JPH0230806A - Liquefaction preventive construction for sandy ground at time of earthquake - Google Patents
Liquefaction preventive construction for sandy ground at time of earthquakeInfo
- Publication number
- JPH0230806A JPH0230806A JP18037088A JP18037088A JPH0230806A JP H0230806 A JPH0230806 A JP H0230806A JP 18037088 A JP18037088 A JP 18037088A JP 18037088 A JP18037088 A JP 18037088A JP H0230806 A JPH0230806 A JP H0230806A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- sandy ground
- sandy
- liquefaction
- earthquake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010276 construction Methods 0.000 title description 12
- 230000003449 preventive effect Effects 0.000 title 1
- 238000000034 method Methods 0.000 claims description 13
- 239000011150 reinforced concrete Substances 0.000 abstract description 2
- 239000002689 soil Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- 239000004576 sand Substances 0.000 description 4
- 238000005056 compaction Methods 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000007596 consolidation process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Piles And Underground Anchors (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Foundations (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は地震時における砂地盤の液状化を防止する工法
に係るものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a construction method for preventing liquefaction of sandy ground during an earthquake.
(従来の技術)
大地震時に埋立地などで砂が地下水とともに吹き出した
り、地盤が流動化して上に建っている構造物が沈下・転
倒するという現象が見られる。その現象は一般に砂地盤
の液状化といわれ、新潟地震以来大きな問題となってい
る。この液状化現象は、飽和した緩い砂地盤で、また地
表面から20m以漫0土層で生じやすいといわれている
。(Conventional technology) During a major earthquake, sand can be blown out along with groundwater at landfill sites, and the ground can become fluid, causing structures built on top to sink or topple over. This phenomenon is generally referred to as liquefaction of sandy ground, and has become a major problem since the Niigata earthquake. It is said that this liquefaction phenomenon tends to occur in saturated, loose sandy ground, and in the zero soil layer at least 20 meters from the ground surface.
一般に液状化は、地盤内に働く繰返し剪断応力によって
地盤中に生じる過剰間隙水圧(地震等によって地盤内の
間隙水圧が異常に上昇したときの土粒子間の水の圧力)
が、土粒子を拘束していた初期有効応力(土粒子の骨格
の圧縮及び土粒子間の摩擦に有効に働く応力で、変化す
る前のものを−いう、)と等しくなる結果、有効応力が
Oになる現象と定義されている。従ってその状態になる
と土粒子に対する拘束がなくなり、砂地盤の剪断抵抗が
殆んどなくなって、砂が液体状になる。(後出の(1)
式参照)
地震時に砂地盤が液状化すると、直接基礎の構造物の場
合は、支持力がなくなって沈下したり転倒したりする。Liquefaction generally refers to excessive pore water pressure that occurs in the ground due to repeated shear stress acting within the ground (the pressure of water between soil particles when the pore water pressure in the ground abnormally increases due to an earthquake, etc.)
becomes equal to the initial effective stress that restrains the soil particles (the stress that effectively acts on the compression of the skeleton of the soil particles and the friction between the soil particles, before it changes), and as a result, the effective stress becomes It is defined as the phenomenon of becoming O. Therefore, when this state is reached, the soil particles are no longer restrained, the shear resistance of the sandy ground is almost completely eliminated, and the sand becomes liquid. ((1) below)
(See formula) When the sandy ground liquefies during an earthquake, structures with direct foundations lose their supporting capacity and sink or fall.
また、杭基礎の構造物の場合は、杭の水平抵抗がなくな
って杭が折れ、結果的に構造物が転倒するということも
起こり得る。従って、埋立地のように緩い砂地盤が深く
まで続く場所や、N値25程度以下の地下水位の高い砂
地盤で、あまり粘土分を含まない割合に粒径の揃ったき
れいな砂の場合は、構造物の設計上液状化防止対策を考
慮する必要がある。Furthermore, in the case of a structure based on a pile foundation, the horizontal resistance of the piles is lost and the piles break, which may result in the structure overturning. Therefore, in places where loose sandy ground continues deep, such as in reclaimed land, or in sandy ground with a high groundwater level with an N value of about 25 or less, in the case of clean sand with a uniform particle size and not containing much clay, It is necessary to consider measures to prevent liquefaction in the design of structures.
砂地盤の液状化を防止する方法を考慮する前に、どのよ
うな地盤が液状化しやすいかを考えてみる。Before considering ways to prevent sandy ground from liquefying, let's consider what kind of ground is prone to liquefaction.
建築学会発行の[建築基礎構造設計指針14.5節(p
−163)によると、液状化しやすい地盤の条件として
以下の条件が挙げられている。Published by the Architectural Institute of Japan [Architectural Foundation Structure Design Guidelines Section 14.5 (p.
-163), the following conditions are listed as conditions for ground that is susceptible to liquefaction.
1)飽和地盤の細粒土(0,074m以下の粒径をもつ
土粒子)含有率が低いほど
2)飽和地盤のN値が小さいほど
3)地下水位面が地表面に近いほど
4)地震入力が大きいほど
液状化防止を図るためには、上記の条件が逆になるよう
にすればよいわけであるから、基本的には以下のような
対策案が考えられる。1) The lower the content of fine-grained soil (soil particles with a grain size of 0,074 m or less) in saturated ground, 2) The smaller the N value of saturated ground, 3) The closer the groundwater table is to the ground surface, the more likely it will be an earthquake. In order to prevent liquefaction as the input increases, the above conditions should be reversed, so basically the following countermeasures can be considered.
i)地盤の剪断強度の増強
ii)地盤の密度の増大
if)間隙水圧の低下
i)としては、注入工法や深層混合攪拌工法がある。さ
らに、液状化層が浅ければ一旦掘り返して固結材を混合
攪拌して埋め戻す浅層混合攪拌工法も採用できる。いず
れも地盤を固結することにより剪断強度の増強を図るも
のである。i) Increasing the shear strength of the ground ii) Increasing the density of the ground if) Decreasing the pore water pressure i) includes the injection method and the deep mixing method. Furthermore, if the liquefaction layer is shallow, a shallow layer mixing and stirring method can be adopted in which the liquefied layer is dug up and then filled back in by mixing and stirring the consolidation material. Both methods aim to increase shear strength by consolidating the ground.
11) としては、サンドコンパクション、バイブロフ
ローテーションなどの締め固め工法がある。11) Compaction methods include sand compaction and vibroflotation.
これらの工法は、地盤の密度を増大しくN値が大きくな
る)、結果的に剪断強度を増大する。These construction methods increase the density of the ground (which increases the N value), resulting in an increase in shear strength.
■、)の代表的なものとしては、地盤に設けた掘削孔に
礫を充填し、同礫によって造成した礫柱、礫壁で地盤内
の間隙水を抽出し、間隙水圧を低下させるグラベルドレ
ーン工法がある。Typical examples include gravel pillars created by filling excavated holes in the ground with gravel, and gravel drains that use gravel walls to extract pore water in the ground and reduce pore water pressure. There is a construction method.
(発明が解決しようとする課題)
現在、液状化防止対策として施工されている工法の代表
的なものは上記のようなものであるが、例えば地盤固結
方法は工費が嵩み、また締固め工法では騒音、振動等の
公害問題があり、更にゲラベルド、レーン工法では地盤
全体に亘って均一に間隙水を抽出することが困難である
。(Problem to be solved by the invention) The typical construction methods currently used as measures to prevent liquefaction are as described above, but for example, the ground consolidation method increases construction costs and The construction method has problems with pollution such as noise and vibration, and furthermore, with the Geberbeld and Lane construction methods, it is difficult to extract pore water uniformly over the entire ground.
本発明は前記従来技術の問題点に鑑みて提案されたもの
で、その目的とする処は、公害問題を生起することなく
、砂地盤の液状化を効果的に防止する地震時における砂
地盤の液状化防止工法を提供する点にある。The present invention has been proposed in view of the problems of the prior art, and its purpose is to effectively prevent liquefaction of sandy ground during earthquakes without causing pollution problems. The point is to provide a liquefaction prevention construction method.
(課題を解決するための手段)
前記の目的を達成するため、本発明に係る砂地盤の液状
化防止工法は、地震時に液状化が予想される砂地盤にお
ける構造物の基礎下部、及び周囲に水平に配設された耐
圧板と、下層の堅固な地盤との間に亘って同地盤に下端
を定着されたアースアンカーを配設し、同アンカーを緊
張して上端部を前記耐圧板に定着し同耐圧版下部の地盤
にプレストレスを導入して砂地盤の地震時における液状
化を防止するように構成されている。(Means for Solving the Problem) In order to achieve the above-mentioned object, the method for preventing liquefaction of sandy ground according to the present invention provides a method for preventing liquefaction of sandy ground in the lower part of the foundation of a structure on sandy ground that is expected to liquefy during an earthquake, and in the surrounding area. An earth anchor whose lower end is anchored to the same ground is placed between the horizontally arranged pressure plate and the firm ground below, and the anchor is tensioned to fix the upper end to the pressure plate. The structure is designed to introduce prestress into the ground below the pressure plate to prevent liquefaction of the sandy ground during an earthquake.
(作 用)
本発明によれば、地震時に液状化が予想される砂地盤に
おける構造物の基礎下部及び周囲に水平に配設された耐
圧板と、液状化しない下層の堅固な地盤との間に亘って
配設され、且つ下端部が前記堅固な地盤に定着されたア
ースアンカーを緊張して、その上端部を前記耐圧板に定
着することによって、同耐圧版と前記堅固な地盤との間
の液状化を予想される砂地盤にプレストレスが導入され
、前記耐圧板が同地盤を抑え込んで、この結果同一地盤
内の有効応力が増大し、これに伴って同地盤の剪断強度
が増大し地震時における液状化が防止される。(Function) According to the present invention, there is a gap between a pressure plate installed horizontally under and around the foundation of a structure on sandy ground that is expected to liquefy in the event of an earthquake, and the underlying solid ground that will not liquefy. By tensioning the earth anchor, which is disposed across the ground and whose lower end is fixed to the firm ground, and whose upper end is fixed to the pressure plate, the ground anchor is placed between the pressure plate and the firm ground. Prestress is introduced into the sandy ground that is expected to liquefy, and the pressure plate suppresses the ground, resulting in an increase in the effective stress within the same ground, and a concomitant increase in the shear strength of the ground. Liquefaction during earthquakes is prevented.
(実施例) 以下本発明を図示の実施例について説明する。(Example) The present invention will be described below with reference to the illustrated embodiments.
第1図は直接基礎を有する構造物の構築に本発明を適用
した場合を示し、(1)は地震時に液状化が予想される
緩い砂地盤、(2)は同砂地盤(1)上に構築される構
造物で、その基礎下部及び周囲に鉄筋コンクリート造の
耐圧板(3)が設置され、同耐圧版(3)にアースアン
カー(4)を打設し、下端を液状化が生起しない堅固な
地盤(5)に定着する。Figure 1 shows the case where the present invention is applied to the construction of a structure with a direct foundation, where (1) is a loose sandy ground that is expected to liquefy in the event of an earthquake, and (2) is on the same sandy ground (1). In the structure to be constructed, a pressure plate (3) made of reinforced concrete will be installed at the bottom and around the foundation, and an earth anchor (4) will be driven into the pressure plate (3) to ensure that the lower end is solid and will not cause liquefaction. It takes root on solid ground (5).
図中(4a)は同アースアンカー(4)の定着部を示す
。In the figure, (4a) shows the fixing part of the earth anchor (4).
而して同アースアンカー(4)を緊張して耐圧板(3)
に定着すると前記砂地盤(1)にプレストレスが導入さ
れ、同砂地盤(1) は耐圧板(3)によって抑え込ま
れることによって、同地! (1)内の有効応力が増大
する。Then, tighten the earth anchor (4) and attach it to the pressure plate (3).
When it settles on the sandy ground (1), prestress is introduced into the sandy ground (1), and the sandy ground (1) is suppressed by the pressure plate (3). (1) The effective stress within increases.
この有効応力をσとすると、砂地盤の剪断強度τとの間
には次のような関係がある。Letting this effective stress be σ, there is the following relationship between it and the shear strength τ of the sandy ground.
τ=σ tan φ +C・・・(1)σ=σ −・
・・(2)
但し φ : 土の内部摩擦角
C: 土の粘着力
σ′: 土に働く全応力
U : 土中の間隙水圧
−IIに締固めによる地盤密度の増大は、内部摩擦力が
増大する結果、地盤の剪断強度が増大するものであるが
、本方法の場合は、砂地盤(1)の有効応力を増大せし
めることによって、砂地盤の剪断強度が増大するもので
ある。τ=σ tan φ +C...(1)σ=σ −・
...(2) However, φ: Angle of internal friction of the soil C: Adhesive force of the soil σ': Total stress acting on the soil U: Pore water pressure in the soil -II The increase in ground density due to compaction means that the internal frictional force As a result, the shear strength of the ground increases. In the case of this method, the shear strength of the sandy ground (1) is increased by increasing the effective stress of the sandy ground (1).
第2図は本発明を杭基礎を有する構造物の施工に適用し
た場合を示し、図中(6)は杭を示し、その他前記実施
例と均等部分には同一符号が附されている。FIG. 2 shows a case in which the present invention is applied to construction of a structure having a pile foundation, in which (6) indicates a pile, and other parts equivalent to those in the above embodiment are given the same reference numerals.
第3図乃至第8図は本発明を杭基礎に適用し、た場合の
工程を示し、液状化を生起しない堅固な地盤(5)上に
抗(6)を施工し、(第3図参照)次いでアースアンカ
ー(4)を施工し、(第4図参照)同アースアンカー(
4)の下端部を前記した堅固な地盤(5)に定着すると
ともに、基礎及び地下部分を掘削する。(第5図参照)
次いで前記掘削部分(7)に水平の耐圧板(3)を施工
し、(第6図参照)アースアンカー(4) (7)PC
鋼材(4b)を耐圧板(3)上にセットした緊張装置(
8)で緊張するとともに、同耐圧版(3)に定着具(9
)を介して定着し、耐圧板(3)の下部の砂地盤(1)
にプレストレスを導入し、同砂地盤(1)の剪断強度を
増大し、(第7図)次いで構造物の基!(10)及び躯
体(図示せず)を構築するものである。Figures 3 to 8 show the process in which the present invention is applied to a pile foundation, in which a resistor (6) is constructed on solid ground (5) that does not cause liquefaction (see Figure 3). ) Next, install the earth anchor (4) (see Figure 4).
4) The lower end is anchored to the firm ground (5) described above, and the foundation and underground portion are excavated. (See Fig. 5) Next, install a horizontal pressure plate (3) on the excavated portion (7), and (see Fig. 6) earth anchor (4) (7) PC
A tensioning device (with steel material (4b) set on a pressure plate (3)
8), I was nervous, and the fixing tool (9) was attached to the same pressure plate (3).
), and the sandy ground (1) below the pressure plate (3)
The shear strength of the sandy ground (1) is increased by introducing prestress into it (Fig. 7), and then the base of the structure! (10) and a frame (not shown).
(発明の効果)
本発明によれば前記したように、液状化が予想される砂
地盤における構造物の基礎下部、及び周囲に水平に配置
された耐圧板と、下層の堅固な地盤との間に亘って、同
地盤に下端を定着されたアースアンカーを配設し、同ア
ースアンカーを緊張して上端部を前記耐圧板に定着する
ことによって前記砂地盤に耐圧板を介して均一にプレス
トレスを導入して、同砂地盤の有効応力を増大すること
によって同砂地盤の剪断強度を増大せしめ、液状化を防
止することができるものであり、本発明によれば施工が
簡単で騒音、振動公害を生起することなく、効果的に砂
地盤の液状化を防止しうるものである。(Effects of the Invention) According to the present invention, as described above, there is a gap between the lower part of the foundation of a structure on sandy ground where liquefaction is expected, the pressure plate horizontally arranged around the periphery, and the solid ground below. An earth anchor with its lower end fixed to the same ground is placed over the entire area, and the earth anchor is tensioned and its upper end is fixed to the pressure plate, thereby uniformly prestressing the sandy ground through the pressure plate. The present invention can be used to increase the effective stress of the sandy ground, thereby increasing the shear strength of the sandy ground and preventing liquefaction.According to the present invention, construction is easy and noise and vibration are reduced. It is possible to effectively prevent liquefaction of sandy ground without causing pollution.
第1図及び第2図は本発明に係る地震時における砂地盤
の液吠化防止工法の各実施例の実施状況を示す縦断面図
、第3図乃至第8図は本発明の工法の工程を示す縦断面
図である。
(1)−m−液状化が予想される砂地盤、(2)−−一
構造物、 (3)−一一耐圧版、(4)−−−ア
ースアンカー、(5)−−一堅固な地盤、(8)−−一
緊張装置、 (9L一定着具、(10)−m=構造
物の基礎
S ノW
勾Figures 1 and 2 are longitudinal cross-sectional views showing the implementation status of each embodiment of the method of preventing liquefaction of sandy ground during earthquakes according to the present invention, and Figures 3 to 8 are steps of the method of the present invention. FIG. (1)-m-Sandy ground expected to liquefy, (2)--1 structure, (3)-11 pressure plate, (4)--earth anchor, (5)--1 solid Ground, (8) - one tension device, (9L fixed equipment, (10) - m = foundation of the structure S no W slope
Claims (1)
礎下部、及び周囲に水平に配設された耐圧版と、下層の
堅固な地盤との間に亘って同地盤に下端を定着されたア
ースアンカーを配設し同アンカーを緊張して上端部を前
記耐圧版に定着し同耐圧版下部の地盤にプレストレスを
導入することを特徴とする地震時における砂地盤の液状
化防止工法。Grounding with the lower end anchored to the same ground between the lower part of the foundation of a structure on sandy ground that is expected to liquefy during an earthquake, the surrounding pressure plate placed horizontally, and the firm ground below. A method for preventing liquefaction of sandy ground during an earthquake, characterized by installing an anchor, tightening the anchor, fixing the upper end to the pressure plate, and introducing prestress into the ground below the pressure plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18037088A JPH0230806A (en) | 1988-07-21 | 1988-07-21 | Liquefaction preventive construction for sandy ground at time of earthquake |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18037088A JPH0230806A (en) | 1988-07-21 | 1988-07-21 | Liquefaction preventive construction for sandy ground at time of earthquake |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0230806A true JPH0230806A (en) | 1990-02-01 |
Family
ID=16082057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18037088A Pending JPH0230806A (en) | 1988-07-21 | 1988-07-21 | Liquefaction preventive construction for sandy ground at time of earthquake |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0230806A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431502A (en) * | 1990-05-29 | 1992-02-03 | Toda Constr Co Ltd | Improvement of poor subsoil |
JPH0754357A (en) * | 1993-08-20 | 1995-02-28 | Kajima Corp | Eaerthquake resistant structure for construction |
EP0641906A1 (en) * | 1993-09-03 | 1995-03-08 | Compagnie Generale De Batiment Et De Construction Cbc | Anti-seismic protection method and device for buildings |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63223226A (en) * | 1987-03-13 | 1988-09-16 | Ohbayashigumi Ltd | Prevention of ground subsidence after construction of structure |
-
1988
- 1988-07-21 JP JP18037088A patent/JPH0230806A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63223226A (en) * | 1987-03-13 | 1988-09-16 | Ohbayashigumi Ltd | Prevention of ground subsidence after construction of structure |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0431502A (en) * | 1990-05-29 | 1992-02-03 | Toda Constr Co Ltd | Improvement of poor subsoil |
JPH0754357A (en) * | 1993-08-20 | 1995-02-28 | Kajima Corp | Eaerthquake resistant structure for construction |
EP0641906A1 (en) * | 1993-09-03 | 1995-03-08 | Compagnie Generale De Batiment Et De Construction Cbc | Anti-seismic protection method and device for buildings |
FR2709503A1 (en) * | 1993-09-03 | 1995-03-10 | Cbc | Method and device for earthquake protection of a building |
TR28048A (en) * | 1993-09-03 | 1995-12-11 | Batiment Et De Construction Cb | Methods and equipment for the protection of a building against earthquakes. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4273475A (en) | Load supporting structure | |
JPH07300820A (en) | Close contact type protective construction method against falling rock and rope/net anchor structure thereof | |
US7993079B2 (en) | Device and method for a tower reinforcing foundation | |
JP7554501B2 (en) | Rapid consolidation and compaction methods for remediation of various layers of soil and intermediate geological materials in soil piles. | |
US5868525A (en) | Method of preventing damages to loose sand ground or sandy ground due to seismic liquefaction phenomenon, and of restoration of disaster-stricken ground | |
JPH0230806A (en) | Liquefaction preventive construction for sandy ground at time of earthquake | |
JPH02232416A (en) | Foundation pile structure | |
JPH08209721A (en) | Column base fixing structure | |
JPH0552366B2 (en) | ||
JPH01278612A (en) | Method of taking countermeasure against liquefaction of linear structure buried in ground | |
JPS6268929A (en) | Supporting construction for building | |
US10087598B1 (en) | Counterfort retaining wall | |
JPH0617414A (en) | Drainage reinforcement pile | |
JPS58127822A (en) | Liquefaction preventive structure of foundation ground | |
JPH10131208A (en) | Construction method for preventing ground from lateral flow | |
JPH03103535A (en) | Countermeasure structure for liquefaction of building | |
JPH0765315B2 (en) | Embankment structure | |
JPH06257168A (en) | Fixing method for building foundation on weak subsoil | |
Mizutani et al. | Model tests on mitigation of liquefaction-induced subsidence of dike by using embedded sheet-pile walls | |
JPH0932005A (en) | Method of preventing liquefaction of ground | |
KR100392988B1 (en) | Strengthening method and structure for a soft foundation with a heavy loads | |
JP3677700B2 (en) | Ground seismic isolation method | |
JPH02132216A (en) | Base for filled ground structure | |
JPH10131209A (en) | Construction method for preventing displacement of earth structure caused by liquefied ground | |
RU1774976C (en) | Foundation of earthquake-resistant building or structure |