575B2 (en) Method and apparatus for regulating the steam temperature of the live steam or reheater steam in a combined-cycle power plant
GB2076947A (en) Combined cycle system for optimising cycle efficiency having varying sulphur content fuels
PL189524B1 (en) Boiler
JP2565437B2 (en) Gas turbine device equipped with tube nest combustion type combustor
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
JPH02309101A (en) Waste heat recovery heat exchanger
JP2002147701A (en) Exhaust heat recovery steam generating device
JPH0445301A (en) Natural circulation waste heat recovery heat exchanger
EP0139000A1 (en) Once through boiler.
JPH03117801A (en) Exhaust heat recovery boiler
JPH05203103A (en) Double pressure type waste heat recovery boiler
JPS6332110A (en) Hydrogen and oxygen fired steam turbine plant
KR200311524Y1 (en) Combined array recovery boiler for even flow without guide vanes or perforated plates
JP3227137B2 (en) Waste heat recovery boiler
JPH029242B2 (en)
JP4222484B2 (en) Waste heat recovery boiler
JP2889271B2 (en) Waste heat recovery boiler device
JPS6446501A (en) Exhaust-gas recovery boiler