JPH0230739B2 - DATSURYUZAINOSEIZOHOHO - Google Patents

DATSURYUZAINOSEIZOHOHO

Info

Publication number
JPH0230739B2
JPH0230739B2 JP57073377A JP7337782A JPH0230739B2 JP H0230739 B2 JPH0230739 B2 JP H0230739B2 JP 57073377 A JP57073377 A JP 57073377A JP 7337782 A JP7337782 A JP 7337782A JP H0230739 B2 JPH0230739 B2 JP H0230739B2
Authority
JP
Japan
Prior art keywords
desulfurization
agent
present
alumina cement
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57073377A
Other languages
Japanese (ja)
Other versions
JPS58193727A (en
Inventor
Hidetoshi Akimoto
Tadataka Murakami
Norio Arashi
Takao Hishinuma
Nobuaki Takami
Kimihiro Nonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57073377A priority Critical patent/JPH0230739B2/en
Publication of JPS58193727A publication Critical patent/JPS58193727A/en
Publication of JPH0230739B2 publication Critical patent/JPH0230739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は脱硫剤の製造方法に関し、特に流動床
燃焼装置の炉内脱流に好適な脱硫剤の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a desulfurizing agent, and more particularly to a method for producing a desulfurizing agent suitable for deflowing in a furnace of a fluidized bed combustion apparatus.

流動層ボイラ等の流動床燃焼装置は、従来のよ
うに燃焼装置外に排ガス脱硫装置を別置すること
なく、燃焼炉の流動床に脱硫剤を存在させ、炉内
脱硫を行なうことができるという利点がある。
Fluidized bed combustion equipment such as fluidized bed boilers can perform in-furnace desulfurization by having a desulfurizing agent present in the fluidized bed of the combustion furnace, without having to separately install an exhaust gas desulfurization device outside the combustion equipment as in conventional methods. There are advantages.

一般に、流動床ボイラにおける脱硫剤は、流動
床温度域(700〜1000℃)で、石炭の燃焼に伴つ
て生成する亜硫酸ガス(SO2)と反応する、流動
媒体を兼ねた固体粒子である。しかし、一般に高
温における固体粒子とSO2との反応性は高くない
ので、脱硫剤は過剰に添加する必要がある。添加
脱硫剤の過剰率は、脱硫レベルによつて決められ
るが、高い脱硫率を達成しようとするほど多くな
り、このような場合、使用済脱硫剤を廃棄するこ
とは、廃棄物量が多くなり、その処理が問題とな
ることから、これを再成し循環使用することが望
まれる。
Generally, the desulfurization agent in a fluidized bed boiler is a solid particle that also serves as a fluidizing medium and reacts with sulfur dioxide gas (SO 2 ) generated as coal is burned in the fluidized bed temperature range (700 to 1000° C.). However, since the reactivity between solid particles and SO 2 is generally not high at high temperatures, it is necessary to add an excess of the desulfurization agent. The excess rate of added desulfurization agent is determined by the desulfurization level, but the higher the desulfurization rate is achieved, the higher the excess rate. Since its treatment poses a problem, it is desirable to regenerate and recycle it.

従来、脱硫剤としては主に、石灰石、ドロマイ
ト等の安価な天然の含カルシウム鉱物が使用され
ているがSO2との反応性(脱硫性)が充分高くな
いため、過剰に添加しなければならず、さらに流
動床内での摩耗強度が高くないために粉化飛散に
よる損失が多く、脱硫・再成を繰り返し使用する
には問題がある。このため、一方では、繰返し使
用できる人工の合成脱硫剤の研究も進められ、こ
れまでにチタン酸バリウム、酸化カルシウムをア
ルミナに担持したもの、アルミナセメント等が提
案されている。これらのうち、アルミナセメント
は工業的に大量に生産され、他の合成脱硫剤より
安価で入手しやすく、有望なものと考えられる。
しかし、アルミナセメントそのものは、溶融状の
ものを冷却固化したものであり、強度的には優れ
ているが、内部細孔がほとんどないため、被脱硫
ガスとの反応では粒子表面しか利用されないこと
になり、数百μm〜数mmの数径でアルミナセメン
トをそのまま脱硫剤として用いることには無理が
ある。そこでアルミナセメントを流動床ボイラの
脱硫剤として用いるには、通常、市販の数+μm
以下の微粉末を水と混練して水和硬化させ、流動
床ボイラに適した粒径にペレツト化する方法がと
られている。しかし、この方法においては造粒工
程が必要であり、さらに造粒の際に均一に水和固
化するには理論水和量以上の水分添加が必要で、
このことは一般に脱硫剤の強度を低下させること
になり、繰返し使用する脱硫剤にとつては好まし
いことではない。
Conventionally, inexpensive natural calcium-containing minerals such as limestone and dolomite have been mainly used as desulfurizing agents, but their reactivity with SO 2 (desulfurizing properties) is not high enough, so they must be added in excess. Furthermore, since the abrasion strength in the fluidized bed is not high, there is a lot of loss due to powdering and scattering, and there is a problem in repeatedly using desulfurization and regeneration. For this reason, on the other hand, research into artificial synthetic desulfurization agents that can be used repeatedly is progressing, and so far barium titanate, calcium oxide supported on alumina, alumina cement, etc. have been proposed. Among these, alumina cement is industrially produced in large quantities, is cheaper and easier to obtain than other synthetic desulfurization agents, and is considered to be promising.
However, alumina cement itself is made by cooling and solidifying a molten substance, and although it has excellent strength, it has almost no internal pores, so only the particle surface is used in the reaction with the desulfurized gas. Therefore, it is impossible to use alumina cement as it is as a desulfurization agent with a diameter of several hundred μm to several mm. Therefore, in order to use alumina cement as a desulfurization agent in a fluidized bed boiler, it is usually necessary to
A method is used in which the following fine powders are kneaded with water, hydrated and hardened, and pelletized to a particle size suitable for a fluidized bed boiler. However, this method requires a granulation step, and in order to achieve uniform hydration and solidification during granulation, it is necessary to add water in excess of the theoretical hydration amount.
This generally reduces the strength of the desulfurizing agent, which is not desirable for desulfurizing agents that are used repeatedly.

本発明の目的は、上記従来の脱硫剤の有する欠
点を除き、脱硫性能が良好で、しかも再成繰返し
使用可能で損耗の少ない脱硫剤の製造方法を提供
することにある。
An object of the present invention is to provide a method for producing a desulfurizing agent that eliminates the drawbacks of the conventional desulfurizing agents, has good desulfurizing performance, can be repeatedly reused, and has little wear and tear.

本発明者は、流動床ボイラ等の脱硫において、
再生可能で、しかも耐久性が良好な脱硫剤を種々
追求し、アルミナセメントクリンカーを原料する
本発明の脱硫剤の製造方法に到達したものであ
る。
The present inventor has discovered that in desulfurization of fluidized bed boilers, etc.
We have searched for various desulfurizing agents that are recyclable and have good durability, and have finally arrived at the method for producing a desulfurizing agent of the present invention using alumina cement clinker as a raw material.

本発明の脱硫剤の製造方法は、通常市販されて
いる微粉末アルミナセメントの前工程で製造され
る塊状のアルミナセメントクリンカーを流動床ボ
イラの流動媒体に適するように破枠して粒径調整
を行つた後、水に浸潰して粒子内部にまで水和さ
せ、その後加熱脱水することを特徴とする。
The method for producing the desulfurization agent of the present invention involves breaking the bulk alumina cement clinker, which is usually produced in the pre-process of commercially available fine powder alumina cement, into a frame to make it suitable for the fluid medium of a fluidized bed boiler, and adjusting the particle size. After this, the particles are soaked in water to hydrate the inside of the particles, and then heated and dehydrated.

本発明に用いるアルミナセメントクリンカー
は、よく知られているように、その化学成分とし
てCaO35〜44%、Al2O335〜45%、Fe2O34〜20
%、SiO23〜11%を含み、水と速やかに結合し
て、2CaO・Al2O3・8H2O、Al2O3・3H2Oなど水
和化合物を生成する。
As is well known, the alumina cement clinker used in the present invention has chemical components of CaO 35-44%, Al 2 O 3 35-45%, Fe 2 O 3 4-20
%, SiO 2 3-11%, and quickly combines with water to form hydrated compounds such as 2CaO・Al 2 O 3・8H 2 O, Al 2 O 3・3H 2 O, etc.

本発明においては、予めセメントクリンカー粒
子を破砕し、流動床ボイラ内の流動条件に適する
ような粒径、一般には0.5〜3mmの範囲になるよ
うに粒径が調整される。しかる後、水を加え、粒
子内部まで水和反応せしめる。アルミナセメント
クリンカーは元来、半溶融状態から冷却固化させ
たものであるから、半ガラス状で気孔性に乏しい
ので、本発明の如く比較的粗大なクリンカー粒子
では、粒子表面から徐々にしか水和反応は進行せ
ず、内部まで水和反応を進行させるのに長時間を
要する。しかしながら、このようにして得られた
水和物は、後述の実施例で具体的に示すように、
通常のアルミナセメント微粉末を水と混練して水
和硬化させたものより強度的には一段と優れたも
のが得られ、しかも製造法も簡単である。
In the present invention, cement clinker particles are crushed in advance and the particle size is adjusted to a particle size suitable for the fluidization conditions in a fluidized bed boiler, generally in the range of 0.5 to 3 mm. After that, water is added to cause a hydration reaction to occur inside the particles. Since alumina cement clinker is originally cooled and solidified from a semi-molten state, it is semi-vitreous and has poor porosity. Therefore, with relatively coarse clinker particles as in the present invention, hydration occurs only gradually from the particle surface. The reaction does not proceed, and it takes a long time for the hydration reaction to proceed to the inside. However, the hydrate obtained in this way, as specifically shown in the examples below,
The strength is much superior to that obtained by kneading ordinary fine alumina cement powder with water and hydration-hardening it, and the manufacturing method is also simple.

本発明において、アルミナセメントクリンカー
破砕粒子の水浸時間は、脱硫性能に大きく影響
し、長時間ほど好ましい。粒径が小さいほど短時
間でよいが、0.5mm以上の粒径では少なくとも100
時間以上、好ましくは300時間以上で工程の許す
限り長時間の方がよい。また、水和の際、粒子同
志の接着は水和後、改めて粒度調整を行う必要が
あるので好ましくない。その防止策としては、水
への浸潰の初期において撹拌すればよい。粒子の
表面の水和が完了すれば、粒子同志が固着するこ
とはなく、初期の30〜50時間の撹拌で十分であ
る。上記のように水和した粒子は、加熱により水
を放出し、僅かの収縮を伴うが、水を放出したあ
との細孔が形成され多孔体となるので、脱硫性能
を有するに到る。
In the present invention, the water immersion time of the crushed alumina cement clinker particles greatly affects the desulfurization performance, and a longer time is preferable. The smaller the particle size, the shorter the time, but if the particle size is 0.5 mm or more,
It is better to carry out the treatment for as long as the process allows, preferably for at least 300 hours. Further, adhesion of particles to each other during hydration is not preferable since it is necessary to adjust the particle size again after hydration. To prevent this, stirring may be performed at the initial stage of immersion in water. Once the hydration of the surface of the particles is completed, the particles will not stick together, and stirring for an initial period of 30 to 50 hours is sufficient. The hydrated particles as described above release water when heated and undergo slight shrinkage, but after water is released, pores are formed and the particles become porous, so they have desulfurization performance.

以上のようにして得られた脱硫剤は700〜1000
℃の温度域で、酸素存在下で亜硫酸ガス(SO2
と容易に反応するが、この反応温度領域は、通常
の流動床ボイラの層温度が約700〜1000℃程度で
あることから、実用に適したものである。
The desulfurization agent obtained in the above manner has a concentration of 700 to 1000
Sulfur dioxide gas (SO 2 ) in the presence of oxygen at a temperature range of ℃
However, this reaction temperature range is suitable for practical use since the bed temperature of a normal fluidized bed boiler is about 700 to 1000°C.

SO2と反応した後の上記脱硫剤は、一酸化炭素
(CO)、水素(H2)、メタン(CH4)等の炭化水
素などの環元性ガスにより850℃〜1100℃好まし
くは950℃〜1100℃において、SO2を放出して再
成される。この場合、還元ガスの種類による影響
は、CO、H2、CH4のいずれかを使用してもほと
んど差はなかつた。したがつて、実際には流動床
ボイラで使用する石炭を不完全燃焼させて発生す
るガス(CO、H2を含む)などを用いた方が好適
である。
After reacting with SO 2 , the desulfurization agent is heated to 850°C to 1100°C, preferably 950°C, by a cyclic gas such as carbon monoxide (CO), hydrogen ( H2 ), and hydrocarbons such as methane ( CH4 ). At ~1100°C, it is regenerated with the release of SO2 . In this case, there was almost no difference in the effect of the type of reducing gas, whether CO, H 2 or CH 4 was used. Therefore, it is actually more suitable to use gas (including CO and H 2 ) generated by incomplete combustion of coal used in a fluidized bed boiler.

本発明によつて製造した脱硫剤は、流動床ボイ
ラの温度領域で脱硫性能を有し、また再生も850
℃以上で可能であり、且つ強度的に優れているこ
とから、脱硫・再生サイクルで問題となる脱硫剤
損耗が少いという効果がある。さらに、本発明の
脱硫剤は、前述のようにアルミナセメントクリン
カーを粗砕したものを用いるが、これは現在アル
ミナセメントの製造工程における微粉砕される前
のクリンカーを抜き出して粗砕し、適当な粒径の
ものを取り出して脱硫剤原料とすればよく、ここ
で生じた微細粒子は一般のアルミナセメント製造
の微粉砕工程に回せばよいので、脱硫剤の粒径調
整における損失は全くなく、また、セメントをさ
らにペレツト化する必要がないので製造工程が著
しく簡単であり、コスト面でも非常に有利であ
る。
The desulfurization agent produced according to the present invention has desulfurization performance in the temperature range of a fluidized bed boiler, and can be regenerated at 850 °C.
℃ or higher and has excellent strength, it has the effect of reducing desulfurization agent loss, which is a problem in the desulfurization/regeneration cycle. Furthermore, the desulfurization agent of the present invention uses coarsely crushed alumina cement clinker as described above, but this is done by extracting the clinker that has not been pulverized in the current alumina cement manufacturing process and coarsely crushing it. The particle size can be taken out and used as a desulfurizing agent raw material, and the fine particles generated here can be sent to the pulverization process for general alumina cement production, so there is no loss in adjusting the particle size of the desulfurizing agent. Since there is no need to further pelletize the cement, the manufacturing process is extremely simple, and it is also very advantageous in terms of cost.

以下、本発明を実施例により具体的に説明す
る。
Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 1 化学成分として、CaO37%、Al2O340%、
Fe2O316%(いずれも重量%)を有する塊状のア
ルミナセメントクリンカーをスクリーンミルで破
砕した後、粒径が0.5〜1.0mmの範囲のものを用
い、これを過剰の水中に投入し、撹拌しながら水
和させ、所定時間毎に取り出し、電気炉中で500
℃で1時間加熱脱水して、本発明の脱硫剤を製造
した。
Example 1 Chemical components: CaO 37%, Al 2 O 3 40%,
After crushing alumina cement clinker in the form of a block containing 16% Fe 2 O 3 (both weight %) with a screen mill, using particles with a particle size in the range of 0.5 to 1.0 mm, this was poured into excess water, Hydrate with stirring, take out at predetermined intervals, and heat in an electric furnace for 500 min.
The desulfurization agent of the present invention was produced by heating and dehydrating at ℃ for 1 hour.

また、上記アルミナセメントを200メツシユ
(74μm)以下に微粉砕し、この微粉末に対し、
各々46及び65重量%の水を加えて混練し、3日間
放置して水和硬化させた後、スクリーンミルで破
砕し、0.5〜1mmの粒径範囲のものを上記同様熱
処理して、本発明の比較例である他の脱硫剤を製
造した。
In addition, the above alumina cement is finely ground to 200 mesh (74 μm) or less, and to this fine powder,
After adding 46 and 65% by weight of water and kneading them, leaving them to stand for 3 days to cure by hydration, they were crushed with a screen mill, and the particles in the particle size range of 0.5 to 1 mm were heat-treated in the same manner as described above. Another desulfurizing agent was manufactured as a comparative example.

以上のようにして得た脱硫剤を用い、流動床脱
硫模擬試験を行つた。試験は、内径40mmの目皿付
の反応管に静止層高100mmの脱硫剤を充填し、電
気炉で850℃に温度保持しながら、0.3%SO2、3
%O2、10%H2O、残部N2の模擬ガスを管内流速
1m/sで流入させ脱硫剤を流動化させて出口
SO2濃度をモニターし、脱硫率の経時変化を追跡
した。
A fluidized bed desulfurization simulation test was conducted using the desulfurization agent obtained as described above. The test was carried out by filling a reaction tube with a perforated plate with an inner diameter of 40 mm with a desulfurizing agent with a static bed height of 100 mm, and heating it with 0.3% SO 2 , 3% while maintaining the temperature at 850°C in an electric furnace.
%O 2 , 10% H 2 O, and the balance N 2 are introduced into the pipe at a flow rate of 1 m/s to fluidize the desulfurization agent and exit the pipe.
The SO 2 concentration was monitored and the desulfurization rate was followed over time.

上記本発明により製造した脱硫剤と、上記水と
混練して水和硬化させて得た比較例の脱硫剤を対
比した測定結果を第1図に示す。図中1は水と全
く接触させないセメントクリンカー粒子である
が、脱硫性能はほとんど示さない。図中2、3、
4は、図中1の粒子を本発明に係る水との浸漬を
100、200300時間行つて得た脱硫剤で、浸漬時間
が長くなるほど脱硫性能は向上することがわか
る。図中点線5、6は微細アルミナセメント粒子
を水和硬化させて得た前記比較例の脱硫剤であ
り、点線5の脱硫剤は混水量46%、点線6のもの
は混水量65%で得たものであるが、混水量が多い
方が脱硫性能に優れていることが分る。
FIG. 1 shows the measurement results comparing the desulfurizing agent produced according to the present invention with the desulfurizing agent of a comparative example obtained by kneading with the water and hydrating and curing the desulfurizing agent. In the figure, 1 is a cement clinker particle that is not brought into contact with water at all, but shows almost no desulfurization performance. 2, 3, in the figure
4 shows the particles of 1 in the figure immersed in water according to the present invention.
It can be seen that the desulfurization performance of the desulfurization agents obtained after 100, 200, and 300 hours of immersion improves as the immersion time increases. In the figure, dotted lines 5 and 6 indicate the desulfurization agent of the comparative example obtained by hydration hardening of fine alumina cement particles. However, it can be seen that the desulfurization performance is better when the amount of mixed water is larger.

第1図の結果から、本発明に係る脱硫剤2,
3,4はアルミナセメント微粉末を水和硬化させ
て得た脱硫剤に近い性能を示すことが分る。
From the results shown in FIG. 1, desulfurization agent 2 according to the present invention,
It can be seen that samples 3 and 4 exhibit performance similar to that of a desulfurizing agent obtained by hydration-hardening of fine alumina cement powder.

再生型脱硫剤で、脱硫再生を繰返し使用される
ため、上記脱硫性能の他に再生性能、さらに耐摩
耗性に優れたものでなければならない。これら脱
硫再生繰返しでの摩耗粉化については、後述の実
施例で具体的に説明するが、摩耗粉化程度の目安
となる脱硫剤強度(耐圧強度)は、粒径によつて
も異なるが、本発明に係る2,3,4は大体5〜
10Kg、比較例の5は2〜4Kg、6は1〜3Kgで本
発明に係るものが強度的に優れていることが分つ
た。以上のように本発明方法により製造した脱硫
剤は、強度的に強く且つ、充分な脱硫性能を示
す。
Since it is a regenerated desulfurization agent and is used repeatedly for desulfurization and regeneration, it must have excellent regeneration performance and wear resistance in addition to the desulfurization performance described above. The abrasion powdering caused by repeated desulfurization regeneration will be specifically explained in the Examples below, but the desulfurizing agent strength (pressure strength), which is a guideline for the degree of abrasion powderization, varies depending on the particle size, but 2, 3, and 4 according to the present invention are approximately 5 to 5
It was found that the strength of Comparative Example 5 was 10 kg, Comparative Example 5 was 2 to 4 kg, and Comparative Example 6 was 1 to 3 kg. As described above, the desulfurization agent produced by the method of the present invention has strong strength and exhibits sufficient desulfurization performance.

実施例 2 実施例1の第1図中4に示した本発明方法によ
り製造した脱硫剤において、脱硫温度の適用性を
見るため、熱天秤により所定温度でSO2の吸収特
性を調べた。
Example 2 In order to examine the applicability of the desulfurization temperature in the desulfurization agent produced by the method of the present invention shown in 4 in FIG .

脱硫剤約2gを内径100mmの反応管に吊された
石英バスケツトに入れて所定温度に保ち、これに
SO20.3%、O24%、水分8%、残部N2の模擬ガス
を1/mmの流速で流通させ、脱硫剤のSO2との
反応に伴う重量変化を熱天秤により検出した。
Approximately 2 g of desulfurization agent is placed in a quartz basket suspended in a reaction tube with an inner diameter of 100 mm, maintained at a specified temperature, and then
A simulated gas containing 0.3% SO 2 , 4% O 2 , 8% moisture, and the balance N 2 was passed through at a flow rate of 1/mm, and the weight change due to the reaction of the desulfurizing agent with SO 2 was detected using a thermobalance.

各温度において、100分後のSO2吸収量を測定
した結果を第2図に示す。本発明に係る脱硫剤は
700〜1000℃好ましくは800〜1000℃において脱硫
性能を有することが分る。
Figure 2 shows the results of measuring the amount of SO 2 absorbed after 100 minutes at each temperature. The desulfurizing agent according to the present invention is
It can be seen that it has desulfurization performance at 700 to 1000°C, preferably 800 to 1000°C.

実施例 3 本発明方法により製造した脱硫の再生性能をみ
るために、実施例1の脱硫後の脱硫剤4を用い、
実施例2と同じ装置で所定温度に保ち、CO3%、
残部N2のガスを1/mmの速度で流通させ、還
元に伴なう重量変化を経時的に測定し、重量減少
が認められなくなつた後、空気を流入させて冷却
後、試料を取出し、脱硫剤中の硫黄分を固体中硫
黄分析計を用いて測定して、還元前の硫黄分に対
する減少率から再生率を求めた。各温度における
再生率を第3図に示す。750℃以上で再生反応が
行なわれ、温度が高いほど反応率が高く、特に
850℃〜1100℃で良好に再生されることが分る。
Example 3 In order to examine the regeneration performance of desulfurization produced by the method of the present invention, desulfurization agent 4 after desulfurization of Example 1 was used,
Maintained at a specified temperature using the same equipment as in Example 2, CO3%,
Gas with the remainder N 2 flowing through it at a rate of 1/mm, measuring the weight change over time due to reduction, and after no weight loss is observed, air is introduced to cool it down, and then the sample is taken out. The sulfur content in the desulfurization agent was measured using a solid sulfur analyzer, and the regeneration rate was determined from the reduction rate relative to the sulfur content before reduction. Figure 3 shows the regeneration rate at each temperature. The regeneration reaction takes place above 750℃, and the higher the temperature, the higher the reaction rate, especially
It can be seen that good regeneration is achieved between 850°C and 1100°C.

尚、本実験においては、還元ガスとして、CO
の他にH2、CH3を用いたが、結果は第3図とほ
ぼ同じであり、COの他にこれら環元ガスも用い
られることがわかつた。
In addition, in this experiment, CO was used as the reducing gas.
In addition, H 2 and CH 3 were used, but the results were almost the same as in Figure 3, indicating that these ring gases can also be used in addition to CO.

実施例 4 実施例1において、850℃で脱硫後、炉内温度
を950℃にしてCO3%、N2残部のガスを管内流速
1m/sで流入させて流動化させ、出口ガスを
SO2分析計で監視し、SO2発生が認められなくな
るまで還元再生し、さらに実施例1に従つて脱硫
し、また再生を繰返した。脱硫・再生を1サイク
ルしこれを20回繰返した後、抜き出して脱硫剤の
重量を測定し、もとの脱硫剤の重量との減少量か
ら1サイクル当りの摩耗粉化率を求めた。その結
果、本発明に係る第1図中2および4の脱硫剤で
は0.02%であつたが、比較例の5および6の脱硫
剤ではそれぞれ0.05%および0.08%であり、本発
明方法により製造した脱硫剤は摩耗が少ないこと
が分つた。
Example 4 In Example 1, after desulfurization at 850°C, the temperature inside the furnace was raised to 950°C, and gases containing CO3% and the remainder N2 were flowed at a flow rate of 1 m/s into the pipe to fluidize, and the outlet gas was
Monitoring was performed using an SO 2 analyzer, and reductive regeneration was performed until no SO 2 generation was observed, followed by desulfurization and regeneration in accordance with Example 1. After one cycle of desulfurization and regeneration was repeated 20 times, the weight of the desulfurizing agent was measured, and the abrasion powdering rate per cycle was determined from the amount of decrease from the weight of the original desulfurizing agent. As a result, it was 0.02% for the desulfurizing agents 2 and 4 in FIG. It was found that the desulfurization agent caused less wear.

以上の実施例は、本発明方法により製造した脱
硫剤を、流動床ボイラのような流動床燃焼装置に
用いる場合について述べたものであるが、本発明
方法により製造した脱硫剤は、流動床燃焼装置の
みならず、移動床反応装置など、脱硫剤の耐摩耗
性、耐久性が要求される反応装置にも適用するこ
とができる。
The above examples describe the case where the desulfurizing agent produced by the method of the present invention is used in a fluidized bed combustion device such as a fluidized bed boiler. It can be applied not only to apparatuses but also to reaction apparatuses such as moving bed reactors that require wear resistance and durability of the desulfurizing agent.

以上、本発明によれば、良好な脱硫および再生
性能を有する上、従来のアルミナセメントを水と
混和してペレツト化したものより、粉化損失が少
なく、繰返し再生循環可能な脱硫剤を比較的簡単
に、かつ安価に製造することができる。
As described above, according to the present invention, a desulfurizing agent that has good desulfurization and regeneration performance, has less powder loss than conventional alumina cement mixed with water and made into pellets, and can be recycled and recycled repeatedly. It can be manufactured easily and at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例および比較例の脱硫
剤の脱硫性能を比較する図、第2図は、本発明の
実施例における好適脱硫温度を示す図、第3図
は、本発明の実施例における好適還元再生温度を
示す図である。 2,3,4……本発明の場合、1,5,6……
比較例の場合。
FIG. 1 is a diagram comparing the desulfurization performance of the desulfurization agents of Examples and Comparative Examples of the present invention, FIG. 2 is a diagram showing the preferred desulfurization temperature in the Examples of the present invention, and FIG. FIG. 3 is a diagram showing suitable reduction and regeneration temperatures in Examples. 2, 3, 4... In the case of the present invention, 1, 5, 6...
For comparative example.

Claims (1)

【特許請求の範囲】 1 アルミナセメントクリンカーの破砕粒子を水
と接触させて水和した後、加熱脱水することを特
徴とする脱硫剤の製造方法。 2 特許請求の範囲第1項において、前記アルミ
ナセメントクリンカーの破砕粒子径は0.5〜3mm
で、かつその水への接触時間は100時間以上であ
ることを特徴とする脱硫剤の製造方法。
[Scope of Claims] 1. A method for producing a desulfurizing agent, which comprises bringing crushed particles of alumina cement clinker into contact with water to hydrate them, and then heating and dehydrating them. 2 In claim 1, the crushed particle diameter of the alumina cement clinker is 0.5 to 3 mm.
and the contact time with water is 100 hours or more.
JP57073377A 1982-05-04 1982-05-04 DATSURYUZAINOSEIZOHOHO Expired - Lifetime JPH0230739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57073377A JPH0230739B2 (en) 1982-05-04 1982-05-04 DATSURYUZAINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57073377A JPH0230739B2 (en) 1982-05-04 1982-05-04 DATSURYUZAINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS58193727A JPS58193727A (en) 1983-11-11
JPH0230739B2 true JPH0230739B2 (en) 1990-07-09

Family

ID=13516427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57073377A Expired - Lifetime JPH0230739B2 (en) 1982-05-04 1982-05-04 DATSURYUZAINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0230739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732482A (en) * 2017-02-23 2017-05-31 中国石油大学(北京) One kind targeting anchoring agent and its preparation method and application

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100101A (en) * 1985-04-01 1986-08-20 清华大学 Granular desulfuration agent
JP5383960B2 (en) * 2001-03-01 2014-01-08 荏原環境プラント株式会社 Desulfurization method and apparatus
JP5719658B2 (en) * 2010-03-31 2015-05-20 住友大阪セメント株式会社 Method for producing desulfurizing agent
FR3021046B1 (en) * 2014-05-16 2016-06-10 Kerneos ULTRA-RAPID CEMENT WITH AMORPHOUS CALCIUM ALUMINATE COMPRISING SURFACE TREATMENT
FR3021047B1 (en) * 2014-05-16 2017-11-10 Kerneos ULTRA-RAPID CEMENT WITH AMORPHOUS CALCIUM ALUMINATE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732482A (en) * 2017-02-23 2017-05-31 中国石油大学(北京) One kind targeting anchoring agent and its preparation method and application
CN106732482B (en) * 2017-02-23 2019-08-06 中国石油大学(北京) A kind of targeting anchoring agent and its preparation method and application

Also Published As

Publication number Publication date
JPS58193727A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
US5703003A (en) Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas
JP4625952B2 (en) Method for producing oxidation catalyst
US4180549A (en) Desulfurization of hot reducing gas
US4164544A (en) Desulfurization of hot reducing gas
JPH0230739B2 (en) DATSURYUZAINOSEIZOHOHO
CA1052575A (en) Method and apparatus for granulating
US5866503A (en) Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas
Mu et al. A rotary kiln process for making calcium carbide
JP6414903B2 (en) Production method of carbon interior ore
JPH0123531B2 (en)
US4230603A (en) Desulfurizing pellet of manganese oxide and aluminum oxide and process for producing said pellet
Tashimo et al. Calcination of fine limestone particles by a powder-particle fluidized bed
JPS62241810A (en) Powder for manufacturing ceramics of silicon nitride by hot carbon reduction and manufacture
Akiti Jr et al. An improved core-in-shell sorbent for desulfurizing hot coal gas
JP3082855B1 (en) Manufacturing method of hydro garnet and removal method of high temperature acidic exhaust gas by hydro garnet
JP2003126827A (en) Manufacturing method of formed body made from sulfur- containing slag
JP2004209378A (en) Method for treating coal ash
JPS5895551A (en) Desulfurizer for fluidized bed
AU689930B2 (en) Process for the elimination of silica and other impurities in fluidized bed syn gas production
Adánez et al. Factors affecting the thermogravimetric technique in the characterization of sorbents for AFBC
JPS60225621A (en) Desulfurization of high temperature gas
JP7416340B1 (en) Method for producing hot metal
JPS6251135B2 (en)
JPS6087851A (en) Manufacture of desulfurizing agent
JPH03247714A (en) Method for preventing sticking in high temperature fluidized bed reduction for iron ore