JPH02307803A - Production of gaseous fuel for phosphoric acid electrolyte fuel cell - Google Patents
Production of gaseous fuel for phosphoric acid electrolyte fuel cellInfo
- Publication number
- JPH02307803A JPH02307803A JP1125771A JP12577189A JPH02307803A JP H02307803 A JPH02307803 A JP H02307803A JP 1125771 A JP1125771 A JP 1125771A JP 12577189 A JP12577189 A JP 12577189A JP H02307803 A JPH02307803 A JP H02307803A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- catalyst
- copper
- zinc
- desulfurization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 161
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 229910000147 aluminium phosphate Inorganic materials 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000003792 electrolyte Substances 0.000 title claims abstract description 15
- 239000003054 catalyst Substances 0.000 claims abstract description 98
- 238000000629 steam reforming Methods 0.000 claims abstract description 60
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 48
- 239000001257 hydrogen Substances 0.000 claims abstract description 43
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 43
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 40
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims abstract description 30
- 230000003009 desulfurizing effect Effects 0.000 claims abstract description 9
- 238000006477 desulfuration reaction Methods 0.000 claims description 97
- 230000023556 desulfurization Effects 0.000 claims description 97
- 239000002737 fuel gas Substances 0.000 claims description 68
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 37
- 229910052717 sulfur Inorganic materials 0.000 claims description 37
- 239000011593 sulfur Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- -1 aluminum compound Chemical class 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 238000000975 co-precipitation Methods 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims description 4
- 239000005749 Copper compound Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 150000001880 copper compounds Chemical class 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 150000003752 zinc compounds Chemical class 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- GFCDJPPBUCXJSC-UHFFFAOYSA-N [O-2].[Zn+2].[Cu]=O Chemical compound [O-2].[Zn+2].[Cu]=O GFCDJPPBUCXJSC-UHFFFAOYSA-N 0.000 claims description 2
- JYXHVKAPLIVOAH-UHFFFAOYSA-N aluminum zinc oxocopper oxygen(2-) Chemical compound [O-2].[Al+3].[O-2].[Zn+2].[Cu]=O JYXHVKAPLIVOAH-UHFFFAOYSA-N 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 14
- 230000006866 deterioration Effects 0.000 abstract description 11
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 abstract description 8
- 239000003915 liquefied petroleum gas Substances 0.000 abstract description 5
- 239000001294 propane Substances 0.000 abstract description 4
- 239000003345 natural gas Substances 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 50
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 29
- 229910002090 carbon oxide Inorganic materials 0.000 description 29
- 239000007789 gas Substances 0.000 description 27
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 23
- 238000001179 sorption measurement Methods 0.000 description 22
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000007800 oxidant agent Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 238000010248 power generation Methods 0.000 description 13
- 239000011787 zinc oxide Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005984 hydrogenation reaction Methods 0.000 description 7
- 150000002898 organic sulfur compounds Chemical class 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 229910003296 Ni-Mo Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 5
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 231100000572 poisoning Toxicity 0.000 description 5
- 230000000607 poisoning effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000002407 reforming Methods 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 210000005056 cell body Anatomy 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 230000002085 persistent effect Effects 0.000 description 3
- 229930192474 thiophene Natural products 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- WMXCDAVJEZZYLT-UHFFFAOYSA-N tert-butylthiol Chemical compound CC(C)(C)S WMXCDAVJEZZYLT-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は燃料電池の燃料ガスの製造方法に関する。さら
に詳細には、リン酸を電解液として用いるリン酸電解液
燃料電池の燃料極に供給される燃料ガスの製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing fuel gas for a fuel cell. More specifically, the present invention relates to a method for producing a fuel gas to be supplied to a fuel electrode of a phosphoric acid electrolyte fuel cell using phosphoric acid as an electrolyte.
〈従来の技術〉
従来、燃料の有する化学エネルギーを直接電気エネルギ
ーに変換するシステムとして燃料電池が知られている。<Prior Art> Fuel cells have conventionally been known as a system that directly converts chemical energy contained in fuel into electrical energy.
この燃料電池は、通常、電解質を保持した電解質層を挾
んで燃料極と酸化剤極とからなる一対の多孔質電極を対
向させて燃料電池を形成し、燃料極の背面に水素等の燃
料ガスを接触させ、また酸化剤極の背面に空気等の酸化
剤を接触させることにより、このときに生ずる電気化学
反応を利用して、上記の両極間から電気エネルギーを取
り出すようにしたものである。燃料ガスと酸化剤が供給
されている限り、高い変換効率で電気工、ネルギーを取
り出すことができ、また省エネルギー、環境保全等で有
利なため実用化研究が活発に行われている。燃料電池に
は種々のタイプが知られているが、低温燃料電池として
は電解質層にリン酸を用いたリン酸電解液燃料電池(以
下、リン酸燃料電池という)が汎用されている。In this fuel cell, a pair of porous electrodes consisting of a fuel electrode and an oxidizer electrode are placed opposite each other with an electrolyte layer holding an electrolyte sandwiched between them to form a fuel cell. By bringing an oxidizing agent such as air into contact with the back side of the oxidizing agent electrode, electrical energy is extracted from between the two electrodes by utilizing the electrochemical reaction that occurs at this time. As long as fuel gas and oxidizer are supplied, electrical energy can be extracted with high conversion efficiency, and practical research is being actively conducted because it is advantageous in terms of energy conservation and environmental protection. Although various types of fuel cells are known, phosphoric acid electrolyte fuel cells (hereinafter referred to as phosphoric acid fuel cells) that use phosphoric acid in the electrolyte layer are widely used as low-temperature fuel cells.
リン酸燃料電池においては、燃料として水素が用いられ
、この水素は、通常、メタン、エタン、プロパン、ブタ
ン、天然ガス、゛ナフサ、灯油、軽油、液化石油ガス(
LPG)、都市ガス等の原燃料を水蒸気改質反応に付し
て、水素を主成分とする燃料ガスに変換することにより
得られている。In phosphoric acid fuel cells, hydrogen is used as a fuel, and this hydrogen is usually methane, ethane, propane, butane, natural gas, naphtha, kerosene, diesel oil, liquefied petroleum gas (
It is obtained by subjecting raw fuels such as LPG) and city gas to a steam reforming reaction to convert them into fuel gas whose main component is hydrogen.
上記の原燃料中の硫黄成分は、水蒸気改質触媒(例えば
、Rj+系触媒、Ni系触媒等)を披毒し、例えば、原
燃料中の硫黄含有量か0.lppm程度の状態であって
もRu系触媒又はNi系触媒の表面の約90%が短時間
に硫黄で覆われてしまい、触媒活性が著しく劣化する。The sulfur component in the raw fuel mentioned above poisons the steam reforming catalyst (for example, Rj+ type catalyst, Ni type catalyst, etc.), and for example, the sulfur content in the raw fuel is reduced to 0. Even at about 1 ppm, about 90% of the surface of the Ru-based catalyst or Ni-based catalyst is covered with sulfur in a short time, resulting in a significant deterioration of catalytic activity.
かかる状況から、水蒸気改質反応に付される前に原燃料
は脱硫反応に付される。Under such circumstances, the raw fuel is subjected to a desulfurization reaction before being subjected to a steam reforming reaction.
従来、原燃料の水蒸気改質に先立って行われている代表
的な脱硫方法は、Ni−Mo系又はC。Conventionally, typical desulfurization methods performed prior to steam reforming of raw fuels are Ni-Mo or C desulfurization methods.
−M o系触媒の存在下、350〜400℃にて、原燃
料中の有機硫黄化合物を水添分解した後、生成するH2
Sを一1350〜400℃にてZnOに吸着させて除
去する水添脱硫法である。-H2 generated after hydrogenolyzing organic sulfur compounds in raw fuel at 350 to 400°C in the presence of a Mo-based catalyst
This is a hydrodesulfurization method in which S is removed by adsorption on ZnO at -1,350 to 400°C.
第3図は、水添脱硫法による脱硫装置及び水蒸気改質装
置を有するリン酸燃料電池発電システムの代表的な例の
基本的構成の概要を示すシステム図である。同図におい
て、原燃料1は、後記−酸化炭素変成器5から導かれる
水素を主成分とする燃料ガスと混合されて、水添脱硫器
2aに導入される。水添脱硫器2aは、原燃料の入口側
から順に、Ni−Mo系、Co −M o系触媒等が充
填された水素添加層と、ZnO等の吸む脱硫剤が充填さ
れた吸着層とで構成される。原燃料1は加熱器で350
〜400℃に加熱された後、水素添加層で水素添加され
て原燃料中の硫黄成分をH2Sに変換し、次いで生成し
たH2 Sは吸着層で吸着除去され、原燃料1が脱硫さ
れる。脱硫された原燃料1は混合器3で水蒸気と混合さ
れた後、Ru系触媒、Ni系触媒等が充填された水蒸気
改質装置4に導入され、水蒸気改質反応により水素を主
成分とする燃料ガスに変換されて排出される。排出され
た燃料ガスは、含有する一酸化炭素が燃料極7の触媒(
例えば、pt触媒等)を被毒すること又水素への変換効
率を高めるため、変成触媒が充填された一酸化炭素変成
器5に導入され、−酸化炭素は水素と二酸化炭素に変換
される。−酸化炭素変成器5から排出された燃料ガスは
、一部が前記の水添脱硫器2aに送られ、残りはリン酸
燃料電池本体6の燃料極7に送られて燃料として使用さ
れる。燃料極7に流入した燃料ガス中の水素は、コンプ
レッサー8により酸化剤極10に流入している空気9中
の酸素と電気化学的反応を行ない、その結果燃料ガスの
一部が消費されて電気エネルギーが得られ、水が副生す
る。FIG. 3 is a system diagram showing an overview of the basic configuration of a typical example of a phosphoric acid fuel cell power generation system having a desulfurization device using a hydrodesulfurization method and a steam reforming device. In the figure, raw fuel 1 is mixed with a fuel gas containing hydrogen as a main component, which is led from a carbon oxide shift converter 5 (described later), and introduced into a hydrodesulfurizer 2a. The hydrodesulfurizer 2a includes, in order from the raw fuel inlet side, a hydrogenation layer filled with a Ni-Mo based catalyst, a Co-Mo based catalyst, etc., and an adsorption layer filled with a sucking desulfurizing agent such as ZnO. Consists of. Raw fuel 1 is 350 in heater
After being heated to ~400°C, hydrogen is added in the hydrogenation layer to convert the sulfur component in the raw fuel to H2S, and the generated H2S is then adsorbed and removed in the adsorption layer, and the raw fuel 1 is desulfurized. After the desulfurized raw fuel 1 is mixed with steam in a mixer 3, it is introduced into a steam reformer 4 filled with Ru-based catalyst, Ni-based catalyst, etc., and is converted into hydrogen as a main component through a steam reforming reaction. It is converted into fuel gas and discharged. The carbon monoxide contained in the discharged fuel gas is absorbed by the catalyst (
In order to prevent poisoning (for example, PT catalyst, etc.) and to increase conversion efficiency to hydrogen, the carbon monoxide is introduced into a carbon monoxide shift converter 5 filled with a shift catalyst, and the -carbon oxide is converted into hydrogen and carbon dioxide. - Part of the fuel gas discharged from the carbon oxide shift converter 5 is sent to the hydrodesulfurizer 2a, and the rest is sent to the fuel electrode 7 of the phosphoric acid fuel cell main body 6 and used as fuel. Hydrogen in the fuel gas that has flowed into the fuel electrode 7 undergoes an electrochemical reaction with oxygen in the air 9 that has flowed into the oxidizer electrode 10 by the compressor 8, and as a result, a portion of the fuel gas is consumed and electricity is generated. Energy is obtained and water is produced as a by-product.
燃料極7から排出された燃料ガスは、水蒸気改質装置4
のバーナー11に送られると共にコンプレッサー8より
供給される空気つと合流し、バーナー11で燃焼されて
、水蒸気改質装置4の加熱源として利用される。バーナ
ー11から排出された水蒸気を含む排ガスは、熱交換器
12を経た後、凝縮器13で気水分離され、分離された
ガスは排気される。また、凝集した水は給水ライン14
と合流し、給水ポンプ15及び冷却水ポンプ16を経て
、リン酸燃料電池本体6へ送られ、その冷却に使用され
る。リン酸燃料電池本体6から排出された冷却水は、熱
交換器17を経て、気水分離器18に送られ、水と水蒸
気に分離される。分離された水は冷却水ポンプ16を経
て、リン酸燃料電池本体6の冷却に循環使用され、また
水蒸気は前記混合器3に送られ、脱硫された原燃料1と
混合された後、水蒸気改質装置4に送られて水蒸気改質
反応に利用される。The fuel gas discharged from the fuel electrode 7 is transferred to the steam reformer 4
The air is sent to the burner 11 of the steam reformer 11 and joins with the air supplied from the compressor 8, is burned in the burner 11, and is used as a heating source for the steam reformer 4. The exhaust gas containing water vapor discharged from the burner 11 passes through the heat exchanger 12, and then is separated into steam and water by the condenser 13, and the separated gas is exhausted. In addition, the aggregated water is removed from the water supply line 14.
The water flows through the water supply pump 15 and the cooling water pump 16, and is sent to the phosphoric acid fuel cell main body 6, where it is used for cooling. Cooling water discharged from the phosphoric acid fuel cell main body 6 is sent to a steam separator 18 via a heat exchanger 17, and is separated into water and steam. The separated water passes through the cooling water pump 16 and is circulated for cooling the phosphoric acid fuel cell main body 6, and the water vapor is sent to the mixer 3 where it is mixed with the desulfurized raw fuel 1 and then steam reformed. It is sent to the reformer 4 and used for the steam reforming reaction.
このような燃料電池発電システムにおいて、燃料極に供
給される燃料ガスは主として、水蒸気改質反応の反応生
成物である水素、−酸化炭素変成反応の反応生成物であ
る二酸化炭素及び水蒸気改質反応で利用されなかった余
剰の水蒸気で構成され、瑯料ガス中の水素分圧が高いほ
ど発電効率が向上する。しかし、−酸化炭素変成反応の
反応生成物である二酸化炭素の含有量を減少させること
は困難である。従って、燃料ガス中の水素分圧を高める
ためには、水蒸気改質反応におけるS/C(原燃料中の
炭化水素の炭素1モル当りの水蒸気のモル数)を低くす
るほど余剰の水蒸気が少なくなり有利である。しかしな
がら、S/Cを低くすると水蒸気改質反応の反応生成°
物、即ち燃料ガス中の一酸化炭素含量が増加し、−酸化
炭素変成器で変成しても燃料ガス中に残存する一酸化炭
素濃度が高くなる。前述のように一酸化炭素はリン酸燃
料電池の燃料極の触媒を披毒し、触媒の劣化をもたらす
ので、−酸化炭素が高濃度に残存した燃料ガスを用いる
と燃料電池の発電効率が低下するという問題がある。In such a fuel cell power generation system, the fuel gas supplied to the fuel electrode is mainly hydrogen, which is a reaction product of the steam reforming reaction, carbon dioxide, which is a reaction product of the -carbon oxide transformation reaction, and steam reforming reaction. It is made up of surplus water vapor that was not used in the sintering process, and the higher the hydrogen partial pressure in the sintering gas, the higher the power generation efficiency. However, it is difficult to reduce the content of carbon dioxide, which is a reaction product of the -carbon oxide modification reaction. Therefore, in order to increase the hydrogen partial pressure in the fuel gas, the lower the S/C (number of moles of steam per mole of carbon in the hydrocarbon in the raw fuel) in the steam reforming reaction, the less excess steam will be produced. It is advantageous. However, when the S/C is lowered, the reaction product of the steam reforming reaction °
The content of carbon monoxide in the fuel gas increases, and the concentration of carbon monoxide remaining in the fuel gas increases even after being converted by a carbon oxide shift converter. As mentioned above, carbon monoxide poisons the catalyst in the fuel electrode of a phosphoric acid fuel cell, causing deterioration of the catalyst, so if fuel gas with a high concentration of remaining carbon oxide is used, the power generation efficiency of the fuel cell will decrease. There is a problem with doing so.
また、水添脱硫工程において、原燃料中に一定量以上の
有機硫黄化合物、特にチオフェン、ジメチルスルフィド
等の難分解性の有機硫黄化合物が含まれている場合には
、未分解のものがスリップして、ZnOに吸着されるこ
となく、素通りする。In addition, in the hydrodesulfurization process, if the raw fuel contains more than a certain amount of organic sulfur compounds, especially persistent organic sulfur compounds such as thiophene and dimethyl sulfide, undecomposed substances may slip. Therefore, it passes through without being adsorbed by ZnO.
また、吸着脱硫に際しては、例えば、
Z n O+ H2S ”:、 Z n S + H2
0ZnO+CO8″;ZnS+CO2
で示される平衡のため、H2S、CO8などの量も一定
値以下とはならない。特に、H20およびCO2が存在
する場合には、この傾向は著しい。In addition, for adsorption desulfurization, for example, Z n O + H2S ”:, Z n S + H2
Because of the equilibrium represented by 0ZnO+CO8'';ZnS+CO2, the amounts of H2S, CO8, etc. do not fall below a certain value.This tendency is particularly significant when H20 and CO2 are present.
さらに、装置のスタートアップ、シャットダウンなどに
際して脱硫系が不安定である場合には、吸着脱硫触媒か
ら硫黄が飛散して、原燃料中の硫黄濃度が増大すること
もある。従って、現在の脱硫工程は、精製後の原燃料中
の硫黄濃度が数ppm乃至0.lppmとなるようなレ
ベルで行われており、水蒸気改質触媒の被毒を十分に抑
制することはできない。このような硫黄被毒による触媒
活性の低下はカーボンの析出を促進するが、従来、これ
を防止するため、S/Cを大きくとって運転されてきた
。即ち、S/Cを低下させると、触媒の劣化によりカー
ボンが触媒層に析出して差圧発生の原因となると共に原
燃料が未分解の状態で排出されはじめ、燃料電池を長期
間安定的に運転することができないという問題がある。Furthermore, if the desulfurization system is unstable during startup or shutdown of the device, sulfur may scatter from the adsorption desulfurization catalyst, increasing the sulfur concentration in the raw fuel. Therefore, in the current desulfurization process, the sulfur concentration in the raw fuel after refining ranges from several ppm to 0.5 ppm. It is carried out at a level of 1ppm, and the poisoning of the steam reforming catalyst cannot be sufficiently suppressed. Such reduction in catalyst activity due to sulfur poisoning promotes carbon deposition, but conventionally, in order to prevent this, operation has been carried out with a large S/C. In other words, when the S/C is lowered, carbon is deposited on the catalyst layer due to deterioration of the catalyst, causing a pressure difference, and the raw fuel begins to be discharged in an undecomposed state, making it difficult for the fuel cell to operate stably for a long period of time. The problem is that I can't drive.
また、硫黄披4による触媒の失活を見込んで、水蒸気改
質装置に充填する触媒量を多くする必要があり、水蒸気
改質装置が大型化し、燃料電池を小型化することが困難
である。Furthermore, it is necessary to increase the amount of catalyst filled in the steam reformer in anticipation of deactivation of the catalyst due to sulfur. This increases the size of the steam reformer and makes it difficult to downsize the fuel cell.
前記のように燃料電池発電おいては、燃料ガス中の水素
分圧を高められるという点でS/Cを低くすることが有
利である。しか°し、上記のような問題かあるためS/
Cを低くすることは困難で、例えば、水蒸気改質触媒と
してNi触媒を用いた場合にはS/Cを3,5以下、触
媒活性の高いRu系触媒を用いた場合でもS/Cを2,
5以下とすることはモきず、通常、S/CはRu系触媒
で3以上、Ni系系触媒で4以上となるように1週整さ
れて水蒸気改質反応に付される。その結果、燃料ガス中
の水蒸気含量が大きくなり、水素分圧を高めることは困
難である。As mentioned above, in fuel cell power generation, it is advantageous to lower the S/C in that the hydrogen partial pressure in the fuel gas can be increased. However, due to the problems mentioned above, S/
It is difficult to lower C. For example, when a Ni catalyst is used as a steam reforming catalyst, the S/C is 3.5 or less, and even when a Ru-based catalyst with high catalytic activity is used, the S/C is 2. ,
Setting it to 5 or less is a problem; normally, the S/C is adjusted for one week so that it becomes 3 or more for Ru-based catalysts and 4 or more for Ni-based catalysts, and then subjected to the steam reforming reaction. As a result, the water vapor content in the fuel gas increases, making it difficult to increase the hydrogen partial pressure.
本発明は上記の従来技術の問題を解消すべく創案された
もので、本発明者らが種々研究を重ねた結果、原燃料を
高度に脱硫することにより、低S/Cにおいても水蒸気
改質触媒の劣化を防止でき、水素分圧の高い燃料ガスが
得られると共に燃料電池を長時間、安定的に運転するこ
とができることを見出して完成したものである。The present invention was devised to solve the above-mentioned problems of the prior art, and as a result of various studies by the present inventors, it is possible to achieve steam reforming even at low S/C by highly desulfurizing the raw fuel. This method was completed after discovering that catalyst deterioration can be prevented, fuel gas with high hydrogen partial pressure can be obtained, and fuel cells can be operated stably for long periods of time.
く課題を解決するための手段及び作用〉上記の課題を解
決すべくなされた、本発明の燃料電池の燃料ガスの製造
方法は、原燃料を水蒸気改質反応により水素を主成分と
する燃料ガスに変換し、該燃料ガスを用いるリン酸燃料
電池の燃料ガスの製造方法において、原燃料を銅−亜鉛
系脱硫剤を用いて脱硫し、次いで水蒸気改質触媒がRu
系触媒の場合にはS/Cを0.7〜2.5に、また水蒸
気改質触媒がNi系触媒の場合にはS/Cを1.5〜3
.5に調整した後、水蒸気改質反応に付し、原燃料を水
素を主成分とする燃料ガスに変換する工程を含むことを
特徴とするものである。なお、本発明において、銅−亜
鉛系脱硫剤とは、銅と亜鉛成分(例えば、酸化亜鉛等)
とを少なくとも含有し、さらにアルミニウム成分(例え
ば、酸化アルミニウム等)、クロム成分(例えば、酸化
クロム等)等のその他の成分を含有していてもよい脱硫
剤を意味する。Means and operation for solving the above problems> The method for producing fuel gas for a fuel cell of the present invention, which has been made to solve the above problems, is to produce a fuel gas containing hydrogen as a main component by subjecting raw fuel to a steam reforming reaction. In the method for producing fuel gas for a phosphoric acid fuel cell using the fuel gas, the raw fuel is desulfurized using a copper-zinc desulfurizing agent, and then the steam reforming catalyst is
If the steam reforming catalyst is a Ni-based catalyst, the S/C should be set to 0.7 to 2.5, and if the steam reforming catalyst is a Ni-based catalyst, the S/C should be set to 1.5 to 3.
.. 5, and then subjected to a steam reforming reaction to convert the raw fuel into a fuel gas containing hydrogen as a main component. In the present invention, the copper-zinc desulfurization agent refers to copper and zinc components (for example, zinc oxide, etc.)
It means a desulfurizing agent that contains at least the following, and may further contain other components such as an aluminum component (for example, aluminum oxide, etc.) and a chromium component (for example, chromium oxide, etc.).
本発明の燃料ガスの製造方法では、原燃料は銅−亜鉛系
脱硫剤を用いて脱硫され、該銅−亜鉛系脱硫剤は原燃料
中の硫黄化合物含有量を5ppb(硫黄として、以下同
じ)以下、通常0.1ppb以下とすることができ、後
続の水蒸気改質反応における水蒸気改質触媒の被毒が抑
制される。従って、水蒸気改質触媒が高活性を長時間維
持することができるので、低S/Cにおいても水蒸気改
質反応が可能となり、燃料ガス中の水素分圧を高められ
る。In the fuel gas production method of the present invention, the raw fuel is desulfurized using a copper-zinc desulfurization agent, and the copper-zinc desulfurization agent reduces the sulfur compound content in the raw fuel to 5 ppb (as sulfur, the same hereinafter). Hereinafter, it can be generally set to 0.1 ppb or less, and poisoning of the steam reforming catalyst in the subsequent steam reforming reaction is suppressed. Therefore, since the steam reforming catalyst can maintain high activity for a long time, the steam reforming reaction is possible even at low S/C, and the hydrogen partial pressure in the fuel gas can be increased.
上記の構成からなる本発明において、原燃料の脱硫に使
用される銅−亜鉛系脱硫剤としては、例えば、特願昭6
2−279867号及び特願昭62−279868号に
開示された銅−亜鉛系脱硫剤が挙げられ、同公報には、
それぞれ銅と酸化亜鉛を主成分とする脱硫剤(以下、銅
−亜鉛脱硫剤という)及び銅と酸化亜鉛と酸化アルミニ
ウムを主成分とする脱硫剤(以下、銅−亜鉛−アルミニ
ウム脱硫剤という)が開示されている。より詳細には、
これらの脱硫剤は次のような方法により調製される。In the present invention having the above structure, the copper-zinc desulfurization agent used for desulfurization of raw fuel is, for example,
Copper-zinc desulfurization agents disclosed in No. 2-279867 and Japanese Patent Application No. 62-279868 are mentioned, and the same publication includes:
Desulfurization agents whose main components are copper and zinc oxide (hereinafter referred to as copper-zinc desulfurization agents) and desulfurization agents whose main components are copper, zinc oxide, and aluminum oxide (hereinafter referred to as copper-zinc-aluminum desulfurization agents), respectively. Disclosed. More specifically,
These desulfurizing agents are prepared by the following method.
(1)銅−亜鉛脱硫剤
銅化合物(例えば、硝酸銅、酢酸鋼等)及び亜鉛化合物
(例えば、硝酸亜鉛、酢酸亜鉛等)を含む水溶液とアル
カリ物質(例えば、炭酸ナトリウム等)の水溶液を使用
して、常法による共沈法により沈澱を生じさせる。生成
した沈澱を乾燥、焼成(300℃程度)して酸化銅−酸
化亜鉛混合物(原子比で、通常、銅:亜鉛−1=約0.
3〜10、好ましくは1:約0.5〜3、より好ましく
は1:約1〜2.3)を得た後、水素含有量6容量%以
下、より好ましくは0.5〜4容量%程度となるように
不活性ガス(例えば窒素ガス等)により希釈された水素
ガスの存在下に、150〜300℃程度で上記混合物を
還元処理する。このようにして得られた銅−亜鉛脱硫剤
は、他の成分、例えば、酸化クロム等を含有していても
よい。(1) Copper-zinc desulfurization agent: Uses an aqueous solution containing a copper compound (e.g., copper nitrate, steel acetate, etc.) and a zinc compound (e.g., zinc nitrate, zinc acetate, etc.) and an aqueous solution of an alkaline substance (e.g., sodium carbonate, etc.) Then, a precipitate is produced by a conventional coprecipitation method. The formed precipitate is dried and calcined (about 300°C) to form a copper oxide-zinc oxide mixture (in atomic ratio, usually copper:zinc-1=about 0.
3 to 10, preferably 1: about 0.5 to 3, more preferably 1: about 1 to 2.3), the hydrogen content is 6% by volume or less, more preferably 0.5 to 4% by volume. The above mixture is reduced at about 150 to 300° C. in the presence of hydrogen gas diluted with an inert gas (for example, nitrogen gas) so as to achieve the desired temperature. The copper-zinc desulfurization agent thus obtained may contain other components, such as chromium oxide.
(2)銅−亜鉛−アルミニウム脱硫剤
銅化合物(例えば、硝酸銅、酢酸銅等)、亜鉛化合物(
例えば、硝酸亜鉛、酢酸亜鉛等)及びアルミニウム化合
物(例えば、硝酸アルミニウム、アルミン酸ナトリウム
等)を含む水溶液とアルカリ物質(例え・ば、炭酸ナト
リウム等)の水溶液を使用して、常法による共沈法によ
り沈澱を生じさせる。生成した沈澱を乾燥、焼成(30
0℃程度)して、酸化銅−酸化亜鉛−酸化アルミニウム
混合物(原子比で、通常、銅:亜鉛ニアルミニウム−1
:約0.3〜10:約0.05〜2、好ましくは1:約
0.6〜3:約0.3〜1)を得た後、水素含有′m6
容量%以下、より好ましくは0.5〜4容量%程度とな
るように不活性ガス(例えば、窒素ガス等)により希釈
された水素ガスの存在下に、150〜300℃程度で上
記混合物を還元処理する。このようにして得られた銅−
亜鉛−アルミニウム脱硫剤は、他の成分、例えば、酸化
クロム等を含有していてもよい。(2) Copper-zinc-aluminum desulfurization agent Copper compounds (e.g. copper nitrate, copper acetate, etc.), zinc compounds (
Co-precipitation by a conventional method using an aqueous solution containing an aluminum compound (e.g., aluminum nitrate, sodium aluminate, etc.) and an aqueous solution of an alkaline substance (e.g., sodium carbonate, etc.). A method is used to form a precipitate. The generated precipitate was dried and calcined (30
(approximately 0°C) and then prepare a copper oxide-zinc oxide-aluminum oxide mixture (in atomic ratio, usually copper:zinc nialium-1
: about 0.3-10: about 0.05-2, preferably 1: about 0.6-3: about 0.3-1), then hydrogen-containing 'm6
The above mixture is reduced at about 150 to 300°C in the presence of hydrogen gas diluted with an inert gas (e.g., nitrogen gas, etc.) so that the concentration is less than or equal to 0.5 to 4% by volume. Process. Copper obtained in this way -
The zinc-aluminum desulfurization agent may contain other components, such as chromium oxide.
上記(1)及び(2)の方法で得られた銅−亜鉛系脱硫
剤は、大きな表面積を有する微粒子状の銅が、酸化亜鉛
(及び酸化アルミニウム)中に均一に分散しているとと
もに、酸化亜鉛(及び酸化アルミニウム)との化学的な
相互作用により高活性状態となっている。従って、これ
らの脱硫剤を使用すると、原燃料中の硫黄含有量を確実
に5ppb以下、通常0,1ppb以下とすることがで
き、またチオフェン、ジメチルスルフィド等の難分解性
の硫黄化合物も確実に除去することができる。上記の銅
−亜鉛系脱硫剤を用いる脱硫は、原燃料中の硫黄含有量
等により適宜設定されるが、通常、温度10〜400℃
程度、好ましくは150〜250℃程度、圧力0〜10
kg/C−・G程度、GH8V(Gaseous Ho
urly 5pace Velocity) 500〜
3000程度にて行われる。The copper-zinc desulfurization agent obtained by methods (1) and (2) above has fine particulate copper with a large surface area uniformly dispersed in zinc oxide (and aluminum oxide), and It is highly active due to chemical interaction with zinc (and aluminum oxide). Therefore, by using these desulfurization agents, it is possible to reliably reduce the sulfur content in raw fuel to 5 ppb or less, usually 0.1 ppb or less, and also to ensure that persistent sulfur compounds such as thiophene and dimethyl sulfide are removed. Can be removed. Desulfurization using the above-mentioned copper-zinc desulfurization agent is normally carried out at a temperature of 10 to 400°C, although the setting is appropriately determined depending on the sulfur content in the raw fuel.
degree, preferably about 150 to 250°C, pressure 0 to 10
kg/C-・G degree, GH8V (Gaseous Ho
urly 5pace Velocity) 500~
It is held at around 3,000.
なお、原燃料が多量の硫黄成分を含有する場合には、上
記の銅−亜鉛系脱硫剤を用いた脱硫に付す前に原燃料中
の硫黄含有量を1〜0.lppm程度に減少させる一次
脱硫に付した後、上記の脱硫を行なうのが好ましい。こ
の方法によれば、銅−亜鉛系脱硫剤の使用量を低減する
ことができる。In addition, when the raw fuel contains a large amount of sulfur component, the sulfur content in the raw fuel is reduced to 1 to 0. It is preferable to perform the above desulfurization after primary desulfurization to reduce the amount to about 1 ppm. According to this method, the amount of copper-zinc desulfurization agent used can be reduced.
−次脱硫は常法により行なうことができるが、操作の簡
便性及び脱硫効率からして吸着脱硫法により行なうのが
好ましい。吸着脱硫法の例としては、ZnO系脱硫剤を
使用する吸着脱硫方法が挙げられ、例えば、ZnO系吸
着脱硫剤の存在下、温度250〜400℃程度、圧力O
〜10kg/c−φG程度、GH8V100O程度の条
件を採用することにより、原燃料中の硫黄含有量を1〜
0.lppm程度に減少させることができる。尚、吸着
脱硫法は上記の例に限定されず、種々の条件を採用する
ことができる。Although the secondary desulfurization can be carried out by a conventional method, it is preferable to carry out the adsorption desulfurization method from the viewpoint of operational simplicity and desulfurization efficiency. An example of the adsorption desulfurization method is an adsorption desulfurization method using a ZnO-based desulfurization agent.
By adopting conditions of ~10kg/c-φG and approximately GH8V100O, the sulfur content in raw fuel can be reduced to ~1~
0. It can be reduced to about lppm. Note that the adsorption desulfurization method is not limited to the above example, and various conditions can be adopted.
さらに、原燃料がチオフェン、ジメチルスルフィド等の
難分解性の有機硫黄化合物を含有する場合には、原燃料
をまず水添脱硫し、次いで上記の吸着脱硫を行った後、
銅−亜鉛系脱硫剤を用いた脱硫を行なうのがよい。この
方法によれば、原燃料中の有機硫黄化合物含量を低下で
き、銅−亜鉛系脱硫剤の使用量を低減できる。水添脱硫
は常法により行なうことができ、例えば、Ni−Mo系
、Co −M o系等の触媒の存在下、温度350〜4
00℃程度、圧力O〜10kg/c−・G程度、GHS
V3000程度の条件下に行われるが、この条件に限定
されるものではない。Furthermore, when the raw fuel contains a persistent organic sulfur compound such as thiophene or dimethyl sulfide, the raw fuel is first subjected to hydrodesulfurization, then the above-mentioned adsorption desulfurization, and then
Desulfurization is preferably carried out using a copper-zinc desulfurization agent. According to this method, the content of organic sulfur compounds in the raw fuel can be reduced, and the amount of copper-zinc desulfurization agent used can be reduced. Hydrodesulfurization can be carried out by a conventional method, for example, in the presence of a Ni-Mo based catalyst, Co-Mo based catalyst, etc. at a temperature of 350 to 400 ml.
Approximately 00℃, pressure O ~ 10kg/c-・G, GHS
Although the test is carried out under conditions of about V3000, the conditions are not limited to this.
上記の方法により脱硫された原燃料は、次いで水蒸気と
混合された後水蒸気改質反応に付される。The raw fuel desulfurized by the above method is then mixed with steam and subjected to a steam reforming reaction.
この際、水蒸気改質触媒がRu系触媒の場合にはS/C
が0.7〜2.5となるように、また水蒸気改質触媒が
Ni系触媒の場合にはS/Cが1.5〜3.5となるよ
うに調整される。S/Cが上記範囲の下限未満であると
改質触媒上にカーボンの析出が生ずるので好ましくなく
、また上記範囲の上限を越えても水蒸気改質反応は進行
するが生成燃料ガス中の水蒸気分圧が高くなり、本発明
の目的を達成できない。水蒸気改質反応の反応温度、反
応圧力等は、従来の燃料電池の水蒸気改質反応と同様の
条件下に行われ、例えば、人ロ温度り50℃〜650℃
程度、出ロ温度り50℃〜900℃程度、反応圧力0〜
10kg/cシ・G程度で行われる。斯くして、原燃料
は水素を主成分とする燃料ガスに変換される。At this time, if the steam reforming catalyst is a Ru-based catalyst, the S/C
is adjusted to be 0.7 to 2.5, and when the steam reforming catalyst is a Ni-based catalyst, S/C is adjusted to be 1.5 to 3.5. If the S/C is less than the lower limit of the above range, carbon will be deposited on the reforming catalyst, which is undesirable, and even if the S/C exceeds the upper limit of the above range, the steam reforming reaction will proceed, but the water vapor content in the generated fuel gas will decrease. The pressure becomes high and the object of the present invention cannot be achieved. The reaction temperature, reaction pressure, etc. of the steam reforming reaction are carried out under the same conditions as the steam reforming reaction of conventional fuel cells.
temperature, exit temperature about 50℃~900℃, reaction pressure 0~
It is carried out at approximately 10 kg/c/g. In this way, the raw fuel is converted into fuel gas containing hydrogen as a main component.
本発明において、使用される原燃料としては、メタン、
エタン、プロパン、ブタン、天然ガス、ナフサ、LPG
、都市ガス及びこれらの混合物等が挙げられる。In the present invention, the raw fuel used is methane,
Ethane, propane, butane, natural gas, naphtha, LPG
, city gas, and mixtures thereof.
以下、添付図面に基いて本発明をより詳細に説明する。Hereinafter, the present invention will be explained in more detail based on the accompanying drawings.
第1図は、本発明の燃料ガスの製造方法を用いたリン酸
燃料電池発電システムの一態様の概略図であり、第3図
と同一の部分には同一の符号を付して示した。同図にお
いて、脱硫装置は、水素添加触媒及び吸着脱硫剤が充填
された水添脱硫器2aと銅−亜鉛系脱硫剤が充填された
銅−亜鉛系脱硫剤2bとで構成され、この例においては
、原燃料1の入口側から順に、水素添加触媒、吸着脱硫
剤及び銅−亜鉛系脱硫剤が充填された脱硫管が用いられ
ている。FIG. 1 is a schematic diagram of one embodiment of a phosphoric acid fuel cell power generation system using the fuel gas production method of the present invention, and the same parts as in FIG. 3 are denoted by the same reference numerals. In the figure, the desulfurization equipment is composed of a hydrodesulfurizer 2a filled with a hydrogenation catalyst and an adsorption desulfurization agent, and a copper-zinc desulfurization agent 2b filled with a copper-zinc desulfurization agent. In this example, a desulfurization pipe filled with a hydrogenation catalyst, an adsorption desulfurization agent, and a copper-zinc desulfurization agent in order from the inlet side of the raw fuel 1 is used.
第1図において、原燃料1は、−酸化炭素変成器5から
導かれる水素を主成分とする燃料ガスと適宜な混合比(
例えば、原燃料に対して2容量%程度)に混合されて、
水添脱硫器2aに導入される。水添脱硫器2aは原燃料
1の入口側から順に、例えば、Ni−Mo系、Co −
M o系触媒等が充填された水素添加層と、ZnO等の
吸着脱硫剤が充填された吸着層とで構成される。上記の
水素添加層において、原燃料1は前記の条件下に水素添
加され、次いで生成したH2 S等の硫黄成分は、前記
の条件下に吸着層で吸むされ、−次脱硫される。In FIG. 1, raw fuel 1 is mixed with a fuel gas containing hydrogen as a main component derived from a carbon oxide shift converter 5 at an appropriate mixing ratio (
For example, it is mixed at a concentration of about 2% by volume based on the raw fuel,
It is introduced into the hydrodesulfurizer 2a. The hydrodesulfurizer 2a sequentially processes raw fuel 1 from the inlet side, for example, Ni-Mo-based, Co-
It is composed of a hydrogenation layer filled with a Mo-based catalyst, etc., and an adsorption layer filled with an adsorption desulfurization agent such as ZnO. In the above-mentioned hydrogenation layer, the raw fuel 1 is hydrogenated under the above-mentioned conditions, and then the generated sulfur components such as H2S are absorbed by the adsorption layer under the above-mentioned conditions and then subjected to subsequent desulfurization.
次いで、−次脱硫された原燃料1は、鋼−亜鉛系脱硫剤
が充填された銅−亜鉛系脱硫器2bにて更に脱硫される
。銅−亜鉛系脱硫器2bにおける脱硫は前記の脱硫条件
下に行われるが、この条件に限定されるものではない。Next, the raw fuel 1 that has been desulfurized is further desulfurized in a copper-zinc desulfurizer 2b filled with a steel-zinc desulfurizer. Desulfurization in the copper-zinc desulfurizer 2b is performed under the desulfurization conditions described above, but the conditions are not limited to these.
該脱硫器2bから排出された原燃料1は硫黄含有量が5
ppb以下、通常は0.1ppb以下に脱硫されている
。The raw fuel 1 discharged from the desulfurizer 2b has a sulfur content of 5
It is desulfurized to ppb or less, usually 0.1 ppb or less.
斯くして脱硫された原燃料1は混合器3で水蒸気と混合
され、水蒸気改質触媒がRu系触媒の場合にはS/Cが
0.7〜2.5となるように、また水蒸気改質触媒がN
i系触媒の場合にはS/Cか1.5〜3.5となるよう
に調整した後、水蒸気改質装置4に導入され、水蒸気改
質反応に付されて水素を主成分とする燃料ガスに変換さ
れる。The raw fuel 1 desulfurized in this way is mixed with steam in a mixer 3, and when the steam reforming catalyst is a Ru-based catalyst, the steam reforming is carried out so that the S/C is 0.7 to 2.5. quality catalyst is N
In the case of an i-type catalyst, after adjusting the S/C to 1.5 to 3.5, it is introduced into the steam reformer 4 and subjected to a steam reforming reaction to produce a fuel containing hydrogen as the main component. converted to gas.
水蒸気改質装置4は、従来の燃料電池の水蒸気改質装置
と同様に、Ru系触媒やNi系触媒が充填された水蒸気
改質装置が用いられ、前記の条件下に水蒸気改質反応が
行われる。水蒸気改質装置4から排出される水素を主成
分とする燃料ガスは、低温でも高活性な低温−酸化゛炭
素変成触媒が充填された一酸化炭素変成器5に送られ、
−酸化炭素含量を減少させると共に水素含量が高められ
る。The steam reformer 4 uses a steam reformer filled with a Ru-based catalyst or a Ni-based catalyst, similar to the steam reformer of a conventional fuel cell, and performs a steam reforming reaction under the above conditions. be exposed. The fuel gas mainly composed of hydrogen discharged from the steam reformer 4 is sent to the carbon monoxide shift converter 5 filled with a low-temperature carbon oxide shift catalyst that is highly active even at low temperatures.
- Increased hydrogen content with reduced carbon oxide content.
次いで、−酸化炭素変成器5から排出された燃料ガスは
リン酸燃料電池本体6の燃料極7に送られ、コンプレッ
サー8により酸化剤極10に流入している空気9中の酸
素と電気化学的反応を行ない、その結果燃料ガスの一部
が消費されて電気エネルギーが得られ、水が副生する。Next, the fuel gas discharged from the carbon oxide shift converter 5 is sent to the fuel electrode 7 of the phosphoric acid fuel cell main body 6, where it is electrochemically combined with oxygen in the air 9 flowing into the oxidizer electrode 10 by the compressor 8. A reaction takes place, and as a result, part of the fuel gas is consumed, electrical energy is obtained, and water is produced as a by-product.
なお、燃料極7から排出された燃料ガスの処理(例えば
、バーナー11に送り、燃焼させて水蒸気改質装置4の
加熱源として利用する等)、酸化剤極10から排出され
た排ガスの処理、燃料電池本体6の冷却及び冷却水回路
等は、従来の装置と同様である。In addition, processing of the fuel gas discharged from the fuel electrode 7 (for example, sending it to the burner 11, burning it, and using it as a heating source for the steam reformer 4, etc.), processing of the exhaust gas discharged from the oxidizer electrode 10, The cooling of the fuel cell main body 6, the cooling water circuit, etc. are the same as those of the conventional device.
第2図は、本発明の燃料ガスの製造方法を用いたリン酸
燃料電池発電システムの他の態様の概略図で、原燃料と
して、総硫黄含有量は少ないが難分解性且つ非吸着性の
有機硫黄化合物を含有する炭化水素、例えば、付臭剤と
してジメチルスルフィド等を含有する都市ガス等を用い
る場合に適した燃料ガスの製造方法である。なお、第3
図と同一の部分には同一の符号を付して示した。Figure 2 is a schematic diagram of another embodiment of a phosphoric acid fuel cell power generation system using the fuel gas production method of the present invention. This method is suitable for producing fuel gas when using hydrocarbons containing organic sulfur compounds, such as city gas containing dimethyl sulfide as an odorant. In addition, the third
The same parts as those in the figure are given the same reference numerals.
第2図において、原燃料lは、必要に応じて、別途設け
られた加熱器や熱交換器で予熱された後、銅−亜鉛系脱
硫剤が充填された銅−亜鉛系脱硫器2bに流入する。該
脱硫器2bにおける脱硫は前記の脱硫条件下に行われる
。該脱硫器2bから排出された原燃料1は′、ジメチル
スルフィド等の有機硫黄化合物の含有量が低減されてい
ると共に硫黄含有量が5ppb以下、通常は0.1pp
b以下に脱硫されている。斯(して脱硫された原燃料1
は混合器3に導かれ、以下、第1図のシステムで説明し
た方法と同様に処理される。即ち、原燃料1と水蒸気と
を触媒種に応じて適当なS/Cとなるように混合した後
、水蒸気改質装置4にて水蒸気改質反応に付されて水素
を主成分とする燃料ガスに変換され、次いで一酸化炭素
変成器5を経て、リン酸燃料電池本体6の燃料極7に導
かれ、電気化学的反応により、電気エネルギーに変換さ
れる。In Figure 2, the raw fuel 1 is preheated by a separately provided heater or heat exchanger as necessary, and then flows into a copper-zinc desulfurizer 2b filled with a copper-zinc desulfurizer. do. Desulfurization in the desulfurizer 2b is performed under the desulfurization conditions described above. The raw fuel 1 discharged from the desulfurizer 2b has a reduced content of organic sulfur compounds such as dimethyl sulfide, and has a sulfur content of 5 ppb or less, usually 0.1 ppb.
desulfurized to below b. Desulfurized raw fuel 1
is introduced into the mixer 3 and is subsequently processed in the same manner as described for the system of FIG. That is, after raw fuel 1 and steam are mixed to achieve an appropriate S/C depending on the catalyst type, they are subjected to a steam reforming reaction in a steam reformer 4 to produce a fuel gas containing hydrogen as a main component. It is then led to the fuel electrode 7 of the phosphoric acid fuel cell main body 6 via the carbon monoxide transformer 5, where it is converted into electrical energy by an electrochemical reaction.
本発明は上記の例に限定されるものではなく、その要旨
を変更しない範囲で種々に変形して実施することができ
、例えば、第1図においては、原燃料1の人口側から順
に、水素添加触媒、吸着脱硫剤及び銅−亜鉛系脱硫剤が
充填された脱硫管により脱硫装置が構成されているが、
脱硫装置として、水素添加触媒及び吸着脱硫剤が充填さ
れた水添脱硫?52aと銅−亜鉛系脱硫剤が充填された
銅−亜鉛系脱硫器2bとを分離した形態としてもよい。The present invention is not limited to the above example, and can be implemented with various modifications without changing the gist of the invention. For example, in FIG. The desulfurization equipment is composed of desulfurization pipes filled with added catalyst, adsorption desulfurization agent, and copper-zinc desulfurization agent.
Hydrodesulfurization equipment filled with hydrogenation catalyst and adsorption desulfurization agent as desulfurization equipment? 52a and a copper-zinc desulfurizer 2b filled with a copper-zinc desulfurizer may be separated.
また、本発明の燃料ガスの製造方法を用いた燃料電池発
電システムは、従来公知の種々の機構を付加したシステ
ムで実施することができ、例えば、第1図及び第2図の
システムにおいて、燃料極7に供給する燃料ガス及び酸
化剤極10に供給する空気9を電気負荷に見合って制御
する機構や、燃料極7と酸化剤極10間の差圧を検知し
て差圧を調整する機構が設けられていてもよく、また複
数のリン酸燃料電池本体6を並列又は直列に結合しても
よい。さらに燃料極7の燃料ガス供給ラインと燃料ガス
排出ラインとの間に燃料再循環ファンを設けて排出され
た燃料ガスの一部を燃料極7に戻す機構や、酸化剤極1
0の空気供給ラインと空気排出ラインとの間に空気再循
環ファンを設けて排出された空気の一部を酸化剤極10
に戻す機構が設けられていてもよい。これらの再循環機
構を設けることにより、電極反応後の反応性ガスの再利
用を図ると共に排出燃料ガスの水素濃度及び排出空気の
酸素濃度を51整し、燃料電池の負荷変動の調整を行な
うことができる。Further, the fuel cell power generation system using the fuel gas production method of the present invention can be implemented with a system that is equipped with various conventionally known mechanisms. For example, in the system shown in FIGS. A mechanism that controls the fuel gas supplied to the electrode 7 and air 9 supplied to the oxidizer electrode 10 according to the electrical load, and a mechanism that detects the differential pressure between the fuel electrode 7 and the oxidizer electrode 10 and adjusts the differential pressure. may be provided, and a plurality of phosphoric acid fuel cell bodies 6 may be connected in parallel or in series. Furthermore, a mechanism is provided in which a fuel recirculation fan is provided between the fuel gas supply line and the fuel gas discharge line of the fuel electrode 7 to return a part of the discharged fuel gas to the fuel electrode 7;
An air recirculation fan is provided between the air supply line and the air discharge line of the oxidizer electrode 10, and a part of the exhausted air is transferred to the oxidizer electrode 10.
A mechanism may be provided to return the By providing these recirculation mechanisms, it is possible to reuse the reactive gas after the electrode reaction, and also to adjust the hydrogen concentration of the exhaust fuel gas and the oxygen concentration of the exhaust air, and to adjust the load fluctuation of the fuel cell. I can do it.
〈実施例〉゛
以下、参考例、実施例及び比較例に基づき、本発明をよ
り詳細に説明するが、本発明はこれら実施例に限定され
るものではない。<Examples> Hereinafter, the present invention will be explained in more detail based on Reference Examples, Examples, and Comparative Examples, but the present invention is not limited to these Examples.
参考例1
硫黄含有fm100ppmのナフサを、常法に従って、
まずNi−Mo系水添脱硫触媒の存在下に温度380℃
、圧力8kg/cj ・G、 L HS V(Liqu
id Hourly 5pace Velocity)
2、水素/ナフサ−0,1(モル比)の条件下に水添分
解した後、ZnO系吸着脱硫剤に接触させて、−次吸着
脱硫した。得られた一次吸着脱硫ナフサ中の硫黄含有量
は・約2ppmであった。Reference Example 1 Naphtha with a sulfur content of 100 ppm was prepared according to a conventional method.
First, the temperature was 380°C in the presence of a Ni-Mo-based hydrodesulfurization catalyst.
, pressure 8kg/cj ・G, L HS V (Liqu
id Hourly 5pace Velocity)
2. Hydrogen/naphtha - After hydrogenolysis under conditions of 0.1 (molar ratio), it was brought into contact with a ZnO-based adsorption desulfurization agent to carry out secondary adsorption desulfurization. The sulfur content in the obtained primary adsorption desulfurization naphtha was approximately 2 ppm.
一方、硝酸銅、硝酸亜鉛及び硝酸アルミニウムを含有す
る混合水溶液に、アルカリ物質として炭酸ナトリウム水
溶液を加え、生じた沈澱を洗浄及び濾過した後、高さ1
/8インチ×直径1/8インチの大きさに打錠成形し、
約400℃で焼成した。次いで、該焼成体(酸化銅45
%、酸化亜鉛45%、酸化アルミニウム10%)100
ccを充填した脱硫装置に水素2容量%を含む窒素ガス
を流通させ、温度約200℃で還元して、銅−亜鉛−ア
ルミニウム脱硫剤を1りた。次いで、該脱硫剤に、上記
で得た一次吸着脱硫ナフサ400Ω/hを通じ、温度3
50℃、圧力8 kg / c−・Gの条件下に脱硫し
た。得られた脱硫ナフサ中の硫黄含有量は、7000時
間の運転にわたり、0.11pb以下であった。On the other hand, a sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate, and aluminum nitrate, and after washing and filtering the resulting precipitate,
/8 inch x 1/8 inch diameter,
It was fired at about 400°C. Next, the fired body (copper oxide 45
%, zinc oxide 45%, aluminum oxide 10%) 100
Nitrogen gas containing 2% by volume of hydrogen was passed through a desulfurization apparatus filled with cc and reduced at a temperature of about 200°C to obtain a copper-zinc-aluminum desulfurization agent. Next, the primary adsorption desulfurization naphtha obtained above was passed through the desulfurization agent at a temperature of 3
Desulfurization was carried out at 50°C and a pressure of 8 kg/c-G. The sulfur content in the resulting desulfurized naphtha was below 0.11 pb over 7000 hours of operation.
斯くして得られた高度脱硫ナフサを原料とし、流通式疑
似断熱型の反応器(直径20龍)を使用して、Ru系触
媒(γ−アルミナ担体にRu2重量%を担持)又はNi
系触媒(共沈法により調製、NiO含有量50重量%)
の存在下に、第1表に示される条件でS/Cを変化させ
て低温水蒸気改質を行い、反応器入口部の触媒上に析出
した炭素量を測定した。Using the highly desulfurized naphtha obtained in this way as a raw material, using a flow-type pseudo-adiabatic reactor (diameter 20 mm), Ru-based catalyst (Ru 2% by weight supported on γ-alumina carrier) or Ni
System catalyst (prepared by coprecipitation method, NiO content 50% by weight)
Low-temperature steam reforming was carried out under the conditions shown in Table 1 while varying the S/C, and the amount of carbon precipitated on the catalyst at the inlet of the reactor was measured.
第 1 表
反応温度(入口) 490℃(断熱)反応圧力
8 kg / cシ・Gナフサ流量
160cc/h触媒量 100cc
H2/ナフサ 0.1(モル比)反応器入口部
における触媒上への炭素析出量とS/Cとの関係を第4
図に示す。第4図中、曲線AはRu系触媒を用いた場合
、曲線BはNi系触媒を用いた場合である。Table 1 Reaction temperature (inlet) 490℃ (adiabatic) Reaction pressure
8 kg/c C/G naphtha flow rate
160cc/h Catalyst amount 100cc H2/naphtha 0.1 (molar ratio) The relationship between the amount of carbon deposited on the catalyst at the reactor inlet and S/C is
As shown in the figure. In FIG. 4, curve A is the case when a Ru-based catalyst is used, and curve B is the case when a Ni-based catalyst is used.
第4図から明らかなように、Ru系触媒を用いた場合に
はS/Cを0.7まで、Ni系触媒を用いた場合にはS
/Cを1.5まで低下させても触媒上への炭素析出は実
質的に生じなかった。As is clear from Fig. 4, S/C is up to 0.7 when Ru-based catalyst is used, and S/C is up to 0.7 when Ni-based catalyst is used.
Even when /C was lowered to 1.5, substantially no carbon was deposited on the catalyst.
一方、前記の硫黄含有量的2ppmの一次吸着脱硫ナフ
サを用いて、上記と同じ試験をした結果、Ru系触媒の
場合はS/Cが2.5以下、Ni系触媒を用いた場合に
はS/Cが3.5以下で、触媒上に炭素析出が認められ
た。On the other hand, as a result of the same test as above using the primary adsorption desulfurization naphtha with a sulfur content of 2 ppm, the S/C was 2.5 or less in the case of the Ru-based catalyst, and the S/C was 2.5 or less when the Ni-based catalyst was used. When S/C was 3.5 or less, carbon deposition was observed on the catalyst.
実施例1
第1図に示される燃料電池発電システムを用いて試験を
行った。なお、水蒸気改質装置としてRu触媒(Ru2
%、Aj!zo3担持)5Ω (がさ密度的0.8kg
/Ω)を充填した水蒸気改質装置(触媒層長さ約1m)
を用いた。また、脱硫装置としては、硝酸銅、硝酸亜鉛
及び硝酸アルミニウムを含釘する混合水溶液に、アルカ
リ物質として炭酸ナトリウム水溶液を加え、生じた沈澱
を洗浄及び濾取した後、高さ1/8インチX直径1/8
インチの大きさに打錠成型し、約400℃で焼成し、次
いで該焼成体(酸化銅45%、酸化亜鉛45%、酸化ア
ルミニウム10%)を水素2容量%を含む窒素ガスを用
いて、温度約200℃で還元して得られた銅−亜鉛−ア
ルミニウム脱硫剤5gを、市販のNi−Mo系水素添加
触媒5g及びZnO吸着脱硫剤1011の後流側に充填
した脱硫装置(脱硫層長さ約50cm)を用いた。Example 1 A test was conducted using the fuel cell power generation system shown in FIG. In addition, Ru catalyst (Ru2
%,Aj! zo3 carrying) 5Ω (gas density 0.8kg
/Ω) steam reformer (catalyst layer length approximately 1m)
was used. In addition, as a desulfurization device, a sodium carbonate aqueous solution is added as an alkaline substance to a mixed aqueous solution containing copper nitrate, zinc nitrate, and aluminum nitrate, and after washing and filtering the resulting precipitate, a 1/8 inch high Diameter 1/8
The tablets are compressed into inch-sized tablets, fired at about 400°C, and then the fired body (45% copper oxide, 45% zinc oxide, 10% aluminum oxide) is heated using nitrogen gas containing 2% by volume of hydrogen. A desulfurization device (desulfurization layer length (approximately 50 cm) was used.
原燃料として、下記第2表に示される成分から、なる都
市ガス13A(10ni″/h)を380℃に予熱した
後、0. 2 Nm’/hのリサイクル改質ガス(即ち
、−酸化炭素変成器からリサイクルされる燃料ガス)と
共に上記脱硫装置に導入して脱硫した。脱硫されたガス
をS/C−2,0、反応lH度450℃(入口)及び6
65℃(出口)、反応圧力0.2kg/c+f・Gで水
蒸気改質反応に付した。After preheating 13 A (10 ni''/h) of city gas consisting of the components shown in Table 2 below to 380°C as raw fuel, 0.2 Nm'/h of recycled reformed gas (i.e. -carbon oxide The desulfurized gas was introduced into the above-mentioned desulfurization equipment together with the fuel gas recycled from the shift converter (fuel gas recycled from the shift converter) and desulfurized.
A steam reforming reaction was carried out at 65° C. (outlet) and a reaction pressure of 0.2 kg/c+f·G.
水蒸気改質された燃料ガスは、市販の低温−酸化炭素変
成触媒(G−66B相当品)が充填された熱交換器型−
酸化炭素変成器にて、変成器出口温度190℃、反応圧
力0.2kg/c−・Gの条件下に変成した後、燃料電
池本体の燃料極に導き、酸化剤極に導入された空気極中
の酸素と反応させて、電気エネルギーを取り出した。The steam-reformed fuel gas is transferred to a heat exchanger type heat exchanger filled with a commercially available low-temperature carbon oxide shift catalyst (equivalent to G-66B).
After being transformed in a carbon oxide transformer under the conditions of a transformer outlet temperature of 190°C and a reaction pressure of 0.2 kg/c-G, the air electrode is guided to the fuel electrode of the fuel cell main body and introduced to the oxidizer electrode. By reacting with the oxygen inside, electrical energy was extracted.
第 2 表
メタン 86.9容量%エタン
8.1容量%プロパン
3,7容量%ブタン
1.3容量%付臭剤 ジメチルスルフィド 3+
ag−9/Nm’t−ブチルメルカプタン 2 mg
−8/ N m’上記の試験において、水蒸気改質装置
出口及び−酸化炭素変成器出口における燃料ガスの組成
を調べた。その結果を第3表に示す(単位は体積%、以
下同様)。Table 2 Methane 86.9% by volume Ethane
8.1% by volume propane
3.7% by volume butane
1.3% by volume odorant dimethyl sulfide 3+
ag-9/Nm't-butyl mercaptan 2 mg
-8/N m' In the above test, the composition of the fuel gas at the steam reformer outlet and the -carbon oxide shift converter outlet was investigated. The results are shown in Table 3 (unit: volume %, same below).
(以下余白)
第 3 表
水蒸気改質 −酸化炭素
装置出口 変成益田11
H258,569,2
CH43,93,9
CO11,50,8
CO26,817,6
H2019,38,5
また、脱硫、装置出口におけるガス中の硫黄含有量を経
時的に測定したが、2000時間経過後も硫黄含有量は
01lppb以下であり、水蒸気改質触媒は2000時
間経過後においても触媒活性の劣化は認められず、反応
開始直後と同様な活性を維持しており、低S/Cにおい
ても燃料電池は正常に作動した。(Left below) Table 3 Steam reforming - carbon oxide equipment outlet Metamorphic Masuda 11 H258,569,2 CH43,93,9 CO11,50,8 CO26,817,6 H2019,38,5 Also, desulfurization, at the equipment outlet The sulfur content in the gas was measured over time, and even after 2000 hours, the sulfur content was below 0.1 lppb, and no deterioration of the catalytic activity of the steam reforming catalyst was observed even after 2000 hours, indicating that the reaction had started. The same activity as immediately after was maintained, and the fuel cell operated normally even at low S/C.
比較例1
実施例1において、S/Cを3.0とする以外は実施例
1と同様にして試験を行い、水蒸気改質装置出口及び−
酸化炭素変成器出口における燃料ガスの組成を調べた。Comparative Example 1 A test was conducted in the same manner as in Example 1 except that the S/C was set to 3.0, and the steam reformer outlet and -
The composition of the fuel gas at the carbon oxide transformer outlet was investigated.
その結果を第4表に示す。The results are shown in Table 4.
第 4 表
水蒸気改質 −酸化炭素
装置出口 変成器出口
H253,761,6
CH41,41,4
Co 8. 2 0.3CO28,
015,9
H2028,720,8
上記第4表に示されるように、S/C−3,0とした場
合、−酸化炭素変成器から排出される燃料ガス中の水蒸
気含有量は著しく増大し、その結果、水素含有量は減少
した。Table 4 Steam reforming - Carbon oxide device outlet Shift converter outlet H253,761,6 CH41,41,4 Co 8. 2 0.3CO28,
015,9 H2028,720,8 As shown in Table 4 above, when S/C-3,0, the water vapor content in the fuel gas discharged from the carbon oxide shift converter increases significantly, As a result, the hydrogen content decreased.
比較例2
実施例1の銅−亜鉛−アルミニウム脱硫剤の代わりに、
市販の7.no@着脱着脱合剤量充填した脱硫装置を用
いる以外は、実施例1と同様の燃料電池発電装置を用い
て、実施例1と同様な試験を行った。Comparative Example 2 Instead of the copper-zinc-aluminum desulfurization agent of Example 1,
Commercially available 7. The same test as in Example 1 was conducted using the same fuel cell power generation device as in Example 1, except that a desulfurization device filled with the amount of no@attachment/detachment/demixing agent was used.
その結果、反応開始直後の脱硫装置出口のガスの硫黄含
有量は、0.2ppmであり、その後もほぼ変わらなか
ったが、500時間経過後から改質装置の出口でメタン
のスリップが増大し、燃料電池の電気出力が低下し始め
、やがて、装置を停止せざるをえなくなった。このとき
改質触媒はほぼ完全に劣化していた。As a result, the sulfur content of the gas at the desulfurizer outlet immediately after the start of the reaction was 0.2 ppm, and remained almost unchanged thereafter, but after 500 hours, the methane slip at the reformer outlet increased. The fuel cell's electrical output began to decline, and eventually the device had to be shut down. At this time, the reforming catalyst had almost completely deteriorated.
実施例2
原燃料として、フルレンジナフサ(硫黄含有量100p
pm100pp/hを気化し、380℃に予熱した後、
0. 2 Nm’/hのリサイクル改質ガスと共に実
施例1と同様の脱硫装置に導入して脱硫した。脱硫した
ガスを実施例1と同様に水蒸気改質反応に付し、燃料電
池を作動させた。Example 2 Full range naphtha (sulfur content 100p) was used as raw fuel.
After vaporizing pm100pp/h and preheating to 380℃,
0. It was introduced into the same desulfurization apparatus as in Example 1 together with 2 Nm'/h of recycled reformed gas for desulfurization. The desulfurized gas was subjected to a steam reforming reaction in the same manner as in Example 1, and the fuel cell was operated.
上記の試験において、水蒸気改質装置出口及び−酸化炭
素変成器出口における燃料ガスの組成を調べた。その結
果を第5表に示す。In the above test, the composition of the fuel gas at the steam reformer outlet and the carbon oxide shift converter outlet was investigated. The results are shown in Table 5.
(以下余白)
第 5 表
水蒸気改質 −酸化炭素
装置出口 変成器出口
H253,566、I
CH43,43,4
CO13,61,0
CO29,3° 22.0
H2020,27,6
また、脱硫装置出口におけるガス中の硫黄含有量を経時
的に測定したが、2000時間経過後も硫黄含有量はo
、1ppb以下であり、水蒸気改質触媒は2000時間
経過後においても触媒活性の劣化は認められず、反応開
始直後と同様な活性を維持しており、低S/Cにおいて
も燃料電池は正常に作動した。(Left below) Table 5 Steam reforming - Carbon oxide device outlet Shift converter outlet H253,566, I CH43,43,4 CO13,61,0 CO29,3° 22.0 H2020,27,6 Also, desulfurization device outlet The sulfur content in the gas was measured over time, and even after 2000 hours, the sulfur content remained
, 1 ppb or less, and the steam reforming catalyst shows no deterioration in catalytic activity even after 2000 hours, maintaining the same activity as immediately after the start of the reaction, and the fuel cell operates normally even at low S/C. It worked.
比較例3
比較例2と同様の装置を用いて、実施例2と同様の試験
を行った。Comparative Example 3 The same test as in Example 2 was conducted using the same apparatus as in Comparative Example 2.
その結果、反応開始直後の脱硫装置出口のガスの硫黄含
有量は、0.4ppmであり、その後もほぼ変わらなか
ったが、200時間経過後から改質装置の出口で原料炭
化水素のスリップが増大し、燃料電池の電気出力が低下
し始め、やがて、装置を停止せざるをえなくな゛った。As a result, the sulfur content of the gas at the desulfurizer outlet immediately after the start of the reaction was 0.4 ppm, and remained almost unchanged thereafter, but after 200 hours, the slip of the feedstock hydrocarbon at the reformer outlet increased. However, the electrical output of the fuel cell began to decline, and eventually the equipment had to be shut down.
このとき改質触媒はほぼ完全に劣化していた。At this time, the reforming catalyst had almost completely deteriorated.
実施例3
原燃料として、LPG (硫黄含有量5ppm)10Ω
/hを気化し、380℃に予熱した後、0、 2 Nm
’/ hのリサイクル改質ガスと共に実施例1と同様の
脱硫装置に導入して脱硫した。脱硫したガスを実施例1
と同様に水蒸気改質反応に付し、燃料電池を作動させた
。Example 3 LPG (sulfur content 5ppm) 10Ω as raw fuel
After vaporizing /h and preheating to 380 °C, 0.2 Nm
It was introduced into the same desulfurization apparatus as in Example 1 together with recycled reformed gas of 1/h to perform desulfurization. Example 1 of desulfurized gas
The fuel cell was operated by subjecting it to a steam reforming reaction in the same manner as above.
上記の試験において、水蒸気改質装置出口及び−酸化炭
素変成器出口における燃料ガスの組成を調べた。その結
果を第6表に示す。In the above test, the composition of the fuel gas at the steam reformer outlet and the carbon oxide shift converter outlet was investigated. The results are shown in Table 6.
(以下余白)
第 6 表
水蒸気改質 −酸化炭素
装置出口 変成器出口
H254,867,0
CH43,53,5
Co 13.1 0.9CO28,6
20,8
H2020,07,8
また、脱硫装置出口におけるガス中の硫黄含有量を経時
的にa!1定したが、2000時間経過後も硫黄含有量
は0.1ppb以下であり、水蒸気改質触媒は2000
時間経過後においても触媒活性の劣化は認められず、反
応開始直後と同様な活性を維持しており、低S/Cにお
いても燃料電池は正常に作動した。(Left below) Table 6 Steam reforming - Carbon oxide unit outlet Shift converter outlet H254,867,0 CH43,53,5 Co 13.1 0.9CO28,6
20,8 H2020,07,8 In addition, the sulfur content in the gas at the desulfurization equipment outlet was measured over time by a! 1, but even after 2000 hours the sulfur content was below 0.1 ppb, and the steam reforming catalyst
No deterioration of the catalyst activity was observed even after the passage of time, and the same activity as immediately after the start of the reaction was maintained, and the fuel cell operated normally even at low S/C.
比較例4
比較例2と同様の装置を用いて、実施例3と同様の試験
を行った。Comparative Example 4 Using the same apparatus as Comparative Example 2, the same test as in Example 3 was conducted.
その結果、反応開始直後の脱硫装置出口のガスのに黄金
有量は、0.2ppmであり、その後もほぼ変わらなか
ったが、500時間経過後から改質装置の出口で原料炭
化水素のスリップが増大し、燃料電池の電気出力が低下
し始め、やがて、装置を停止せざるをえなくなった。こ
のとき改質触媒はほぼ完全に劣化していた。As a result, the amount of gold in the gas at the outlet of the desulfurization equipment immediately after the start of the reaction was 0.2 ppm, which remained almost unchanged thereafter, but after 500 hours, slipping of feedstock hydrocarbons at the exit of the reformer started to occur. The electrical output of the fuel cell began to decrease, and eventually the device had to be shut down. At this time, the reforming catalyst had almost completely deteriorated.
実施例4
第2図に示される燃料電池発電システムを用いて試験を
行なった。なお、水蒸気改質装置として、Ru触媒(R
u2%、Al+203担持)5g (かさ密度約0.8
kg/jりを充填した水蒸気改質装置(触媒層長さ約1
m)を用いた。また、脱硫装置としては、硝酸銅及び硝
酸亜鉛を含有する混合水溶液に、アルカリ物質として炭
酸ナトリウム水溶液を加え、生じた沈澱を洗浄及び濾取
した後、高さ1/8インチX直径1/8インチの大きさ
に打鍵成型し、約300℃で焼成し、次いで、該焼成体
[銅:亜鉛−約1:1(原子比)]を、水素2容量%を
含む窒素ガスを用いて温度約200℃で還元処理して得
られた銅−亜鉛脱硫剤20Ωを充填した脱硫装置(脱硫
層長さ約50cm)を用いた。Example 4 A test was conducted using the fuel cell power generation system shown in FIG. In addition, as a steam reformer, Ru catalyst (R
u2%, Al+203 supported) 5g (bulk density approx. 0.8
Steam reformer filled with 1 kg/j (catalyst layer length approx. 1
m) was used. In addition, as a desulfurization device, a sodium carbonate aqueous solution is added as an alkaline substance to a mixed aqueous solution containing copper nitrate and zinc nitrate, and after washing and filtering the resulting precipitate, The sintered body [copper:zinc - about 1:1 (atomic ratio)] is heated to about 300°C using nitrogen gas containing 2% by volume of hydrogen. A desulfurization device (desulfurization layer length: about 50 cm) filled with 20Ω of a copper-zinc desulfurization agent obtained by reduction treatment at 200° C. was used.
原燃料として、実施例1で用いた都市ガス13Aを加熱
器で170℃に予熱した後、10m’/hで上記脱硫装
置に導入して脱硫した。脱硫されたガスを水蒸気改質装
置に導入し、S/C−2,2、反応温度450℃(入口
)及び665℃(出口)、反応圧力0.2kg/cd・
Gで水蒸気改質反応に付した。水蒸気改質された燃料ガ
スは、市販の低温−酸化炭素変成触媒(G−66B相当
品)が充填された熱交換器型−酸化炭素変成器にて、変
成器出口温度190℃、反応圧力0.2kg/cd・G
の条件下に変成した後、燃料電池本体の燃料極に導き、
酸化剤極に導入された空気中の酸素と反応させて、電気
エネルギーを取り出した。As the raw fuel, the city gas 13A used in Example 1 was preheated to 170° C. with a heater, and then introduced into the desulfurization apparatus at a rate of 10 m'/h to be desulfurized. The desulfurized gas was introduced into a steam reformer, S/C-2,2, reaction temperature 450°C (inlet) and 665°C (outlet), reaction pressure 0.2kg/cd・
It was subjected to a steam reforming reaction at G. The steam-reformed fuel gas is passed through a heat exchanger-type carbon oxide shift converter filled with a commercially available low-temperature carbon oxide shift catalyst (equivalent to G-66B) at a temperature of 190°C at the outlet of the converter and a reaction pressure of 0. .2kg/cd・G
After being metamorphosed under the following conditions, it is guided to the fuel electrode of the fuel cell body,
Electrical energy was extracted by reacting with the oxygen in the air introduced into the oxidizer electrode.
上記の試験において、水蒸気改質装置出口及び−酸化炭
素変成器出口における燃料ガスの組成を調べた。その結
果を第7表に示す。In the above test, the composition of the fuel gas at the steam reformer outlet and the carbon oxide shift converter outlet was investigated. The results are shown in Table 7.
(以下余白)
第 7 表
水蒸気改質 −酸化炭素
装置出口 変成品出II
H257,667,8
CH43,13,1
CO10,70,6
CO27,217,4
H2021,311,1
また、脱硫装置出口におけるガス中の硫黄含有量を経時
的にΔか1定したが、2000時間経過後も硫黄含有量
は0.1ppb以下であり、水蒸気改質触媒は2000
時間経過後においても触媒活性の劣化は認められず、反
応開始直後と同様な活性を維持しており、低S/Cにお
いても燃料電池は正常に作動した。(Left below) Table 7 Steam reforming - Carbon oxide equipment outlet Transformed product II H257,667,8 CH43,13,1 CO10,70,6 CO27,217,4 H2021,311,1 Also, at the desulfurization equipment outlet The sulfur content in the gas was fixed at Δ or 1 over time, but even after 2000 hours, the sulfur content was less than 0.1 ppb, and the steam reforming catalyst
No deterioration of the catalyst activity was observed even after the passage of time, and the same activity as immediately after the start of the reaction was maintained, and the fuel cell operated normally even at low S/C.
実施例5
実施例4において、水蒸気改質触媒としてNi系触媒(
Ni含有量14%)を用い、またS/Cを2,5とする
以外は、実施例4と同様な試験を行った。Example 5 In Example 4, a Ni-based catalyst (
The same test as in Example 4 was conducted except that Ni content was 14%) and S/C was 2.5.
上記の試験において、水蒸気改質装置出口及び−酸化炭
素変成器出口における燃料ガスの組成を調べた。その結
果を第8表に示す。また、脱硫装置出口におけるガス中
の硫黄含有量は2000時間経過後も硫黄合釘量は0.
1ppb以下であり、水蒸気改質触媒は2000時間経
過後においても触媒活性の劣化は認められず、反応開始
直後と同様な活性を維持しており、低S/Cにおいても
燃料電池は正常に作動した。In the above test, the composition of the fuel gas at the steam reformer outlet and the carbon oxide shift converter outlet was investigated. The results are shown in Table 8. In addition, the sulfur content in the gas at the desulfurization equipment outlet remained 0.0% even after 2000 hours.
1 ppb or less, and the steam reforming catalyst shows no deterioration in catalytic activity even after 2000 hours, maintaining the same activity as immediately after the start of the reaction, and the fuel cell operates normally even at low S/C. did.
第 8 表
水蒸気改質 −酸化炭素
装置出口 変成器出口
H256,265,5
CH42,32,3
CO9,70,4
CO27,616,9
H2024,214,9
〈発明の効果〉
本発明の燃料ガスの製造方法によれば、脱硫剤として銅
−亜鉛系脱硫剤が用いられており、原燃料を高度に脱硫
することができ、後続の水蒸気改質反応における水蒸気
改質触媒の肢毒が抑制されるので、低S/Cにおいても
水蒸気改質反応かり能で、水素分圧の高い燃料ガスを得
ることができるという効果を奏する。さらに、水蒸気改
質触媒が高活性を長時間維持するので、少量の改質触媒
で燃料電池を長期間安定的に作動させることができ、改
質装置が小型化できる。Table 8 Steam reforming - Carbon oxide device outlet Shift converter outlet H256,265,5 CH42,32,3 CO9,70,4 CO27,616,9 H2024,214,9 <Effects of the invention> The fuel gas of the present invention According to the manufacturing method, a copper-zinc desulfurization agent is used as the desulfurization agent, which can highly desulfurize the raw fuel and suppress the poisoning of the steam reforming catalyst in the subsequent steam reforming reaction. Therefore, even at a low S/C, it is possible to obtain fuel gas with high hydrogen partial pressure with sufficient steam reforming reaction efficiency. Furthermore, since the steam reforming catalyst maintains high activity for a long time, the fuel cell can be stably operated for a long time with a small amount of reforming catalyst, and the reformer can be made smaller.
第1図及び第2図は、本発明の燃料ガスの製造方法を用
いたリン酸燃料電池発電システムの概略図、
第3図は、従来のリン酸燃料電池発電システムの概略図
、
第4図は、水蒸気改質反応におけるS/Cと触媒上への
炭素析出量の関係を示す図である。
1・・・原燃料 2a・・・水添脱硫器2b
・・・銅−亜鉛系脱硫器 3・・・混合器4・・・水蒸
気改質装置 5・・・−酸化炭素変成器6・・・リン
酸燃料電池本体
7・・・燃料極 8・・・コンプレッサー9
・・・空気 10・・・酸化剤極11・・
・バーナー 12・・・熱交換器13・・・凝
縮器 14・・・給水ライン15・・・給水
ポンプ IB・・・冷却水ポンプ17・・・熱交
換器 18・・・気水分離器19・・・電気負
荷1 and 2 are schematic diagrams of a phosphoric acid fuel cell power generation system using the fuel gas production method of the present invention, FIG. 3 is a schematic diagram of a conventional phosphoric acid fuel cell power generation system, and FIG. 4 1 is a diagram showing the relationship between S/C and the amount of carbon deposited on a catalyst in a steam reforming reaction. 1... Raw fuel 2a... Hydrodesulfurizer 2b
Copper-zinc desulfurizer 3 Mixer 4 Steam reformer 5 Carbon oxide shift converter 6 Phosphoric acid fuel cell body 7 Fuel electrode 8...・Compressor 9
...Air 10...Oxidizer electrode 11...
・Burner 12...Heat exchanger 13...Condenser 14...Water supply line 15...Water supply pump IB...Cooling water pump 17...Heat exchanger 18...Steam water separator 19 ...electrical load
Claims (1)
燃料電池の燃料ガスの製造方法において、原燃料を銅−
亜鉛系脱硫剤を用いて脱硫し、次いで原燃料と水蒸気と
を原燃料中の炭化水素の炭素1モル当り水蒸気が0.7
〜2.5モルの割合で混合した後、Ru系触媒を用いた
水蒸気改質反応に付し、原燃料を水素を主成分とする燃
料ガスに変換する工程を含むことを特徴とするリン酸電
解液燃料電池の燃料ガスの製造方法。 2、水素を主成分とする燃料ガスを用いるリン酸電解液
燃料電池の燃料ガスの製造方法において、原燃料を銅−
亜鉛系脱硫剤を用いて脱硫し、次いで原燃料と水蒸気と
を原燃料中の炭化水素の炭素1モル当り水蒸気が1.5
〜3.5モルの割合で混合した後、Ni系触媒を用いた
水蒸気改質反応に付し、原燃料を水素を主成分とする燃
料ガスに変換する工程を含むことを特徴とするリン酸電
解液燃料電池の燃料ガスの製造方法。 3、原燃料の硫黄含有量を5ppb以下に脱硫する請求
項1又は2記載のリン酸電解液燃料電池の燃料ガスの製
造方法。 4、原燃料の硫黄含有量を0.1ppb以下に脱硫する
請求項3記載のリン酸電解液燃料電池の燃料ガスの製造
方法。 5、銅−亜鉛系脱硫剤が、銅化合物及び亜鉛化合物を用
いる共沈法により調製した酸化銅−酸化亜鉛混合物を水
素還元して得られた脱硫剤、又は銅化合物、亜鉛化合物
及びアルミニウム化合物を用いる共沈法により調製した
酸化銅−酸化亜鉛−酸化アルミニウム混合物を水素還元
して得られた脱硫剤である請求項1乃至4のいずれかに
記載のリン酸電解液燃料電池の燃料ガスの製造方法。[Claims] 1. In a method for producing fuel gas for a phosphoric acid electrolyte fuel cell using fuel gas containing hydrogen as a main component, the raw fuel is copper-based.
Desulfurization is performed using a zinc-based desulfurization agent, and then the raw fuel and steam are mixed so that the amount of steam is 0.7 per mole of hydrocarbon carbon in the raw fuel.
Phosphoric acid characterized by comprising a step of mixing the raw fuel at a ratio of ~2.5 moles and then subjecting it to a steam reforming reaction using a Ru-based catalyst to convert the raw fuel into a fuel gas containing hydrogen as the main component. A method for producing fuel gas for an electrolyte fuel cell. 2. In the method for producing fuel gas for a phosphoric acid electrolyte fuel cell using fuel gas containing hydrogen as the main component, the raw fuel is copper-based.
Desulfurization is performed using a zinc-based desulfurization agent, and then the raw fuel and steam are mixed so that the amount of steam is 1.5 per mole of hydrocarbon carbon in the raw fuel.
Phosphoric acid characterized by including a step of mixing the raw fuel at a ratio of ~3.5 moles and then subjecting it to a steam reforming reaction using a Ni-based catalyst to convert the raw fuel into a fuel gas containing hydrogen as the main component. A method for producing fuel gas for an electrolyte fuel cell. 3. The method for producing fuel gas for a phosphoric acid electrolyte fuel cell according to claim 1 or 2, wherein the sulfur content of the raw fuel is desulfurized to 5 ppb or less. 4. The method for producing fuel gas for a phosphoric acid electrolyte fuel cell according to claim 3, wherein the sulfur content of the raw fuel is desulfurized to 0.1 ppb or less. 5. The copper-zinc desulfurization agent is a desulfurization agent obtained by hydrogen reduction of a copper oxide-zinc oxide mixture prepared by a coprecipitation method using a copper compound and a zinc compound, or a copper compound, a zinc compound, and an aluminum compound. Production of a fuel gas for a phosphoric acid electrolyte fuel cell according to any one of claims 1 to 4, which is a desulfurizing agent obtained by hydrogen reduction of a copper oxide-zinc oxide-aluminum oxide mixture prepared by a coprecipitation method. Method.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1125771A JP2828661B2 (en) | 1989-05-18 | 1989-05-18 | Method for producing fuel gas for phosphoric acid electrolyte fuel cell |
EP90907417A EP0427869B1 (en) | 1989-05-16 | 1990-05-15 | Fuel cell power generation system |
PCT/JP1990/000607 WO1990014305A1 (en) | 1989-05-16 | 1990-05-15 | Fuel cell power generation system |
DK90907417.1T DK0427869T3 (en) | 1989-05-16 | 1990-05-15 | Energy producing fuel cell system |
DE69008669T DE69008669T2 (en) | 1989-05-16 | 1990-05-15 | FUEL CELL WITH POWER GENERATION SYSTEM. |
CA002033064A CA2033064C (en) | 1989-05-16 | 1990-05-15 | Fuel cell power generation system |
US07/921,596 US5302470A (en) | 1989-05-16 | 1992-07-31 | Fuel cell power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1125771A JP2828661B2 (en) | 1989-05-18 | 1989-05-18 | Method for producing fuel gas for phosphoric acid electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02307803A true JPH02307803A (en) | 1990-12-21 |
JP2828661B2 JP2828661B2 (en) | 1998-11-25 |
Family
ID=14918429
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1125771A Expired - Lifetime JP2828661B2 (en) | 1989-05-16 | 1989-05-18 | Method for producing fuel gas for phosphoric acid electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2828661B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006068069A1 (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co., Ltd. | Liquid fuel for fuel cell and method of desulfurization |
JP2009149509A (en) * | 2009-01-19 | 2009-07-09 | Toyota Motor Corp | Electric motorcar |
JP2010170900A (en) * | 2009-01-23 | 2010-08-05 | Osaka Gas Co Ltd | Solid oxide fuel cell |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511376A (en) * | 1978-07-10 | 1980-01-26 | Matsushita Electric Ind Co Ltd | Bothhside circuit board and method of manufacturing same |
JPS55144089A (en) * | 1979-04-26 | 1980-11-10 | Osaka Gas Co Ltd | Steam-reforming of heavy hydrocarbon |
JPS60238389A (en) * | 1984-05-11 | 1985-11-27 | Osaka Gas Co Ltd | Method for high-order desulfurization of gas |
JPH01123628A (en) * | 1987-11-05 | 1989-05-16 | Osaka Gas Co Ltd | Production of high temperature-resistant high-order desulfurizing agent |
-
1989
- 1989-05-18 JP JP1125771A patent/JP2828661B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511376A (en) * | 1978-07-10 | 1980-01-26 | Matsushita Electric Ind Co Ltd | Bothhside circuit board and method of manufacturing same |
JPS55144089A (en) * | 1979-04-26 | 1980-11-10 | Osaka Gas Co Ltd | Steam-reforming of heavy hydrocarbon |
JPS60238389A (en) * | 1984-05-11 | 1985-11-27 | Osaka Gas Co Ltd | Method for high-order desulfurization of gas |
JPH01123628A (en) * | 1987-11-05 | 1989-05-16 | Osaka Gas Co Ltd | Production of high temperature-resistant high-order desulfurizing agent |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006068069A1 (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co., Ltd. | Liquid fuel for fuel cell and method of desulfurization |
JP2009149509A (en) * | 2009-01-19 | 2009-07-09 | Toyota Motor Corp | Electric motorcar |
JP2010170900A (en) * | 2009-01-23 | 2010-08-05 | Osaka Gas Co Ltd | Solid oxide fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP2828661B2 (en) | 1998-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5302470A (en) | Fuel cell power generation system | |
AU2003261776B2 (en) | Fuel Cell Electrical Power Generation System | |
US6984372B2 (en) | Dynamic sulfur tolerant process and system with inline acid gas-selective removal for generating hydrogen for fuel cells | |
JP2003502812A (en) | Method for providing a pure hydrogen stream for a fuel cell | |
JP2001524739A (en) | Cover gas and starting gas supply system for solid oxide fuel cell power plant | |
US8945784B2 (en) | Hydrogen production apparatus and fuel cell system using the same | |
US6551732B1 (en) | Use of fuel cell cathode effluent in a fuel reformer to produce hydrogen for the fuel cell anode | |
KR20040038911A (en) | Integrated fuel processor, fuel cell stack and tail gas oxidizer with carbon dioxide removal | |
US20050271913A1 (en) | Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system | |
KR20140103141A (en) | Process for producing an adjustable gas composition for fuel cells | |
JP4161147B2 (en) | Hydrogen production equipment | |
Katikaneni et al. | The direct carbonate fuel cell technology: advances in multi-fuel processing and internal reforming | |
JP4292362B2 (en) | Polymer electrolyte fuel cell power generation system and polymer electrolyte fuel cell power generation method | |
KR20020096932A (en) | A process for preparing a low-sulfur reformate gas for use in a fuel cell system | |
JPH02302302A (en) | Power generation system of fuel cell | |
KR20010075696A (en) | Apparatus for producing hydrogen gas and fuel cell system using the same | |
JP4931865B2 (en) | Solid polymer fuel cell power generation system and solid polymer fuel cell power generation method | |
JP2003132926A (en) | Reformer for fuel cell generator | |
JPH02307803A (en) | Production of gaseous fuel for phosphoric acid electrolyte fuel cell | |
JP3050850B2 (en) | Fuel cell power generation system | |
JP5098073B2 (en) | Energy station | |
JP2001085039A (en) | Fuel cell system | |
JPH0927337A (en) | Fuel cell power generating system | |
JP2002020103A (en) | Method for starting and method for stopping hydrogen producing device | |
JP3608872B2 (en) | Fuel cell power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080918 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080918 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090918 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090918 Year of fee payment: 11 |