JPH02307515A - Electrodialyzer - Google Patents

Electrodialyzer

Info

Publication number
JPH02307515A
JPH02307515A JP12644589A JP12644589A JPH02307515A JP H02307515 A JPH02307515 A JP H02307515A JP 12644589 A JP12644589 A JP 12644589A JP 12644589 A JP12644589 A JP 12644589A JP H02307515 A JPH02307515 A JP H02307515A
Authority
JP
Japan
Prior art keywords
electrodialysis
anion exchange
raw water
exchange membrane
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12644589A
Other languages
Japanese (ja)
Inventor
Tetsuyoshi Ishida
哲義 石田
Koujirou Yamada
山田 紘二郎
Setsuo Inoue
井上 節夫
Fumihiko Kanenobu
兼信 文彦
Eiji Inada
稲田 栄治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12644589A priority Critical patent/JPH02307515A/en
Publication of JPH02307515A publication Critical patent/JPH02307515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently wash an anion exchange membrane by equipping an electrodialysis tank, an ultrasonic piezoelectric element and an energizing controlling part and furthermore equipping a concn. controlling part of fluid. CONSTITUTION:In the case of removing humic acid stuck on an anion exchange membrane, a pump 14 of pH regulating liquid is driven to add the liquid of a tank 13 of pH regulating liquid and also an ultrasonic piezoelectric element is driven. Raw water 12 drawn up by a drawing up pump 6 is mixed with the liquid in the tank 13 which has been introduced by the pump 14 and stored in a raw water tank 9. The raw water 12 stored in the raw water tank 9 is supplied to an electrodialysis tank 1. Thereby the electrically attracting force of both humic acid and the exchange group of the anion exchange membrane is eliminated. Humic acid stuck on the surface of the anion exchange membrane can be easily separated and the anion exchange membrane can be easily regenerated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気透析槽に用いられる陰イオン交換膜の有
機(主にフミン酸)汚染からの再生装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for regenerating anion exchange membranes used in electrodialyzers from organic (mainly humic acid) contamination.

〔従来の技術〕[Conventional technology]

電気透析槽は、陽イオン交換膜と陰イオン交換膜が交互
に多数積層した透析室群、この透析室群の両端に電極を
有する構造である。この電気透析槽を用いて電気透析を
する場合、JI氷水中フミン酸(腐植酸:土壌または低
石炭化度の石炭質中に存するアルカリに可溶で酸に不溶
のかっ色〜黒色の無定形酸性有機質、化学大辞典、共立
出版より引用)が含有されていると、このフミン酸が透
析室群内の陰イオン交換膜に吸着する。ここで、吸着と
は、フミン酸イオンが電気的力で陰イオン変換膜の交換
基と付着状態になることをいう。このフミン酸が陰イオ
ン交換膜に吸着すると、so4”’等の2価イオン選択
透過性が低下し、電気透析性能が低下する問題がある。
An electrodialysis tank has a structure including a group of dialysis chambers in which a large number of cation exchange membranes and anion exchange membranes are stacked alternately, and electrodes at both ends of this group of dialysis chambers. When performing electrodialysis using this electrodialysis tank, JI humic acid in ice water (humic acid: a brown to black amorphous form soluble in alkalis and insoluble in acids that exists in soil or coal with a low degree of carbonization) If the humic acid contains acidic organic substances (quoted from Chemistry Encyclopedia, Kyoritsu Shuppan), this humic acid will be adsorbed to the anion exchange membrane in the dialysis room group. Here, adsorption means that humate ions become attached to the exchange groups of the anion conversion membrane by electric force. When this humic acid is adsorbed on the anion exchange membrane, there is a problem that the selective permeability of divalent ions such as so4'' is decreased, and the electrodialysis performance is decreased.

はなはだしい場合は、透析電圧が上昇して、運転不能と
なる問題に発展する。この現象は、陰イオン交換膜の有
機汚染といわれている。
If the situation is severe, the dialysis voltage will rise, leading to a problem where the system cannot be operated. This phenomenon is called organic contamination of the anion exchange membrane.

このため、従来、有機汚染により、透析性能が低下した
陰イオン交換膜の透過性を回復させる方法として、含ハ
ロゲン酸化剤を含む溶液に陰イオン交換膜を接触する方
法(特開昭53−65281号公報)が提案されている
。しかしながら、該方法は、含ハロゲン酸化剤の濃度が
ハロゲン元素として10,000〜10ppmとし、p
Hについては10以下、処理温度は、5〜40℃が好ま
しいとの詳細な規定がある。このため、この規定を遵守
し、かつ、膜に吸着したフミン酸量に対応した時間の洗
浄を行なうことは、高度な洗浄法となり、容易に行えな
い欠点があった。この際、洗浄が不足すると、十分にフ
ミン酸等の除去が行われないこと、逆に、洗浄が過大と
なると、陰イオン交換膜が含ハロゲン酸化剤によって破
壊される問題があった。また、このフミン酸が吸着する
のは、陰イオン交換膜の脱塩室側表面であり、他の膜面
には、はとんど吸着していない、このため、従来の洗浄
作業を行うと、フミン酸の付着量が少ないイオン交換膜
は破損される危険もあった。
For this reason, as a method for restoring the permeability of an anion exchange membrane whose dialysis performance has decreased due to organic contamination, a method has been proposed in which the anion exchange membrane is brought into contact with a solution containing a halogen-containing oxidizing agent (Japanese Patent Laid-Open No. 53-65281). No. 2) has been proposed. However, in this method, the concentration of the halogen-containing oxidizing agent is 10,000 to 10 ppm as a halogen element, and p
There are detailed regulations that H is preferably 10 or less and the treatment temperature is preferably 5 to 40°C. Therefore, complying with this regulation and carrying out cleaning for a time corresponding to the amount of humic acid adsorbed on the membrane requires a sophisticated cleaning method, which has the drawback of not being easy to carry out. At this time, there is a problem that if the cleaning is insufficient, humic acid and the like are not removed sufficiently, and conversely, if the cleaning is excessive, the anion exchange membrane is destroyed by the halogen-containing oxidizing agent. In addition, this humic acid is adsorbed on the surface of the anion exchange membrane facing the demineralization chamber, and is rarely adsorbed on other membrane surfaces.For this reason, when conventional cleaning work is performed, However, ion exchange membranes with a small amount of humic acid adhering to them were at risk of being damaged.

また、従来、無機塩類溶液と接触させる方法(特開昭5
1−71288号公報)が提案されている。しかしなが
ら、該方法は、一般にその劣化した2価イオン選択性を
充分に再生するには多意の塩を必要とし、又、調整のた
めのタンク等の設備も必要とする。しかも、濃度がかな
り高いため、再生処理時に、イオン交換膜が膨潤、伸縮
をおこし、亀裂等の物理的劣化をうけやすくなる問題が
あった。
In addition, conventionally, a method of contacting with an inorganic salt solution (Unexamined Japanese Patent Publication No. 5
1-71288) has been proposed. However, this method generally requires a variety of salts to sufficiently regenerate the degraded divalent ion selectivity, and also requires equipment such as a tank for adjustment. Moreover, since the concentration is quite high, there is a problem that the ion exchange membrane swells, expands and contracts during the regeneration process, and becomes susceptible to physical deterioration such as cracks.

また、電気透析装置を通電状態で超音波洗浄を行う方法
(特開昭53−142987号公報)が提案されている
。しかしながら、該方法は、電気的力によって強固に吸
着しているフミン酸を超音によって離脱するには、極端
に強い超音波を加える必要があり、実用的でない問題が
あった。
Furthermore, a method has been proposed (Japanese Unexamined Patent Publication No. 53-142987) in which ultrasonic cleaning is performed while an electrodialysis device is energized. However, this method has the problem of being impractical because it is necessary to apply extremely strong ultrasonic waves in order to use ultrasonic waves to detach humic acids that are strongly adsorbed by electric force.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記3種の従来技術のうち第1の洗浄方法は、作業性に
ついて配慮がされておらず、方法を間違えると、直ちに
、フミン酸の付着していない表面のイオン交換膜を破損
する問題があった。
The first cleaning method among the three conventional techniques mentioned above does not take into account workability, and if the method is used incorrectly, there is a problem that the ion exchange membrane on the surface to which humic acid is not attached will be immediately damaged. Ta.

また、第2の洗浄方法は、経済的に高価な装置となると
ともに、イオン交換膜が物理的劣化を受けやすい問題が
あった。更に第3の洗浄方法は実用的でない問題があっ
た。
Further, the second cleaning method requires an economically expensive device and has the problem that the ion exchange membrane is susceptible to physical deterioration. Furthermore, the third cleaning method had the problem of being impractical.

本発明の目的は、電気透析槽を分解することなく陰イオ
ン交換膜を効率的に洗浄する装置を提供し、陰イオン交
換膜を再生することにある。
An object of the present invention is to provide an apparatus for efficiently cleaning an anion exchange membrane without disassembling an electrodialyzer, and to regenerate the anion exchange membrane.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、陰イオン交換膜に付着したフミン酸を離脱
しやすくすることにより達成される。
The above object is achieved by making it easier to remove humic acid attached to the anion exchange membrane.

すなわち1本発明に係る電気透析装置は、陽極板と陰極
板との間に交互に設置される陽イオン交換膜及び陰イオ
ン交換膜を備えた電気透析槽と。
That is, an electrodialysis apparatus according to the present invention includes an electrodialysis tank including a cation exchange membrane and an anion exchange membrane alternately installed between an anode plate and a cathode plate.

この電気透析槽内の陰イオン交換膜を加振し得る位置に
配設された超音波圧電素子と、この超音波圧電素子への
通電は前記電気透析槽が非通電状態のときに行なわれる
よう制御する通電制御部と、を備えたものである。ここ
で、更に超音波圧電素子への通電時に電気透析室内の流
体として原水又は原水より塩濃度が高い溶液を供給する
流体濃度制御部を備えたものがよい、また、超音波圧電
素子への通電時に電気透析室内の流体のpHを7以上と
する流体pI(制御部を備えたものがよい。
The ultrasonic piezoelectric element is disposed at a position where it can vibrate the anion exchange membrane in the electrodialysis tank, and the electricity is supplied to the ultrasonic piezoelectric element when the electrodialysis tank is in a non-energized state. and an energization control section for controlling the power supply. Here, it is preferable to further include a fluid concentration control unit that supplies raw water or a solution with a higher salt concentration than the raw water as the fluid in the electrodialysis chamber when energizing the ultrasonic piezoelectric element. A fluid pI (preferably equipped with a control unit) that sometimes adjusts the pH of the fluid in the electrodialysis chamber to 7 or higher.

また、本発明は、陽極板と陰極板との間に交互に設置さ
れる陽イオン交換膜及び陰イオン交換膜を備えた電気透
析槽と、この電気透析槽内の陰イオン交換膜を加振し得
る位置に配設された超音波圧電素子と、この超音波圧電
素子への通電は前記電気透析槽への印加電流の方向が通
常の透析運転時とは逆としたときに行なわれるよう制御
する通電制御部と、を備えたものである。
Further, the present invention provides an electrodialysis tank having cation exchange membranes and anion exchange membranes installed alternately between an anode plate and a cathode plate, and an anion exchange membrane in the electrodialysis tank that is vibrated. an ultrasonic piezoelectric element disposed at a position where the ultrasonic piezoelectric element can be controlled, and energization of the ultrasonic piezoelectric element is controlled so that the direction of the current applied to the electrodialysis tank is reversed from that during normal dialysis operation. and an energization control section.

〔作用〕[Effect]

電気透析槽を非通電状態とすると、陰イオン交換膜への
フミン酸の電気的吸着力が解放された状態となる。した
がって、通電状態より非通電状態としたほうが、フミン
酸は離脱しやすく、洗い流されやすい、そこで、超音波
で加振すると、陰イオン交換膜に吸着したフミン酸の陰
イオン交換膜からの離脱を促進できる。
When the electrodialysis tank is de-energized, the electrical adsorption force of humic acid to the anion exchange membrane is released. Therefore, it is easier for humic acid to detach and be washed away in a non-energized state than in a energized state.Therefore, when vibrated with ultrasonic waves, the humic acid adsorbed on the anion exchange membrane can be easily separated from the anion exchange membrane. Can be promoted.

フミン酸は、塩濃度が低い液中より塩濃度が高い液中に
おいて、溶解度が高い、このため、脱塩室内は脱塩処理
された低塩濃度の液体より、処理前の原水そのままのほ
うが、陰イオン交換膜に付着したフミン酸は溶解しやす
く、離脱しやすくなる。したがって、脱塩室内の陰イオ
ン交換膜表面に付着したフミン酸は1M水を使用したほ
うが洗い流されやすい。
Humic acid has a higher solubility in a solution with a high salt concentration than in a solution with a low salt concentration. Therefore, it is better to use unprocessed raw water in the desalination chamber than to use a desalinated liquid with a low salt concentration. Humic acid attached to the anion exchange membrane is easily dissolved and easily detached. Therefore, humic acid adhering to the surface of the anion exchange membrane in the demineralization chamber is more easily washed away by using 1M water.

また、フミン酸は、アルカリ性溶液に溶けやすいため、
透析槽に供給される原水のpHを7以上にすると、陰イ
オン交換膜に付着したフミン酸は溶解しやすく、離脱し
やすくなる。
In addition, humic acid is easily soluble in alkaline solutions, so
When the pH of the raw water supplied to the dialysis tank is set to 7 or higher, humic acid attached to the anion exchange membrane is easily dissolved and easily detached.

また、電気透析槽の逆向の印加電流を供給した状態は、
一層フミン酸が陰イオン交換膜から離しやすい。
In addition, the state where an applied current in the opposite direction of the electrodialysis tank is supplied is as follows.
It is easier for humic acid to separate from the anion exchange membrane.

(実施例〕 第1図に、本発明の一実施例である電気透析装置を示す
、電気透析装置は、電気透析槽1と直流電源5.原水く
み上げポンプ6、脱塩水ポンプ7、濃縮水ポンプ8.[
水タンク9.pH調整液タンク13.pH調整液ポンプ
14等から構成されており、超音波圧電素子20.21
が電気透析槽1のケーシング表面に、他の超音波圧電素
子22が電気透析槽1の接続配管表面に設置されている
(Example) Fig. 1 shows an electrodialysis apparatus which is an embodiment of the present invention. 8. [
Water tank9. pH adjustment liquid tank 13. It consists of a pH adjustment liquid pump 14, etc., and an ultrasonic piezoelectric element 20.21
is installed on the surface of the casing of the electrodialysis tank 1, and another ultrasonic piezoelectric element 22 is installed on the surface of the connecting piping of the electrodialysis tank 1.

このとき、超音波圧電素子は電気透析槽1の内部。At this time, the ultrasonic piezoelectric element is inside the electrodialysis tank 1.

電気透析槽1の接続配管内に1a置してもよい。It may be placed 1a in the connecting pipe of the electrodialysis tank 1.

電気透析装置の通常運転である透析処理運転時は、つぎ
のようにする、この透析処理運転時は。
During dialysis processing operation, which is the normal operation of the electrodialysis machine, the following procedure is performed during this dialysis processing operation.

pH調整液ポンプ14及び超音波圧電素子は駆動されな
い、原水くみ上げポンプ6によってくみ上げられた原水
12は、原水タンク9内に、−担蓄えられた後、脱塩水
ポンプ7及び濃度水ポンプ8によって、電気透析槽1へ
供給される。電気透析槽1は、陽イオン交換膜と陰イオ
ン交換膜を交互に多数並べられた透析室群2、陽極室3
、陰極室4から主に構成されている。脱塩水ポンプ7に
よって、原水タンク9内の原水の一部が透析室群2内の
脱塩水を生成する室(脱塩室)へ供給される。
The pH adjustment liquid pump 14 and the ultrasonic piezoelectric element are not driven.The raw water 12 pumped up by the raw water pump 6 is stored in the raw water tank 9, and then pumped by the desalted water pump 7 and the concentrated water pump 8. It is supplied to the electrodialysis tank 1. The electrodialysis tank 1 includes a dialysis chamber group 2 and an anode chamber 3 in which a large number of cation exchange membranes and anion exchange membranes are arranged alternately.
, and a cathode chamber 4. A part of the raw water in the raw water tank 9 is supplied by the desalted water pump 7 to a room (desalination room) in the dialysis room group 2 that generates desalted water.

濃縮水ポンプ8によって、原水タンク9内の原水の一部
が、透析室群2内の濃縮水を生成する室(濃縮室)、陽
極室3、陰極室4に供給される。
A part of the raw water in the raw water tank 9 is supplied by the concentrated water pump 8 to a chamber for generating concentrated water (concentration chamber) in the dialysis room group 2 , an anode chamber 3 , and a cathode chamber 4 .

このとき、陽極室3内と陰極室4内の電極の間に直流を
印加すると、脱塩室を通過した原水は脱塩水15濃縮室
を通過した原水は濃縮水16となる。
At this time, when a direct current is applied between the electrodes in the anode chamber 3 and the cathode chamber 4, the raw water that has passed through the demineralization chamber becomes demineralized water 15 and the raw water that has passed through the concentration chamber becomes concentrated water 16.

この運転を長期間(半年以下)続けると、原水中のフミ
ン酸は陰イオンの一つであるため、透析室群2内におい
て、電気的に陽極方向に移動し。
If this operation is continued for a long period of time (less than half a year), since humic acid in the raw water is an anion, it will electrically move toward the anode within the dialysis room group 2.

陰イオン交換基を有する陰イオン交換膜Aの表面に吸着
する。陽イオン交換膜は陰イオン交換基を有しないため
フミン酸は吸着しない、第3図に、このフミン酸の吸着
状況のモデルを示す。陰イオン交換膜Aに付着したフミ
ン酸は、硫酸イオンSO,z−等の2価の陰イオンの透
過を困難とする。
It is adsorbed on the surface of anion exchange membrane A having anion exchange groups. Since the cation exchange membrane does not have anion exchange groups, humic acid is not adsorbed. Fig. 3 shows a model of this humic acid adsorption situation. Humic acid attached to the anion exchange membrane A makes it difficult for divalent anions such as sulfate ions SO, z- to pass through.

このような2価の陰イオンの透過が困難となると、本発
明になるフミン酸を除去する運転を行う。
When it becomes difficult for such divalent anions to pass through, the operation for removing humic acid according to the present invention is performed.

フミン酸除去の運転は、っぎのようにする、pH調整液
ポンプ14を駆動し、pH調整液タンク13内の液(p
Hを7以上とするため、アルカリ性溶液、たとえば水酸
化ナトリウム溶液)を添加するとともに超音波圧電素子
を駆動する。電気透析槽1には、電流は印加されない。
The humic acid removal operation is as shown below.The pH adjusting liquid pump 14 is driven to remove the liquid (p) in the pH adjusting liquid tank 13.
In order to make H 7 or more, an alkaline solution (eg, sodium hydroxide solution) is added and the ultrasonic piezoelectric element is driven. No current is applied to the electrodialyzer 1.

原水くみ上げポンプ6によってくみ上げられた原水12
は、途中、pH調整液ポンプ14によって注入されたp
H調整液タンク13内の液と混合され、原水タンク9に
蓄えられる。原水タンク9内に蓄えられた滴水12は、
通常運転の電気透析状態と同様に電気透析槽1に供給さ
れる。しがし、このフミン酸除去運転では、電気透析槽
に電流が印加されていないため、透析室−2内の脱塩室
及び濃縮室を通過した原水の濃度は変化せずに、電気透
析槽外1へ排出される。
Raw water 12 pumped up by raw water pump 6
is the p injected by the pH adjustment liquid pump 14 on the way.
It is mixed with the liquid in the H adjustment liquid tank 13 and stored in the raw water tank 9. The dripping water 12 stored in the raw water tank 9 is
It is supplied to the electrodialysis tank 1 in the same manner as in the normal operating electrodialysis state. However, in this humic acid removal operation, no current is applied to the electrodialysis tank, so the concentration of the raw water that has passed through the desalination chamber and concentration chamber in dialysis room-2 does not change, and the electrodialysis tank It is discharged to outside 1.

なお、原水がアルカリ性溶液であれば、pH調整波タン
ク13、pHa整液水液ポンプ14要となる。
Note that if the raw water is an alkaline solution, a pH adjustment wave tank 13 and a pH adjustment water pump 14 are required.

本発明の一実施例によれば、電気透析槽1への電流の印
加を中止した状態でフミン酸の除去を行うため、フミン
酸と陰イオン交換膜の交換基の電気的吸着力がなくなり
、陰イオン交換膜表面のフミン酸は容易に離脱できるよ
うな状況が得られる。
According to one embodiment of the present invention, since humic acid is removed while the application of current to the electrodialyzer 1 is stopped, the electrical adsorption force between humic acid and the exchange group of the anion exchange membrane is eliminated. A situation is obtained in which humic acid on the surface of the anion exchange membrane can be easily removed.

また、電気透析槽1へ供給される原水のpHを7以上と
するため、陰イオン交換膜表面に吸着したフミン酸が原
水中に再び溶解し、除去されやすい状況が得られる。
Moreover, since the pH of the raw water supplied to the electrodialysis tank 1 is set to 7 or more, a situation is obtained in which humic acid adsorbed on the anion exchange membrane surface is easily dissolved in the raw water and easily removed.

再に、電気透析槽1へ供給される原水に超音波振動を加
えると、上記したフミン酸の陰イオン交換膜からの離脱
及び原水への再溶解が促進される効果が得られる。
If ultrasonic vibration is again applied to the raw water supplied to the electrodialysis tank 1, the effect of promoting the above-mentioned separation of humic acid from the anion exchange membrane and re-dissolution into the raw water can be obtained.

本発明の他の実施例を第2図に示す1本発明は。Another embodiment of the invention is shown in FIG.

従来の電気透析装置に、原水と同様の電解質を有し、原
水より高濃度の濃縮原水のタンク25及び濃縮原水ポン
プ26を追設するものである。
A tank 25 and a concentrated raw water pump 26 for concentrated raw water having the same electrolyte as the raw water and having a higher concentration than the raw water are added to the conventional electrodialysis apparatus.

この実施例も、前記実施例と同様に、フミン酸を除去す
る運転に関するものであり、原水くみ上げポンプ6によ
ってくみ上げられた原水12に、濃縮原水を注入するも
のである。
Like the previous embodiment, this embodiment also relates to an operation for removing humic acid, and involves injecting concentrated raw water into the raw water 12 pumped up by the raw water pump 6.

この実施例の効果は、陰イオン交換膜表面に吸着したフ
ミン酸が原水中に再び溶解し、除去されやすい状況が得
られる。
The effect of this embodiment is that humic acid adsorbed on the surface of the anion exchange membrane is redissolved in the raw water and is easily removed.

なお、この実施例を前記実施例と合せて行うと、一層、
フミン酸の陰イオン交換膜からの除去が促進される効果
が得られる。また、pHが7以上の濃縮原水を用いると
、各タンク25と13、各ポンプ26と14は共用でき
、各々1個とできる。
Note that if this example is performed in conjunction with the above example, even more
The effect of promoting the removal of humic acid from the anion exchange membrane can be obtained. Furthermore, when concentrated raw water with a pH of 7 or more is used, the tanks 25 and 13 and the pumps 26 and 14 can be used in common, and can be reduced to one each.

更に、電気透析槽の電位を透析処理時と逆にすると、す
なわち、逆向の印加電流を供給すると。
Furthermore, when the potential of the electrodialyzer is reversed to that during dialysis treatment, that is, when an applied current in the opposite direction is supplied.

陰イオン交換膜に吸着したフミン酸に離脱する電気的力
を加えることができ、フミン酸の除去を促進できる効果
が得られる。
It is possible to apply an electric force to the humic acid adsorbed on the anion exchange membrane to cause it to detach, thereby achieving the effect of promoting the removal of humic acid.

実施例 1 呉湾の海水を原水とし、500ppm以下の淡水を製造
する電気透析装置において1年4ケ月連続して透析処理
を行った電気透析槽の2価イオンの選択性(FSO4)
は0.32に低下していた。
Example 1 Divalent ion selectivity (FSO4) of an electrodialysis tank that used seawater from Kure Bay as raw water and performed dialysis treatment continuously for 1 year and 4 months in an electrodialysis machine that produces freshwater of 500 ppm or less
had decreased to 0.32.

電気透析槽は透析室群の通電面の寸法が125×175
0、脱塩室と濃縮室の対数が200である。
The dimensions of the electrically conductive surface of the dialysis room group of the electrodialysis tank are 125 x 175.
0, and the logarithm of the demineralization chamber and concentration chamber is 200.

出力200Wの超音波圧電素子を陽極室と陰極室のケー
シングにそれぞれ2個、透析室群への原水供給配管内に
1個設置した。
Two ultrasonic piezoelectric elements with an output of 200 W were installed in the casings of the anode chamber and the cathode chamber, and one in the raw water supply piping to the dialysis room group.

そこで、電気透析槽への通電を停止し、脱塩室内へ原水
を供給しながら、十分時間を経過した後20分間超音波
圧電素子を駆動した。そして、再び電気透析槽へ通電し
、海水の透析処理を行った。
Therefore, the power to the electrodialysis tank was stopped, and while supplying raw water into the desalination chamber, the ultrasonic piezoelectric element was driven for 20 minutes after a sufficient period of time had elapsed. Then, electricity was supplied to the electrodialysis tank again to perform dialysis treatment of seawater.

その結果、F 804は1.20となり再生していた。As a result, F804 was 1.20 and was being reproduced.

ここで。here.

濃縮側へ移した硫酸イオン量 脱塩開始時脱塩側塩素イオン量 である。Amount of sulfate ions transferred to the concentration side Amount of chlorine ions on the desalination side at the start of desalination It is.

実施例 2 上記電気透析槽で、同様に、2価イオンの選択性(FS
O4)が0.32に低下したところで、原水に水酸化ナ
トリウムを添加し、pHを8.5〜9.2にした。この
原水を通電を停止した電気透析槽に供給し、十分時間を
経過した後、8分間超音波圧電素子を駆動した。そして
、再び電気透析槽に通電し、海水の透析処理を行った。
Example 2 In the above electrodialysis tank, the selectivity of divalent ions (FS
When O4) decreased to 0.32, sodium hydroxide was added to the raw water to adjust the pH to 8.5-9.2. This raw water was supplied to the electrodialysis tank with the electricity stopped, and after a sufficient period of time, the ultrasonic piezoelectric element was driven for 8 minutes. Then, the electrodialysis tank was energized again to perform dialysis treatment of seawater.

その結果、FJ!04は1.05となり再生していた。As a result, FJ! 04 was 1.05 and was being played.

実施例 3 上記電気透析槽で、同様に、 FSO4が0.32に低
下したところで、原水に食塩を添加して全食塩濃度を8
%とした。この原水を通電を停止した電気透析槽に供給
し、十分時間を経過した後、15分間超音波圧電素子を
駆動した。そして、再び電気透析槽に通電し、海水の透
析処理を行った。
Example 3 In the above electrodialysis tank, when FSO4 decreased to 0.32, salt was added to the raw water to bring the total salt concentration to 8.
%. This raw water was supplied to the electrodialysis tank with the electricity turned off, and after a sufficient period of time, the ultrasonic piezoelectric element was driven for 15 minutes. Then, the electrodialysis tank was energized again to perform dialysis treatment of seawater.

その結果、F so、は1.08となり再生していた。As a result, F so was 1.08 and was being regenerated.

(発明の効果〕 本発明によれば、フミン酸によって汚染された陰イオン
交換膜を簡単に再生できる効果が得られる。
(Effects of the Invention) According to the present invention, it is possible to easily regenerate an anion exchange membrane contaminated with humic acid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電気透析装置の一実施例を示す構
成図、第2図は他実施例を示す構成図、第3図は電気透
析槽内におけるフミン酸のイオン交換膜への吸着状態の
モデル図である。 1・・・電気透析槽、   3・・・陽極室。 4・・・陰極室、     A・・・陰イオン交換膜、
K・・・陽イオン交換膜。
Fig. 1 is a block diagram showing one embodiment of the electrodialysis device according to the present invention, Fig. 2 is a block diagram showing another embodiment, and Fig. 3 is the adsorption of humic acid to the ion exchange membrane in the electrodialysis tank. It is a model diagram of a state. 1... Electrodialysis tank, 3... Anode chamber. 4... Cathode chamber, A... Anion exchange membrane,
K...Cation exchange membrane.

Claims (1)

【特許請求の範囲】 1、陽極板と陰極板との間に交互に設置される陽イオン
交換膜及び陰イオン交換膜を備えた電気透析槽と、この
電気透析槽内の陰イオン交換膜を加振し得る位置に配設
された超音波圧電素子と、この超音波圧電素子への通電
は前記電気透析槽が非通電状態のときに行なわれるよう
制御する通電制御部と、を備えた電気透析装置。 2、請求項1において、超音波圧電素子への通電時に電
気透析室内の流体として原水又は原水より塩濃度が高い
溶液を供給する流体濃度制御部を備えた電気透析装置。 3、請求項1において、超音波圧電素子への通電時に電
気透析室内の流体のpHを7以上とする流体pH制御部
を備えた電気透析装置。 4、陽極板と陰極板との間に交互に設置される陽イオン
交換膜及び陰イオン交換膜を備えた電気透析槽と、この
電気透析槽内の陰イオン交換膜を加振し得る位置に配設
された超音波圧電素子と、この超音波圧電素子への通電
は前記電気透析槽への印加電流の方向が通常の透析運転
時とは逆としたときに行なわれるよう制御する通電制御
部と、を備えた電気透析装置。
[Claims] 1. An electrodialysis tank equipped with cation exchange membranes and anion exchange membranes installed alternately between an anode plate and a cathode plate, and an anion exchange membrane in the electrodialysis tank. An electric device comprising: an ultrasonic piezoelectric element disposed at a position where it can be vibrated; and an energization control unit that controls energization of the ultrasonic piezoelectric element so that it is performed when the electrodialysis tank is in a non-energized state. Dialysis machine. 2. The electrodialysis apparatus according to claim 1, further comprising a fluid concentration control section that supplies raw water or a solution with a higher salt concentration than the raw water as the fluid in the electrodialysis chamber when electricity is applied to the ultrasonic piezoelectric element. 3. The electrodialysis apparatus according to claim 1, further comprising a fluid pH control unit that adjusts the pH of the fluid in the electrodialysis chamber to 7 or more when electricity is applied to the ultrasonic piezoelectric element. 4. An electrodialysis tank equipped with cation exchange membranes and anion exchange membranes installed alternately between the anode plate and the cathode plate, and a position where the anion exchange membrane in the electrodialysis tank can be vibrated. an energization control unit that controls the disposed ultrasonic piezoelectric element and the energization of the ultrasonic piezoelectric element when the direction of the current applied to the electrodialysis tank is reversed from that during normal dialysis operation; An electrodialysis device equipped with and.
JP12644589A 1989-05-19 1989-05-19 Electrodialyzer Pending JPH02307515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12644589A JPH02307515A (en) 1989-05-19 1989-05-19 Electrodialyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12644589A JPH02307515A (en) 1989-05-19 1989-05-19 Electrodialyzer

Publications (1)

Publication Number Publication Date
JPH02307515A true JPH02307515A (en) 1990-12-20

Family

ID=14935392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12644589A Pending JPH02307515A (en) 1989-05-19 1989-05-19 Electrodialyzer

Country Status (1)

Country Link
JP (1) JPH02307515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102476031A (en) * 2010-11-30 2012-05-30 中国科学院过程工程研究所 Electrodialyzer with ultrasonic function
CN104229955A (en) * 2014-09-18 2014-12-24 中国地质大学 ED (electrodialysis) water treatment system with intelligent temperature-adjusting, voltage-adjusting and ultrasonic effects
JP2017508990A (en) * 2014-03-06 2017-03-30 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム Method and apparatus for measuring the conductivity of a fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102476031A (en) * 2010-11-30 2012-05-30 中国科学院过程工程研究所 Electrodialyzer with ultrasonic function
JP2017508990A (en) * 2014-03-06 2017-03-30 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム Method and apparatus for measuring the conductivity of a fluid
CN104229955A (en) * 2014-09-18 2014-12-24 中国地质大学 ED (electrodialysis) water treatment system with intelligent temperature-adjusting, voltage-adjusting and ultrasonic effects

Similar Documents

Publication Publication Date Title
JP4400924B2 (en) Pure water generator or soft water generator
TW201335077A (en) Electrodialysis with ion exchange and bi-polar electrodialysis
US20180304203A1 (en) Ceramic membrane system for silica removal and related methods
JPH02307515A (en) Electrodialyzer
KR20160117751A (en) System and method for generating fresh water
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP5673225B2 (en) Water treatment method and water treatment system
JP2010269288A (en) Method for producing organic acid
JP2001259644A (en) Pure water producer and pure water production method using the same
JP3290558B2 (en) Cleaning method for immersion type membrane cartridge
JP3944973B2 (en) Reverse osmosis membrane treatment method
JP2001017839A (en) Method and apparatus for reusing chemical liquid for surface treatment
JP3782217B2 (en) Desalination equipment
JP4599668B2 (en) Operation method of electrodeionization equipment
JP2003326272A (en) Electric regenerative demineralizer
JP2003136065A (en) Treatment apparatus of boiler feed water
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method
JPS6225419B2 (en)
JP3501339B2 (en) Electric deionized water production equipment
JP2022095010A (en) Water softening device
JP5640825B2 (en) Water treatment method and water treatment system
JP3024693B2 (en) Cleaning method for separation membrane for water treatment
JP6407734B2 (en) Operation method of electric deionized water production apparatus and pure water production system provided with electric deionized water production apparatus
JP3731847B2 (en) Chemical cleaning method for electric deionized water production equipment
JPH09323029A (en) Water desalting method and device therefor