JPH02308823A - Production of short fiber preform for composite material - Google Patents

Production of short fiber preform for composite material

Info

Publication number
JPH02308823A
JPH02308823A JP12958189A JP12958189A JPH02308823A JP H02308823 A JPH02308823 A JP H02308823A JP 12958189 A JP12958189 A JP 12958189A JP 12958189 A JP12958189 A JP 12958189A JP H02308823 A JPH02308823 A JP H02308823A
Authority
JP
Japan
Prior art keywords
short fiber
mold
internal mold
porous
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12958189A
Other languages
Japanese (ja)
Inventor
Hidetsugu Habata
幅田 英告
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Kobe Steel Ltd
Original Assignee
Kanebo Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Kobe Steel Ltd filed Critical Kanebo Ltd
Priority to JP12958189A priority Critical patent/JPH02308823A/en
Publication of JPH02308823A publication Critical patent/JPH02308823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To readily obtain the title preform free from dispersion of density by pouring a short fiber dispersion into a cylindrical mold in which a porous inner mold having desired shape is provided, pressurizing the short fiber dispersion with a pressurizing body to filter the short fiber dispersion and mold the separated short fiber and drying the resultant wet short fiber molded article. CONSTITUTION:A short fiber dispersion 4 (e.g. obtained by dispersing an alumina based short fiber, etc., into a dispersing medium such as water) is poured into a cylindrical mold 1 in which a porous inner mold 3 (preferably consisting of a porous material having open cells, 0.5-5.0mum porous size and 30-60% pore ratio and having >=75kgf/cm<2> compression strength) is provided and filtered by pressurizing the short fiber dispersion with a pressurizing body 5 from the other end opening and the separated short fiber is molded under pressure while removing liquid in a space part between the pressurizing body 5 and porous inner mold 3 and the resultant wet short fiber molded article is dried to readily provide the aimed preform even in complex shape.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はプラスチック、金属等を含浸させ繊維強化複
合材を製造する際の繊維骨格として用いられる複合材用
短繊維プリフォーム体を製造する方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for manufacturing a short fiber preform for a composite material, which is impregnated with plastic, metal, etc. and used as a fiber skeleton when manufacturing a fiber-reinforced composite material. It is related to.

〔従来の技術〕[Conventional technology]

アルミナ系短繊維、炭化ケイ素系ウィスカー等の短繊維
は、強度に富んでいることから、それを集合させてプリ
フォーム体を形成し、これに金属ないしはプラスチック
等を溶浸ないしは含浸させて、繊維強化複合材を製造す
るという用途に用いられる。このような短繊維プリフォ
ーム体に関しては、上記短繊維を水または有機溶媒等に
分散させこれを濾過して成形したり、あるいは加圧成形
して所定の形状に形成したのち、乾燥させる方法や、短
繊維分散液を所定の圧力で均等に加圧濾過して所定の形
状に形成するという方法が提案されている。例えば、■
:特開昭60−161400号公報には、ウィスカーを
水または有機溶媒に分散させて濾過装置に流入させ、濾
過装置の上部密閉空間にガスを圧入して加圧下で高速濾
過したのち、得られた湿潤ウィスカーケーキを乾燥する
ことにより複合材用ウィスカープリフォーム体(以下「
プリフォーム体」と略す)を製造するという方法が開示
されている。また、■:特開昭59−226319号公
報には、四つ割りの割り型を準備し、この割り型内にウ
ィスカー分散液を充填させ割り型の合わせ目および外型
の型壁面がら、型内の空気と分散媒を吸いだして成形す
るという方法も提示されている。また、■:特開昭61
−143533号公報には、濾過槽内に所定の形状の多
孔状雌型を入れその状態で濾過槽内にウィスカー分散液
を流入して濾過操作を行い、この過程で多孔状雌型内に
ウィスカーを充填させ、ついでウィスカーが充填された
多孔状雌型を回収し、得られた湿潤ウィスカー成形体を
乾燥することによりプリフォーム体を製造するという方
法が開示されている。
Short fibers such as alumina short fibers and silicon carbide whiskers have high strength, so they are aggregated to form a preform, which is then infiltrated or impregnated with metal or plastic. Used for manufacturing reinforced composite materials. Regarding such short fiber preforms, there are methods such as dispersing the short fibers in water or an organic solvent, filtering it, molding it, or pressurizing it to form it into a predetermined shape, and then drying it. , a method has been proposed in which a short fiber dispersion is uniformly filtered under a predetermined pressure to form a predetermined shape. For example, ■
: JP-A-60-161400 discloses that whiskers are dispersed in water or an organic solvent, flowed into a filtration device, gas is injected into the upper closed space of the filtration device, and high-speed filtration is performed under pressure. By drying the wet whisker cake, a composite whisker preform (hereinafter referred to as “
A method of manufacturing a preform (abbreviated as "preform body") is disclosed. In addition, ■: Japanese Patent Application Laid-open No. 59-226319 discloses that a quarter mold is prepared, and a whisker dispersion is filled into the split mold, and the joints of the split molds and the wall surface of the outer mold are removed. A method has also been proposed in which the air and dispersion medium inside are sucked out and molded. Also ■: Japanese Patent Application Publication No. 1983
Publication No. 143533 discloses that a porous female mold with a predetermined shape is placed in a filtration tank, and a whisker dispersion liquid is introduced into the filtration tank to perform a filtration operation. A method is disclosed in which a preform is manufactured by filling the whisker-filled porous female mold with whiskers, then recovering the porous female mold filled with whiskers, and drying the obtained wet whisker molded product.

〔発明が解決しようとする問題点] しかしながら、さきに述べた■の特開昭60−1614
00号公報記載の方法では、円柱状等の極めて単純な形
状のプリフォーム体しか製造できないため、複雑な形状
の繊維強化複合材を製造する際の骨格として用いる複雑
形状のプリフォーム体の製造に対応できないという難点
がある。したがって、その用途が限られる。また、■の
特開昭59−226319号公報記載の方法は、分散媒
を吸引する際に、局部的に分散媒が強く吸引されるとい
う現象を生じ、それによって、得られるプリフォーム体
に密度のばらつき(密度斑)が発生し、金属、プラスチ
ック等を含浸させる際に、割れの原因となったり変形の
原因となったりするという問題がある。さらに、■の特
開昭61−143533号公報記載の方法は、雌型を収
容した濾過槽の全体にウィスカー分散液を流入して成形
するため、雌型が、沈積するウィスカーに埋没した状態
となる。したがって、成形後、沈積ウィスカーの中から
ウィスカーが充填された雌型を回収するのに、雌型外周
のウィスカーケーキを手作業で取り除くことが必要とな
り、効率よくウィスカープリフォーム体を製造すること
ができない。また、雌型外周に沈積するウィスカーは、
濾過の際に加圧圧縮力を受けているため損傷を受けてお
り、したがって、これを回収して再利用するという場合
には不都合がある。
[Problems to be solved by the invention] However, the above-mentioned JP-A-60-1614
The method described in Publication No. 00 can only produce preforms with extremely simple shapes such as cylinders, so it is difficult to manufacture preforms with complex shapes that are used as skeletons for producing fiber-reinforced composite materials with complex shapes. The problem is that it cannot be handled. Therefore, its uses are limited. Furthermore, in the method (2) described in JP-A-59-226319, when the dispersion medium is sucked, a phenomenon occurs in which the dispersion medium is locally strongly sucked, which causes the obtained preform to have a high density. There is a problem in that variations in density (density unevenness) occur, which can cause cracks or deformation when impregnating metals, plastics, etc. Furthermore, in the method described in JP-A No. 61-143533, molding is performed by flowing the whisker dispersion liquid into the entire filtration tank containing the female mold, so the female mold is not buried in the deposited whiskers. Become. Therefore, in order to recover the female mold filled with whiskers from the deposited whiskers after molding, it is necessary to manually remove the whisker cake around the female mold, making it difficult to efficiently manufacture whisker preforms. Can not. In addition, whiskers deposited on the outer periphery of the female mold,
It is damaged because it is subjected to compressive force during filtration, and therefore it is inconvenient to collect and reuse it.

この発明は、このような事情に鑑みなされたもので、プ
リフォーム体を複雑な形状に形成でき、かつ密度のばら
つきを生じさせず、しかもその製造に煩雑な作業を要し
ないプリフォーム体の製法の提供をその目的とする。
This invention was made in view of the above circumstances, and provides a method for manufacturing a preform body that can be formed into a complicated shape, does not cause variations in density, and does not require complicated operations for manufacturing. Its purpose is to provide.

(問題点を解決するための手段〕 上記の目的を達成するため、この発明の複合剤用短繊維
プリフォーム体の製法は、一端開口に濾過材が設けられ
、その濾過材の上方に、濾過面の外周部を残しそれ以外
の部分を覆った状態で所望形状の多孔状内部型が設けら
れている筒状成形型内に、短繊維分散液を流入し、他端
開口から板状加圧体で加圧して濾過操作を行い、この加
圧と多孔状内部型との間の空間部で液切りしながら短繊
維を加圧成形して湿潤短繊維成形体をつくり、これを乾
燥するという構成をとる。
(Means for Solving the Problems) In order to achieve the above object, the method for producing a short fiber preform body for a composite agent according to the present invention includes a filter medium provided at one end opening, and a filter medium placed above the filter medium. The short fiber dispersion is poured into a cylindrical mold, which has a porous inner mold of a desired shape, leaving only the outer periphery of the surface and covering the other parts, and pressurized into a plate form from the opening at the other end. A filtration operation is performed by applying pressure with the body, and the liquid is drained in the space between this pressure and the porous internal mold, and the short fibers are press-molded to create a wet short fiber molded body, which is then dried. Take composition.

〔作用] すなわち、この発明では、一端開口に濾過材を設け、そ
の上側に、濾過面の外周部を残した状態で所定形状の多
孔状内部型を設けた筒状成形型を用いて短繊維分散液を
加圧濾過するため、多孔状内部型の上に沈積する短繊維
に対してほぼ均一な圧力を加えられるようになる。すな
わち、筒状成形型の中心部分では加圧圧力が集中的に加
わるため、その部分に存在する短繊維は高密度になる。
[Function] That is, in the present invention, short fibers are formed using a cylindrical mold in which a filter material is provided at one end opening, and a porous internal mold of a predetermined shape is provided above the filter material with the outer periphery of the filter surface remaining. Since the dispersion is filtered under pressure, a substantially uniform pressure can be applied to the short fibers deposited on the porous internal mold. That is, since the pressurizing pressure is intensively applied to the central part of the cylindrical mold, the short fibers present in that part have a high density.

一方、筒状成形型の外周部分では加圧圧力があまり加わ
らないため、その部分に存在する短繊維は低密度になる
。この発明は、その低密度になりがちな筒状成形型の外
周部からの水切りをよくして高密度化するため、多孔状
内部型を、筒状成形型の濾過面の外周部を残した状態で
設けているのであり、これによって多孔状内部型の上に
沈積する短繊維ケーキが全体に均一な密度のもとなる。
On the other hand, since little pressure is applied to the outer peripheral portion of the cylindrical mold, the short fibers present in that portion have a low density. In this invention, in order to improve the drainage of water from the outer periphery of the cylindrical mold, which tends to have a low density, and increase the density, the porous internal mold is used, leaving the outer periphery of the filtration surface of the cylindrical mold. This provides a uniform density throughout the short fiber cake deposited on the porous internal mold.

これが、この発明の最大の特徴である。そのうえ、多孔
状内部型および加圧体の形状を変えることにより、得ら
れるプリフォーム体の形状を複雑な形状から簡単な形状
まで自在に変えることができる。したがって、複雑な形
状の繊維強化複合材の製造に充分対応できるようになる
。また、得られる湿潤短繊維成形体は、筒状成形型内で
形成され、これを筒状成形型内から取り出すだけで脱型
ができるため、短繊維成形体を成形型内から取り出すに
際し、従来のような煩雑な手作業が不要になる。その結
果、プリフォーム体の製造効率の向上効果も得られるよ
うになる。
This is the greatest feature of this invention. Furthermore, by changing the shapes of the porous internal mold and the pressurizing body, the shape of the obtained preform can be freely changed from a complex shape to a simple shape. Therefore, it becomes possible to sufficiently cope with the production of fiber-reinforced composite materials having complicated shapes. In addition, the resulting wet short fiber molded product is formed in a cylindrical mold, and can be demolded simply by taking it out of the cylindrical mold. This eliminates the need for complicated manual work. As a result, the effect of improving the manufacturing efficiency of the preform body can also be obtained.

つぎに、この発明の詳細な説明する。Next, this invention will be explained in detail.

この発明で使用する短繊維としては、アルミナ系短繊維
、炭化ケイ素系短繊維、ジルコニア系短繊維、炭素系短
繊維、炭化ケイ素ウィスカー1窒化ケイ素ウイスカー、
アルミナウィスカー、チタン酸カリウムウィスカー、黒
鉛ウィスカーのようなセラミックウィスカーがあげられ
る。これらの短繊維は、単独で、または繊維強化複合材
料の用途に応じて数種を混合して使用される。このよう
な短ta維としては、長さが5〜5001Jm好適には
5〜300μmのものが好ましい。
The short fibers used in this invention include alumina short fibers, silicon carbide short fibers, zirconia short fibers, carbon short fibers, silicon carbide whiskers, silicon nitride whiskers,
Ceramic whiskers include alumina whiskers, potassium titanate whiskers, and graphite whiskers. These short fibers may be used alone or in combination depending on the purpose of the fiber-reinforced composite material. Such short ta fibers preferably have a length of 5 to 5001 Jm, preferably 5 to 300 μm.

上記の短繊維を分散させる分散媒としては、基本的には
水が用いられる。しかしながら、水の使用が好ましくな
い場合には、アルコール系、炭化水素系、ハロゲン化炭
化水素系のような溶媒が水に代えて使用される。また、
場合によっては、上記アルコール系溶媒と水とを混合し
た含水アルコールも分散媒として用いられる。
Water is basically used as a dispersion medium for dispersing the short fibers. However, if the use of water is not preferred, solvents such as alcohols, hydrocarbons, and halogenated hydrocarbons may be used in place of water. Also,
In some cases, a hydrous alcohol obtained by mixing the above-mentioned alcoholic solvent and water is also used as a dispersion medium.

上記の短繊維を分散媒に分散させる方法は、短繊維に対
して、4〜20倍量、好適には約10倍量(重量基準、
以下同じ)程度の分散媒を使用し、これに短繊維を投入
して機械的撹拌ないしは超音波分散ならびにこれらを併
用する等の手段により行われる。この場合、短繊維の分
散状態は、個々の短繊維の繊維が完全にほぐれて分散媒
中に均一に分散している状態であることが望ましい。短
繊維の種類によっては分散しに(いものもあるため、分
散媒のpHを調節したり、ポリアクリル酸アンモニウム
塩のような分散剤を使用して分散性の改善を行うことが
好適である。このようにして調製された短繊維分散液は
、例えば、第1図に例示したよ・うな装置を用いて濾過
、成形される。すなわち、上記装置は円形の筒状成形型
1と、その底部側の開口に設けられた金属およびセラミ
ック質濾材等からなるフィルター2と、筒状成形型1の
開口近傍に装着された所定形状の多孔状内部型3と、筒
状成形型1内に流入された短繊維分散液4を加圧するた
めのプランジャー5を備えている。上記多孔状内部型3
は、フィルター2の濾過面の全面を被覆した状態ではな
く、濾過面の外周部を残した状態で設けられており、そ
の外周部を残すため、多孔状内部3の外周面と筒状成形
型1の内周面との間が間隙3aに形成されている。上記
間隙3aの隙間寸法は、通常、20〜100μmの範囲
内に設定される。すなわち、上記間隙3aの寸法が上記
の範囲を下回ると、分散媒の除去が主として多孔状内部
型の中央部で起こり、そのため分散媒の除去速度が中央
部と外周側とで異なるようになり、得られる短繊維成形
体に密度のばらつき(密度斑)が発生しやすくなる傾向
がみられる。逆に上記の範囲を上回ると、分散媒の除去
が主として外周側から起こりやすくなるため、先に述べ
たのと逆の現象が発生するよ・うになるうえ、短繊維分
散液4中の短繊維が上記外周部から濾過面を分散媒とと
もに通り抜けて型外へ除去されるようになるため、短繊
維の利用効率が悪くなる。
The method of dispersing the above-mentioned short fibers in a dispersion medium uses 4 to 20 times the amount of the short fibers, preferably about 10 times the amount (by weight,
This is carried out by using a dispersion medium of the same level (hereinafter the same), adding short fibers to the dispersion medium, and using mechanical stirring, ultrasonic dispersion, or a combination of these. In this case, the dispersed state of the short fibers is preferably such that the individual short fibers are completely loosened and uniformly dispersed in the dispersion medium. Depending on the type of short fibers, it may be difficult to disperse them, so it is preferable to adjust the pH of the dispersion medium or use a dispersant such as ammonium polyacrylate to improve dispersibility. The short fiber dispersion prepared in this manner is filtered and molded using, for example, a device such as that illustrated in Fig. 1.That is, the above-mentioned device includes a circular cylindrical mold 1 and a A filter 2 made of metal or ceramic filter media is provided at the opening on the bottom side, a porous internal mold 3 having a predetermined shape is installed near the opening of the cylindrical mold 1, and a filter 2 is provided at the bottom opening of the cylindrical mold 1. The porous inner mold 3 is equipped with a plunger 5 for pressurizing the short fiber dispersion 4.
is provided with the outer periphery of the filtration surface remaining, rather than covering the entire surface of the filtration surface of the filter 2, and in order to leave the outer periphery, the outer periphery of the porous interior 3 and the cylindrical mold A gap 3a is formed between the inner circumferential surface of No. 1 and the inner circumferential surface of No. 1. The gap size of the gap 3a is usually set within a range of 20 to 100 μm. That is, when the size of the gap 3a is below the above range, removal of the dispersion medium mainly occurs at the center of the porous internal mold, and therefore the removal rate of the dispersion medium becomes different between the center and the outer circumferential side. There is a tendency for variation in density (density unevenness) to occur in the short fiber molded product obtained. On the other hand, if the above range is exceeded, the removal of the dispersion medium tends to occur mainly from the outer periphery, so the opposite phenomenon to that described above occurs, and the short fibers in the short fiber dispersion 4 Since the short fibers pass through the filtration surface together with the dispersion medium from the outer circumference and are removed outside the mold, the utilization efficiency of the short fibers deteriorates.

したがって、上記間隙3aの寸法は20〜100μWの
範囲内に設定することが好適である。
Therefore, it is preferable that the dimension of the gap 3a be set within the range of 20 to 100 μW.

6は筒状成形型1の一端開口の下側に取り付けられた中
空基台部、7はその基台部6に設けられた真空吸引口で
ある。
Reference numeral 6 designates a hollow base portion attached to the lower side of the opening at one end of the cylindrical mold 1, and reference numeral 7 represents a vacuum suction port provided in the base portion 6.

上記多孔状内部型3は、連通気孔を有する多孔質材料か
ら構成されており、例えば、石膏、ポリビニルアルコー
ルの発泡体をフェノール樹脂で固めた多孔質材料、焼結
金属、セラミック等から構成されている。第1図のもの
は薄肉状材を曲成した形状であっていわば中空体になっ
ているが、中実体にしてもよい。特に、上記連通気孔の
気孔径は、0.5〜5.0μmで、気孔率は30〜60
%の範囲内であることが好適である。気孔径および気孔
率が上記の範囲を下回ると、短繊維分散液4から分散媒
を濾過操作によって除去することが困難となり、たとえ
除去できたとしても除去に要する時間が長くなり、作業
効率が悪くなる傾向が見られる。この場合プランジャー
5の加圧力を高めて分散媒の除去の効率アップを実現し
ようとすると、プランジャー5の圧力により、多孔状内
部型3が変形ないし破損するという難点があるため、プ
ランジャー5による加圧力をあまり高めることはできな
い。逆に、気孔径および気孔率が上記範囲を上回ると、
分散媒の濾過速度が速くなりすぎることにより、生成湿
潤短繊維成形体の各部位(上下方向とか肉厚の違い)の
間に分散媒の除去に関して時間的なずれが生じる。その
結果、例えば、下側とか肉厚の薄い部分とかから分散媒
が速く除去され、上側とか肉厚の厚い部分は遅れて除去
される結果となる。これにより生成湿潤短繊維成形体に
密度のばらつきが発生したり、割れが発生したりすると
いうような難点が生ずる。さらに、多孔状内部型3の各
連通気孔内に短繊維が侵入して気孔を閉塞し分散媒の除
去効率の低下を招き、最終的には目詰まりして使用不能
となる事態を招くようになる。
The porous internal mold 3 is made of a porous material having communicating pores, and is made of, for example, gypsum, a porous material made of polyvinyl alcohol foam hardened with phenol resin, sintered metal, ceramic, etc. There is. The one in FIG. 1 has a shape made by bending a thin-walled material and is, so to speak, a hollow body, but it may also be a solid body. In particular, the pore diameter of the communicating pores is 0.5 to 5.0 μm, and the porosity is 30 to 60 μm.
% is preferable. If the pore size and porosity are below the above range, it will be difficult to remove the dispersion medium from the short fiber dispersion 4 by filtration, and even if it can be removed, the time required for removal will be long, resulting in poor work efficiency. A trend can be seen. In this case, if you try to increase the pressure of the plunger 5 to improve the efficiency of dispersion medium removal, the pressure of the plunger 5 will deform or damage the porous internal mold 3. It is not possible to increase the pressing force by much. Conversely, if the pore size and porosity exceed the above range,
If the filtration speed of the dispersion medium becomes too high, there will be a time lag in the removal of the dispersion medium between various parts (in the vertical direction or different wall thicknesses) of the produced wet short fiber molded body. As a result, for example, the dispersion medium is removed quickly from the lower side or the thinner portion, and is removed later from the upper side or the thicker portion. This causes problems such as variations in density and cracks in the wet short fiber molded product. Furthermore, short fibers enter into each of the communicating pores of the porous internal mold 3 and block the pores, leading to a decrease in the removal efficiency of the dispersion medium, and ultimately leading to clogging and rendering the mold unusable. Become.

上記の装置を用いて湿潤短繊維成形体を製造する場合は
、プランジャー5を上昇させた状態で短繊維分散液4を
、筒状成形型内に流入する。そして、その状態から、基
台部6の脱液ロアより減圧吸引しながらプランジャー5
を下降させる。これにより、プランジャー5と多孔状内
部型3との間の空間部で、短繊維分散液4が水きりされ
ながら加圧成形されて湿潤短繊維成形体となる。この濾
過操作に際して、短繊維分散液4中の分散媒は、多孔状
内部型3の気孔を通じてその下側に濾過され、短繊維の
みが多孔状内部型の上側に沈積する。この場合、濾蓮面
の外周側に間隙3aが存在し、その下側の濾過面と相俊
って、濾過面の中心側よりは速く、かつその速さを適正
に維持した状態で水切りする。その結果、プランジャー
5の圧力が集中して加わる中心側と、圧力がそれほど加
わらない外周側との密度差が解消され、湿潤短繊維成形
体の全体の密度が均一な状態となる。プランジャー5の
加圧力が、多孔状内部型3の強度を上回ると、多孔状内
部型3が変形したり破損したりする。したがって、上記
多孔状内部型3に対しては、プランジャー5の加圧力に
耐えるだけの圧縮強度が必要となる。このため、この発
明では、多孔状内部型3の圧縮強度を75kg−f /
ctRに設定している。そして、得られた湿潤短繊維成
形体を、基台部6から筒状成形型1を相対的に上方に持
上げることによって脱型させ、ついで乾燥させる。これ
により、目的とするプリフォーム体が得られる。生成湿
潤短繊維の乾燥に際しては、多孔状内部型3から離して
行ってもよいし、一体化した状態で行ってもよい。この
ようにして得られるプリフォーム体は、第2図に示すよ
うに、プランジャー5と多孔状内部型3との間の空間と
同形状になる。この場合には車のピストンヘッドの形状
と同一形状に成形されている。したがって、このプリフ
ォーム体8に対して金属1合金等のマトリックス物質を
溶浸させることにより、ピストンヘッドが得られるよう
になる。このようにして得られた繊維強化複合材は、素
やひびワレがなく、しかもかなり複雑な形状にも係わら
ず良好な状態のものとなる。
When producing a wet short fiber molded body using the above-mentioned apparatus, the short fiber dispersion liquid 4 is flowed into the cylindrical mold with the plunger 5 raised. From this state, the plunger 5 is sucked under reduced pressure from the deliquid lower part of the base 6.
lower. As a result, in the space between the plunger 5 and the porous internal mold 3, the short fiber dispersion 4 is drained and pressure molded to form a wet short fiber molded body. During this filtration operation, the dispersion medium in the short fiber dispersion 4 is filtered through the pores of the porous internal mold 3 to the lower side thereof, and only the short fibers are deposited on the upper side of the porous internal mold. In this case, there is a gap 3a on the outer circumferential side of the filter lotus surface, which cooperates with the filtration surface below to drain water faster than on the center side of the filtration surface, while maintaining that speed appropriately. . As a result, the density difference between the center side, to which the pressure of the plunger 5 is concentrated, and the outer circumferential side, to which less pressure is applied, is eliminated, and the entire density of the wet short fiber molded body becomes uniform. If the pressing force of the plunger 5 exceeds the strength of the porous internal mold 3, the porous internal mold 3 will be deformed or damaged. Therefore, the porous internal mold 3 needs to have a compressive strength sufficient to withstand the pressing force of the plunger 5. Therefore, in this invention, the compressive strength of the porous internal mold 3 is set to 75 kg-f/
It is set to ctR. Then, the obtained wet short fiber molded product is removed from the mold by lifting the cylindrical mold 1 relatively upward from the base portion 6, and then dried. As a result, the desired preform body is obtained. The produced wet short fibers may be dried separately from the porous internal mold 3, or may be dried in an integrated state. The preform body thus obtained has the same shape as the space between the plunger 5 and the porous internal mold 3, as shown in FIG. In this case, it is molded to have the same shape as the piston head of a car. Therefore, by infiltrating this preform body 8 with a matrix material such as metal 1 alloy, a piston head can be obtained. The fiber-reinforced composite material thus obtained is free from cracks and cracks, and is in good condition despite its fairly complex shape.

なお、筒状成形型1は円筒に限らない。3〜8角筒等、
多角筒状でも差支えない。
Note that the cylindrical mold 1 is not limited to a cylinder. 3 to 8 square tubes, etc.
A polygonal cylindrical shape is also acceptable.

つぎに、実施例について説明する。Next, examples will be described.

〔実施例1〕 (1)短繊維分散液の調製 平均径3μm、平均長500μmのアルミナ短繊維80
重量部と、水800重量部とを、ジューサーミキサー中
で2.5分間撹拌分散し、アルミナ短繊維の均一分散液
を調製した。
[Example 1] (1) Preparation of short fiber dispersion liquid Alumina short fibers 80 with an average diameter of 3 μm and an average length of 500 μm
parts by weight and 800 parts by weight of water were stirred and dispersed for 2.5 minutes in a juicer mixer to prepare a uniform dispersion of short alumina fibers.

(2)多孔状内部型の製造 ノリタケ社製の石膏(A級)100重量部に水73重量
部を加え常法に従って撹拌、流し込み。
(2) Production of porous internal mold 73 parts by weight of water was added to 100 parts by weight of gypsum (grade A) manufactured by Noritake Co., Ltd., and the mixture was stirred and poured according to a conventional method.

硬化、乾燥を行い第1図の符号3で示したと同形状の多
孔状内部型3を作製した。このものの気孔径は4.8μ
m、気孔率は60%であり圧縮強度は78kg−f /
c+fiであった。
After curing and drying, a porous internal mold 3 having the same shape as that shown by reference numeral 3 in FIG. 1 was prepared. The pore diameter of this thing is 4.8μ
m, porosity is 60%, and compressive strength is 78 kg-f/
It was c+fi.

(3)プリフォーム体の製造 第1図に示すような形状の、80mφの筒状成形型1内
に上記の多孔状内部型3を間隙3aを70μmに設定し
て装着した(これ以外の構造は第1図と同様である。た
だしフィルター2はセラミック製、以下の実施例でも同
じ)。ついで短繊維分散液4を投入し、基台部6の脱液
ロアより減圧吸引した。このとき同時にプランジャー5
を押し込み加圧した。これにより短繊維分散液4中の水
が多孔状内部型3を通過してフィルター2の孔から装置
外へ排出される。そしてプランジャー5と多孔状内部型
3との間の空間内に形成された湿潤ウィスカー成形体の
密度が0.50g/c+flとなるよう加圧濾過操作を
継続し成形を完了した。その後、筒状成形型1を基台部
6から取り外し、かつプランジャー5で湿潤ウィスカー
成形体を押し出して脱型し、ついで乾燥して目的とする
プリフォーム体を製造した。
(3) Manufacture of preform body The porous internal mold 3 described above was installed in a cylindrical mold 1 with a diameter of 80 m as shown in FIG. is the same as that in Fig. 1. However, the filter 2 is made of ceramic, and the same applies to the following examples). Next, the short fiber dispersion liquid 4 was added and vacuum suctioned from the liquid removal lower part of the base part 6. At this time, plunger 5
was pressed and pressurized. As a result, water in the short fiber dispersion liquid 4 passes through the porous internal mold 3 and is discharged from the pores of the filter 2 to the outside of the apparatus. Then, the pressurized filtration operation was continued so that the density of the wet whisker molded body formed in the space between the plunger 5 and the porous internal mold 3 was 0.50 g/c+fl, and the molding was completed. Thereafter, the cylindrical mold 1 was removed from the base 6, and the wet whisker molded body was extruded and demolded using the plunger 5, and then dried to produce the desired preform.

〔実施例2〜11〕 (1)短繊維分散液の調製 平均径0.5μm、平均長25μmのβ型炭化ケイ素ウ
ィスカー70重量部と、水700重量部とを超音波と羽
根式撹拌機を用いて1分間撹拌分散し、炭化ケイ素短繊
維分散液を調製した。
[Examples 2 to 11] (1) Preparation of short fiber dispersion 70 parts by weight of β-type silicon carbide whiskers with an average diameter of 0.5 μm and an average length of 25 μm and 700 parts by weight of water were mixed using ultrasonic waves and a blade stirrer. A dispersion of silicon carbide short fibers was prepared by stirring and dispersing for 1 minute.

(2)多孔状内部型の製造 多孔状内部型として、ポリビニルアルコールとフェノー
ル樹脂とからなる連通孔多孔質材(鐘紡■社製、ミクロ
ライト)(気孔径0.2〜10μm、気孔率20〜80
%、圧縮強度60〜144kg・f/cyit)を機械
加工で第1図に示すような形状に加工し製造した。
(2) Production of porous internal mold As the porous internal mold, a continuous pore porous material (manufactured by Kanebo Co., Ltd., Microlite) made of polyvinyl alcohol and phenol resin (pore diameter 0.2 to 10 μm, porosity 20 to 80
%, compressive strength of 60 to 144 kg·f/cyit), and was machined into the shape shown in FIG. 1.

(3)プリフォーム体の製造 上記多孔状内部型を実施例1と同様に筒状成形型に組み
込み、これに上記短繊維分散液を流入させ、湿潤ウィス
カー成形体の密度が0.64 g /ciとなるまで加
圧濾過操作を継続した。それ以外は、実施例1と同様に
してプリフォーム体を製造した。
(3) Production of preform body The porous internal mold described above was assembled into a cylindrical mold in the same manner as in Example 1, and the short fiber dispersion liquid was poured into it, so that the density of the wet whisker molded body was 0.64 g / The pressure filtration operation was continued until ci. A preform body was manufactured in the same manner as in Example 1 except for the above.

以上の実施例における多孔状内部型と筒状成形型との間
隙、多孔状内部型の気孔に対する目詰まり、多孔状内部
型の変形ないし座屈、濾過成形に要した時間および生成
湿潤ウィスカー成形体の内部の密度差を訓べ後記の表に
示した。
In the above examples, the gap between the porous internal mold and the cylindrical mold, clogging of the pores of the porous internal mold, deformation or buckling of the porous internal mold, time required for filtration molding, and formed wet whisker molded product The difference in density inside is shown in the table below.

(以下余白) 上記の表から明らかなように、得られたプリフォーム体
は、素とかワレの発生もなく、密度差も極めて小さく均
一であり、また製造中における多孔状内部型の気孔に対
するウィスカーの目詰まりや多孔状内部型の変形もほと
んどなく、短時間成形を実現できることがわかる。
(Margins below) As is clear from the table above, the obtained preform has no cracks or cracks, has a very small density difference and is uniform, and also has whiskers in the pores of the porous internal mold during manufacturing. It can be seen that there is almost no clogging of the mold or deformation of the porous internal mold, and it is possible to achieve molding in a short time.

[実施例12] (1)ウィスカ・−/アルミナ短繊維分散液の調製平均
径0.5μm、平均長25μmのβ型炭化ケイ素ウィス
カーと、平均径3μm、平均長さ500μmのアルミナ
短繊維とを、容積百分率でl/1比となるように混合し
たものを準備した。つぎに、これを70重量部ど水84
0重量部を配合し、さらに分散剤としてポリアクリル酸
アンモニウム塩(サンノブコ■製、ノプコサントRFA
)を固形分に対する重量百分率で0.5%配合した。つ
ぎに、これを超音波と羽根式撹拌機を用い1分間撹拌し
均一分散させて、ウィスカー/アルミナ短繊維分散液を
つくった。
[Example 12] (1) Preparation of whisker-/alumina short fiber dispersion β-type silicon carbide whiskers with an average diameter of 0.5 μm and an average length of 25 μm and alumina short fibers with an average diameter of 3 μm and an average length of 500 μm were prepared. , a mixture was prepared so that the ratio by volume was 1/1. Next, add 70 parts by weight of this to 84 parts by weight of water.
0 parts by weight of polyacrylic acid ammonium salt (manufactured by Sannobuco ■, Nopcosanto RFA) as a dispersant.
) was blended at a weight percentage of 0.5% based on the solid content. Next, this was stirred for 1 minute using an ultrasonic wave and a blade type stirrer to uniformly disperse the mixture, thereby producing a whisker/alumina short fiber dispersion.

(2)多孔状内部型の製造 ステンレス粉末(SUS304)を焼結し、気孔径3μ
m、気孔率35%、圧縮強度400kg・f/cIll
の多孔状内部型(第1図のものと同形状)3を製造した
(2) Production of porous internal mold Sintered stainless steel powder (SUS304), pore size 3μ
m, porosity 35%, compressive strength 400kg・f/cIll
A porous internal mold 3 (having the same shape as that shown in FIG. 1) was manufactured.

(3)プリフォーム体の製造 上記内部型を両者間の間隙が50μmとなるようにして
実施例1と同様、筒状成形型内に組み込んだ。これ以降
は実施例1と同様にして湿潤短繊維成形体の密度がQ、
48g/C+flとなる迄力n圧濾過を行いプリフォー
ム体を製造した。
(3) Manufacture of preform body The above-mentioned internal mold was assembled into a cylindrical mold in the same manner as in Example 1 so that the gap between the two was 50 μm. From this point on, the process was carried out in the same manner as in Example 1, so that the density of the wet short fiber molded body was set to Q,
N-pressure filtration was performed until the concentration reached 48 g/C+fl to produce a preform.

得られたプリフォーム体について、外観検査。Appearance inspection of the obtained preform body.

軟X線、X線CTを用い被破壊検査を行った結果、ウィ
スカー単独の場合と同様、プリフォーム体の内外ともに
素とかワレは認められず、密度差も1.1%と均質であ
った。
As a result of destructive testing using soft X-rays and X-ray CT, it was found that, as in the case of whiskers alone, no cracks or cracks were observed inside or outside the preform, and the density difference was 1.1%, which was homogeneous. .

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、従来技術によっては
製造が困難であった複雑な形状のプリフォーム体を容易
に製造することができ、その際、密度のばらつきを生じ
ず、しかも煩雑な作業を要しない。したがって、複雑な
形状の短繊維プリフォーム体を安価に効率よく製造する
ことが可能となる。
As described above, according to the present invention, it is possible to easily manufacture a preform body with a complicated shape, which was difficult to manufacture using conventional techniques, without causing variations in density, and without any complicated process. No work required. Therefore, it becomes possible to efficiently manufacture short fiber preform bodies having complicated shapes at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に用いられる成形装置の縦断面図、第
2図はその装置によって得られたプリフォーム体の断面
図である。 1・・・筒状成形型 2・・・フィルター 3・・・多
孔状内部型 3a・・・間隙 4・・・短繊維分散液 
5・・・プランジャー 特許出願人  鐘 紡 株 式 会 社株式会社 神戸
製鋼所
FIG. 1 is a longitudinal sectional view of a molding apparatus used in the present invention, and FIG. 2 is a sectional view of a preform obtained by the apparatus. 1... Cylindrical mold 2... Filter 3... Porous internal mold 3a... Gap 4... Short fiber dispersion liquid
5... Plunger patent applicant Kanebo Co., Ltd. Kobe Steel, Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)一端開口に濾過材が設けられ、その濾過材の上方
に、濾過面の外周部を残しそれ以外の部分を覆つた状態
で所望形状の多孔状内部型が設けられている筒状成形型
内に、短繊維分散液を流入し、他端開口から加圧体で加
圧して濾過操作を行い、この加圧体と多孔状内部型との
間の空間部で液切りしながら短繊維を加圧成形して湿潤
短繊維成形体をつくり、これを乾燥することを特徴とす
る複合材用短繊維プリフオーム体の製法。
(1) A cylindrical molding in which a filtration material is provided at one end opening, and a porous internal mold of a desired shape is provided above the filtration material, leaving the outer periphery of the filtration surface and covering the rest. The short fiber dispersion liquid is introduced into the mold and filtered by applying pressure with a pressure body from the other end opening, and the short fibers are removed while being drained in the space between the pressure body and the porous internal mold. A method for producing a short fiber preform for composite materials, which comprises pressurizing and forming a wet short fiber molded product, and drying the same.
(2)多孔状内部型が、気孔径0.5〜5.0μm,気
孔率30〜60%の連通気孔多孔材により形成されてい
る請求項(1)記載の複合材用短繊維プリフオーム体の
製法。
(2) The short fiber preform body for composite materials according to claim (1), wherein the porous internal mold is formed of a continuous pore porous material having a pore diameter of 0.5 to 5.0 μm and a porosity of 30 to 60%. Manufacturing method.
(3)多孔状内部型の圧縮強度が75kg・f/cm^
2以上に設定されている請求項(1)記載の複合材用短
繊維プリフオーム体の製法。
(3) The compressive strength of the porous internal mold is 75 kg・f/cm^
The method for producing a short fiber preform body for composite materials according to claim (1), wherein the number of fibers is set to 2 or more.
(4)短繊維が、アルミナ系短繊維、炭化ケイ素系短繊
維,ジルコニア系短繊維、炭素系短繊維,炭化ケイ素ウ
ィスカー、窒化ケイ素ウィスカー、アルミナウィスカー
、チタン酸カリウムウィスカーおよび黒鉛ウィスカーか
らなる群から選択された少なくとも一つの短繊維である
請求項(1)記載の複合材用短繊維プリフオーム体の製
法。
(4) The short fibers are from the group consisting of alumina short fibers, silicon carbide short fibers, zirconia short fibers, carbon short fibers, silicon carbide whiskers, silicon nitride whiskers, alumina whiskers, potassium titanate whiskers, and graphite whiskers. The method for producing a short fiber preform for a composite material according to claim 1, wherein the at least one selected short fiber is a short fiber preform.
(5)多孔状内部型で覆われている濾過面の外周部の幅
が20〜100μmに設定されている請求項(1)記載
の複合材用短繊維プリフオーム体の製法。
(5) The method for producing a short fiber preform for a composite material according to claim (1), wherein the width of the outer periphery of the filtration surface covered with the porous internal mold is set to 20 to 100 μm.
JP12958189A 1989-05-22 1989-05-22 Production of short fiber preform for composite material Pending JPH02308823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12958189A JPH02308823A (en) 1989-05-22 1989-05-22 Production of short fiber preform for composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12958189A JPH02308823A (en) 1989-05-22 1989-05-22 Production of short fiber preform for composite material

Publications (1)

Publication Number Publication Date
JPH02308823A true JPH02308823A (en) 1990-12-21

Family

ID=15012995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12958189A Pending JPH02308823A (en) 1989-05-22 1989-05-22 Production of short fiber preform for composite material

Country Status (1)

Country Link
JP (1) JPH02308823A (en)

Similar Documents

Publication Publication Date Title
US4943403A (en) Method for molding a pulverulent material
DE68902279T2 (en) METHOD FOR THE PRODUCTION OF SINTERED CERAMIC ITEMS.
JPH0677924B2 (en) Mold and method for molding ceramics using the same
US5028363A (en) Method of casting powder materials
JPH02308823A (en) Production of short fiber preform for composite material
JPH02308822A (en) Production of whisker preform for composite material
JPS59226139A (en) Manufacture of preform of fiber reinforced metallic composite material
EP0756922B1 (en) Process for molding ceramics
JP3073105B2 (en) Manufacturing method of light alloy composite member
US6458298B1 (en) Process for molding ceramics
JPH0445205A (en) Manufacture of powder molded body
JPH0478681B2 (en)
JP3232029B2 (en) Cylinder block
JPH0299700A (en) Production of formed article of short fiber
JP3224645B2 (en) Ceramics molding method
JPH059507A (en) Method for molding powder
KR20000060447A (en) Apparatus for manufacturing ceramic preforms and method for manufacturing ceramic preforms using the same
JPH06227873A (en) Production of ceramics porous material
JP2829165B2 (en) Manufacturing method of hollow body
JPS6137935A (en) Composite ingot and its manufacture
JPH05200711A (en) Method for molding powder
JPH03193833A (en) Filtering molding device for whisker preform
JPH0872032A (en) Manufacture of fiber reinforced ceramics
JPH089093B2 (en) Method for producing fiber-reinforced metal
JPH09287036A (en) Production of metal matrix composite