JPH02305195A - Signal processor for image pickup device - Google Patents

Signal processor for image pickup device

Info

Publication number
JPH02305195A
JPH02305195A JP1124561A JP12456189A JPH02305195A JP H02305195 A JPH02305195 A JP H02305195A JP 1124561 A JP1124561 A JP 1124561A JP 12456189 A JP12456189 A JP 12456189A JP H02305195 A JPH02305195 A JP H02305195A
Authority
JP
Japan
Prior art keywords
signal
color
level
vertical edge
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1124561A
Other languages
Japanese (ja)
Inventor
Kazuyuki Matoba
的場 一之
Taku Sasaki
卓 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1124561A priority Critical patent/JPH02305195A/en
Publication of JPH02305195A publication Critical patent/JPH02305195A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the amplitude of a picture from being rapidly changed after a pseudo color is removed and to remove the vertical pseudo color in a natural state by detecting a vertical edge part, attenuating the color signal level of the edge part, where the pseudo color is generated, and afterwards, executing low-pass filtering. CONSTITUTION:The size of a VAPC signal, which is obtained in a luminance step removing circuit 104, is decided by an amplitude decider 107 (detecting means) and when the size of the VAPC signal is more than a prescribed level, it is defined as the vertical edge part. Then, an attenuation level signal is selected by a switch and the input signal is attenuated. When the size of the VAPC signal is smaller than the prescribed level, the pseudo color in the vertical edge is removed by outputting the input signal at it is. Since the output signal if a color signal level attenuating circuit 112 prevents color difference gain from being rapidly changed in the vertical edge part to be generated by the operation of the color signal level attenuating circuit 112 inputted to an LPF 113 (band limiting means), the band is limited in a vertical direction. Thus, the pseudo color to be generated in the vertical edge can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、色分離フィルタを装着した単板式カラービデ
オカメラや単板式カラースチルビデオカメラ等の撮像装
置のための信号処理装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a signal processing device for an imaging device such as a single-chip color video camera or a single-chip color still video camera equipped with a color separation filter. .

〔従来の技術〕[Conventional technology]

従来のこの種の装置においては、固体撮像素子CCD 
(charge coupled device)  
(以下CCDセンサという)に例えば第2図(a)の様
な色分離フィルタを装着し、第8図に示すような構成で
信号処理を行うことで最終的に輝度信号Yと2つの色差
信号R−Y、B−Yとを得るのが普通である。
In conventional devices of this type, a solid-state image sensor CCD
(charge coupled device)
(hereinafter referred to as a CCD sensor) is equipped with a color separation filter as shown in Fig. 2(a), and signal processing is performed using the configuration shown in Fig. 8 to finally separate a luminance signal Y and two color difference signals. Usually, RY and BY are obtained.

このような従来方式にあける輝度信号処理は、まず第2
図(a)のような色分層フィルタを用いて得たMg、O
r、Cy、Yeの各色信号が白色に対して等しい応答を
示すように、自動利得調整(A(3C)回路102によ
りゲイン調整した後、A/D変換器103によりA/D
 (アナログ−ディジタル)変換を行う。さらに、第2
図(a)の様な色分離フィルタに限らず同一水平ライン
内に装着される色分離フィルタの種類が1l−1(水平
走査時間)毎に異なる場合、IH毎に明るいラインと暗
いラインとを生じる輝度段差という問題があるので、輝
度段差を除去する回路104にて輝度段差を除去してか
ら、通常行わ狛、るγ変換。
The luminance signal processing in this conventional method is first
Mg, O obtained using a color separation layer filter as shown in figure (a)
After the automatic gain adjustment (A(3C) circuit 102 performs gain adjustment so that each color signal of r, Cy, and Ye shows an equal response to white, the A/D converter 103 performs A/D
(analog-to-digital) conversion. Furthermore, the second
If the type of color separation filter installed in the same horizontal line is different every 1l-1 (horizontal scanning time), not only the color separation filter shown in figure (a), the bright line and dark line will be separated for each IH. Since there is a problem with the brightness level difference that occurs, the brightness level difference is removed in a circuit 104 for removing the brightness level difference, and then γ conversion is normally performed.

Knem変換等を行い、ローパスフィルタ(以トLPF
という)106で帯域制限をした後。
Knem conversion etc. are performed, and a low pass filter (hereinafter referred to as LPF) is applied.
) After limiting the bandwidth at 106.

D/A変換を行いY信号として出力している。It performs D/A conversion and outputs it as a Y signal.

色イ5外処理におい”Cは、第2図(a)の配列をもつ
色分離フィルタを装着したCCDセンサをインタレース
走査した場合、奇数列にはマゼンタ(Mg)とグリーン
(Or)の色信号−が1画素毎に交、η、に出力され、
偶数列ではシアン(Cy)とイエロ(Ye)の色信号が
1画素毎に交ηに出力される。したがって、ある1つの
画素に注目するとMg、Gr、Cy、Yeの4色信号の
うちの1色の情報しか持たないことになる。例えば第2
図(b)のX印で示した部分は、他のGP、Cy。
Color A 5 Out of processing "C" means that when a CCD sensor equipped with a color separation filter having the arrangement shown in Figure 2 (a) is interlaced scanned, the colors magenta (Mg) and green (Or) are displayed in the odd rows. The signal - is output to the intersection, η, for each pixel,
In the even-numbered columns, cyan (Cy) and yellow (Ye) color signals are outputted in an alternating manner for each pixel. Therefore, if we focus on one pixel, it will have information on only one of the four color signals of Mg, Gr, Cy, and Ye. For example, the second
The part marked with an X in Figure (b) is another GP, Cy.

Yeのいずれかの色情報はあるがMgの情報Gよなく、
O印で示した号ンブリング位置にあるMgの情報を適当
な重み付けで補間()でやる必要がある。
There is color information for either Ye, but there is no information for Mg or G.
It is necessary to interpolate () the information on Mg at the numbering position indicated by the O symbol with appropriate weighting.

一般に、MO3型センサのように4線同時読出しが11
丁能な素子゛であれば、赤(R)、縁(G)。
Generally, 4-wire simultaneous readout is 11 times like MO3 type sensor.
If it is a functional element, it is red (R) and edge (G).

i’i (B ) (+E号への変換は容易であるが、
CCDセンサのように同時読出しができないセンサでは
、Mg、Gr、Cy、Yeの4色に対してa6 il!
lフィルタによる同時化を行わなければRGB信号への
変換ができないlきめ補間という操作は必ず必要になる
i'i (B) (Although it is easy to convert to +E,
For sensors that cannot read simultaneously, such as CCD sensors, a6 il!
An operation called l-grained interpolation, which cannot be converted into an RGB signal without synchronization using an l filter, is always required.

補11jJフィルタにより同時化されたMg、GP。Mg, GP synchronized by complementary 11jJ filter.

Cy、Yeの4色は例えば第8図に示すように、RGB
変換マトリクス回路109においてRG B信号に変換
された後、通常行われているホワイトバランス調整、γ
変換等の処理を行い1色差マトリクス回路111におい
て2つの色差15号R−Y、B−Yに変換され、最後に
LPF  113にて帯域制限した後、D/A変換器1
15,116でD/A変換して出力される。
For example, the four colors Cy and Ye are RGB as shown in Figure 8.
After being converted into RG and B signals in the conversion matrix circuit 109, the white balance adjustment that is normally performed, γ
After processing such as conversion, the color difference matrix circuit 111 converts into two color difference No. 15 R-Y and B-Y, and finally, after band-limiting in the LPF 113, the D/A converter 1
15 and 116, it is D/A converted and output.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来例のように、補間フィルタを用
いて色信号の同時化を行う場合、垂直の輪郭部分(以F
、エツジという)において、実際には存りしない偽色を
生じるという間層があった。
However, when synchronizing color signals using an interpolation filter as in the conventional example, vertical contour portions (hereinafter referred to as F
, edges), there was a layer that produced false colors that did not actually exist.

本発明は、この問題を解決するためになされたもので、
東向エツジにおいて発生する偽色を防止することのでき
る撮像装置のための信号処理装置を提供することを目的
とするものである。
The present invention was made to solve this problem.
It is an object of the present invention to provide a signal processing device for an imaging device that can prevent false colors occurring at the eastbound edge.

(課題を解決するための1段) 本発明は、1)1記L1的を達成するため、撮像装置の
ための信号処理装置をつぎの(1)のとおりに構成する
(First Step for Solving the Problems) The present invention configures a signal processing device for an imaging device as shown in (1) below in order to achieve 1) L1 objective.

(1)色分離フィルタを装着した撮像素子からの信号を
受りて重置エツジ部分を検出する検出手段と、前記撮像
素子からの45号を受け同時化する補間フィルタと、該
補間フィルタからの信号を受け前記検出T″一段の出力
に応じて註信号のレベルを減衰させる減衰手段と、前記
減費手段の出力を受け・:1シ域制限を行う帯域制限手
段とを備λている撮像装置のための信号処理装置。
(1) A detection means that receives a signal from an image sensor equipped with a color separation filter and detects a superimposed edge portion, an interpolation filter that receives and synchronizes signal 45 from the image sensor, and a signal from the interpolation filter. An imaging device comprising attenuating means for receiving a signal and attenuating the level of the signal according to the output of the first stage of the detection T'', and band limiting means for receiving the output of the cost reducing means and limiting the range. Signal processing equipment for equipment.

(作用) 前記構成により、垂直偽色の発生するエツジ部分のfi
i号レベルはなだらかに減衰する。
(Function) With the above configuration, the fi of the edge portion where vertical false color occurs is reduced.
The i level attenuates gently.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて詳しく説明する。 Hereinafter, the present invention will be explained in detail using examples.

(第!実施例) 第1図は、本発明の第1実施例ある゛撮像装置のための
4i% ’j−処理装置”のブロック図である。本実施
例は、第2図(a)のような色分離フィルタを装着した
CCDセンサをインタレース走査する場合の′J、施例
である。
(Embodiment 1) Fig. 1 is a block diagram of a ``4i% 'j-processing device for an imaging device'' according to the first embodiment of the present invention. This is an example of interlaced scanning using a CCD sensor equipped with a color separation filter such as 'J'.

CCDセンザlO1の出力信号は、まず1′1動利1!
l調整器102により各々の45号が白色に対して等1
ノい応答を示すようにゲイン調整され、次にA/D変換
器203で読出しクロックに同期したタイミングでA/
D変換される。後で行う色処理のためにこのA/D変X
*器103はリニアな特性が良< FA子化置差の点か
ら8ビット以上で行うのが望ましい。
First, the output signal of the CCD sensor lO1 is 1'1 1!
l adjuster 102 makes each number 45 equal to 1 for white.
The gain is adjusted so as to show a good response, and then the A/D converter 203 converts the A/D at a timing synchronized with the read clock.
D-converted. This A/D change X for later color processing
*The device 103 has good linear characteristics. It is desirable to use 8 bits or more in terms of FA conversion error.

このA/D変換されたディジタル量が輝度信号処理部と
色信号処理部の入力信号となる。
This A/D converted digital amount becomes an input signal to the luminance signal processing section and the color signal processing section.

まず、輝度信号処理部では、輝度段差を除去する。輝度
段差は低周波成分が多い平坦な部分では目立ち、高周波
成分の多いエツジ部分では目立ち難いという理由にもと
づきA/D変換器103の出力信号のローパスフィルタ
リングとバイパスフィルタリングを行い、バイパスフィ
ルタHPFにより得た垂直エツジ(以下、VAPCとい
う)信号が所定のレベルより少い場合は、低周波成分の
多い輝度段差部分とみなし、LPFにより得た輝度段差
を除去した信号を出力し、VAPC信号が所定のレベル
より大きい場合は、高周波成分の多いエツジ部分とみな
し、ローパスフィルタリングしない、A/D変換器10
3の出力信号をそのまま出力する。
First, the luminance signal processing section removes the luminance level difference. Based on the reason that brightness steps are noticeable in flat areas with many low-frequency components and less noticeable in edge areas with many high-frequency components, low-pass filtering and bypass filtering are performed on the output signal of the A/D converter 103, and the output signal is filtered using a bypass filter HPF. If the vertical edge (hereinafter referred to as VAPC) signal is lower than a predetermined level, it is regarded as a luminance step part with many low frequency components, and a signal obtained by removing the luminance step obtained by LPF is output, and the VAPC signal is lower than the predetermined level. If it is larger than the level, the A/D converter 10 considers it to be an edge part with many high frequency components and does not perform low-pass filtering.
The output signal of step 3 is output as is.

その後2通常行ねわるγ変換や、Knee変換等の処理
を行い、LPF  106で水平方向の帯域−1限を施
し、D/A変換器114でD/A変換した後Y信号とし
て出力する。
After that, processing such as γ conversion and Knee conversion, which are normally performed, is performed, horizontal band -1 limit is applied by LPF 106, D/A conversion is performed by D/A converter 114, and the signal is output as a Y signal.

次に色信号処理部では、A/D変換器103の出力信号
は、補間フィルタ108に入力され、垂直方向と水平方
向の2次元の補trjJを受けて読出しクロック毎に同
時化されたMg、Gr、Cy。
Next, in the color signal processing section, the output signal of the A/D converter 103 is input to an interpolation filter 108, subjected to two-dimensional interpolation in the vertical and horizontal directions, and is synchronized for each read clock. Gr, Cy.

Yeの4信号となる。この4信号は、RGB変換マトリ
クス109に入力され、RGB信号に変換された後、通
常行われているホワイトバランス調整、γ変換等を受け
て、色差マトリクス回路1!!の人力信号となる。色差
マトリクス回路111にて色差信号に変換された信号は
、垂直エツジで生じる偽色を除去するために色信号レベ
ル減衰回路112に人力される。
There will be 4 signals of Ye. These four signals are input to the RGB conversion matrix 109, converted into RGB signals, and then subjected to the normally performed white balance adjustment, γ conversion, etc., to the color difference matrix circuit 1! ! It becomes a human signal. The signal converted into a color difference signal by the color difference matrix circuit 111 is input to a color signal level attenuation circuit 112 in order to remove false colors generated at vertical edges.

以下に、色イ3号レベル減衰回路112の動作について
説明する。色信号レベルg立回路112は、人力信号と
減衰レベル信号とをVAPC信号の大きさにより切り換
えて出力する。すなわち、r4度膜段差去回路104で
得たVAPC信号の大きさを振幅判定器107(検出手
段)で判定し、VAPC信号の大きさが所定のレベル以
上になると垂直エツジ部分とみなし、スイッチにより減
衰レベル信号を選択して入力信号レベルを減衰させ、V
APC信号の大きさが所定のレベルより小さい場合は人
力信号をそのまま出方することで垂直エツジでの偽色を
除去している。
The operation of the color A3 level attenuation circuit 112 will be explained below. The color signal level g rising circuit 112 outputs a human input signal and an attenuation level signal by switching between them depending on the magnitude of the VAPC signal. That is, the magnitude of the VAPC signal obtained by the r4 degree membrane step removal circuit 104 is determined by the amplitude determiner 107 (detection means), and when the magnitude of the VAPC signal exceeds a predetermined level, it is regarded as a vertical edge portion, and the switch is activated. Select the attenuation level signal to attenuate the input signal level, and
When the magnitude of the APC signal is smaller than a predetermined level, false colors at vertical edges are removed by outputting the human input signal as is.

例えば、色信号レベル減衰回路112(減衰手段)の減
衰レベル信号を零に設定した場合、垂直エツジ部分では
2つの色差信号のゲインG、−,,G、−YはGR−Y
 = O、QB−Y = Oとなる。   ′ 次に、色信号レベル減衰回路112の出力信号はLPF
  113(帯域制限手段)に入力された色信号レベル
減衰回路112の動作によって発生した垂直エツジ部分
での急激な色差ゲインの変化を防ぐため、垂直方向の帯
域制限を行っている。
For example, when the attenuation level signal of the color signal level attenuation circuit 112 (attenuation means) is set to zero, the gains G, -, , G, -Y of the two color difference signals at the vertical edge portion are GR-Y.
= O, QB-Y = O. 'Next, the output signal of the color signal level attenuation circuit 112 is passed through the LPF.
113 (bandwidth limiting means) In order to prevent rapid changes in color difference gain at vertical edge portions caused by the operation of the color signal level attenuation circuit 112, vertical band limiting is performed.

LPF113は、例えば第6図のように構成され、IH
メモリ601の出力信号を注目信号C1とし、そのIH
ii後の信号をCn−1+Cnilとすると、係数器6
03,605の係数を1/4、係数′a604(D係数
fr l / 2 ニ設定シタ場合、加算器606の出
力側には、出力信号としがiilられる。本実施例では
、第6図のような構成のLPFを2系統用いてR−Y信
号、B−Y(3−号を帯域制限している。
The LPF 113 is configured, for example, as shown in FIG.
The output signal of the memory 601 is set as the signal of interest C1, and its IH
If the signal after ii is Cn-1+Cnil, the coefficient multiplier 6
When the coefficient of 03,605 is set to 1/4 and the coefficient 'a604 (D coefficient fr l / 2), an output signal is sent to the output side of the adder 606. In this embodiment, the output signal of FIG. Two systems of LPFs having such a configuration are used to band limit the R-Y signal and B-Y (No. 3-).

一例として。As an example.

[”CK−t 、  Cx−+ 、 CK 、  C+
c、+ 、  CK、2−]の部分でR−Y信号レベル
が [・・・−60,60,40,−40,−80−−−−
−司B−Y信号レベルが でありCKとCK、1の部分をエツジが検出された場合
について説明する。
[”CK-t, Cx-+, CK, C+
c, +, CK, 2-], the R-Y signal level is [...-60, 60, 40, -40, -80----
A case will be described in which the B-Y signal level is 1 and an edge is detected in the CK, CK, and 1 portions.

この場合では、減衰レベル信号を零に設定すると、色信
号レベル減衰回路112の出力R−Y信号は [−−−−−−60,60,0,0,−80−・・・・
・]と、又B−Y信号は [・−−−140,−140,0,0,−80−]とな
り、仁のままでは色Z・信号1ノヘルが急激Is変化し
lfl生画像に不自然さが残るので、第1j図の、にう
な構成の1.、、 P Fにより色1(へ号を;D域制
限本る。”))−なわち、CK−3= CK−2、CK
□ =C□。
In this case, when the attenuation level signal is set to zero, the output R-Y signal of the color signal level attenuation circuit 112 becomes [---60, 60, 0, 0, -80-...
・], and the B-Y signal becomes [・---140, -140, 0, 0, -80-], and if the color is left as it is, the color Z/signal 1 noher will change rapidly and the lfl raw image will be affected. Since the naturalness remains, the configuration 1. in Figure 1j. ,, PF gives color 1 (F); D range limit book)) - that is, CK-3= CK-2, CK
□ =C□.

とすると(A)式の構成のi、 P FによりR,−Y
(;i号は [・・・・−60,45,15、−20、−60”・・
・・]と5叉B−Y仁〜号は となり、色(+’x−′Jl/ヘル′tjA衰回路11
2による色差(2壮レヘルの急激な変化Vよる11生画
像の不自然さを防1卜することができる。
Then, due to i and P F in the configuration of formula (A), R, -Y
(No. i is [...-60, 45, 15, -20, -60"...
...] and the five-pronged B-Y Jin~ number is
It is possible to prevent the unnaturalness of the raw image due to the color difference caused by 2 (2 sudden changes in the 11 level).

なお、第6図の構成例では、LPFのタップ数は3であ
るが、タップ数は所望の周波数帯域1、:応じて任意に
変更しても良い。
In the configuration example of FIG. 6, the number of taps of the LPF is three, but the number of taps may be arbitrarily changed depending on the desired frequency band.

最後に、■、PF  113より出力された両色差イ5
号R−Y、B−YはD/A変換されて出力される。
Finally, ■, the color difference I5 output from PF 113.
The numbers RY and B-Y are D/A converted and output.

(第2実施例) 第1実旅例でi、i 、色イ、−:呼誠&&回路、11
2の構成GI、IC直、′T−ツジ部分で2つの色;’
1.4:、号をip純に零にするbのであったが、オ実
旅例は、第3図に示すように2色差7トリクス回路11
1の出カイ5号R−”/、B−Yl、7対し係数器30
2.303゜304を設り、第4図に示すようなしきい
値と係数で減衰1ノベルを設定1ノている。
(Second example) In the first actual journey example, i, i, color i, -: call sincerity && circuit, 11
2 configuration GI, IC direct, 'T-Tsuji part has two colors;'
1.4: The number was set to ip net zero, but the actual example is a two color difference 7 trix circuit 11 as shown in Figure 3.
Coefficient unit 30 for output number 5 R-”/, B-Yl, 7 of 1
2.303° and 304 are set, and one novel of attenuation is set with the threshold value and coefficient as shown in FIG.

すなわち、本実施例では、スイッチ30ヱにおいてm4
図のJ、rうな特性で色差信号を段階的に減衰させるこ
とで色差ゲインの急激な変化を避け、小直9丁ツジ部分
の偽色除去に効果がある。本実施例の係数器の係数をα
−1/2.β=1/4゜γ=1/8ど設定した場合、第
5図のようにスイッチ部を構成することができる。すな
わち、人力(、’t Wが4ビットの信号であったとす
るとスイッチ501では■の部分がα、■の部分がβ、
■の部分がγになる。
That is, in this embodiment, m4 is
By attenuating the color difference signal in stages with characteristics like J and R in the figure, sudden changes in the color difference gain are avoided, and it is effective in removing false colors in the small straight 9th and third corners. The coefficient of the coefficient unit in this example is α
-1/2. When β=1/4° and γ=1/8, the switch section can be configured as shown in FIG. In other words, if W is a 4-bit signal, then in the switch 501, the ■ part is α, the ■ part is β,
The part (■) becomes γ.

なお、係数器の数は3つに限らず、係数値α。Note that the number of coefficient units is not limited to three, and the coefficient value α.

β、Y・・・・−は 0 < −−−−−<γくβくαく1 なる条4′[を満たす係数である。しきい値Th、〜T
h4も任意に設定できる。
β, Y...- are coefficients that satisfy the condition 4' [0 <------< γ × β × α × 1. Threshold Th, ~T
h4 can also be set arbitrarily.

また、第3図のB−Y信号もR,−Y信号と同等の処理
がhトされ、2つの色差信号はLPF113の入力信号
どなる。以下は、第1実施例と同様の処理が施される。
Further, the BY signal in FIG. 3 is also subjected to the same processing as the R and -Y signals, and the two color difference signals become the input signals of the LPF 113. Below, the same processing as in the first embodiment is performed.

(第3実施例) 以1−の各実施例は、色差信号に対し・C1垂直エツジ
部の減衰を行うものであるが、本実施例はRGB変換マ
トリクス回路109の出力RGB信−号に対して垂直エ
ツジ部の減衰を行うものである。
(Third Embodiment) In each of the embodiments 1- below, the C1 vertical edge portion is attenuated with respect to the color difference signal, but in this embodiment, the attenuation is performed with respect to the output RGB signal of the RGB conversion matrix circuit 109. This is used to attenuate vertical edges.

第7図に示すようにRGBマド・リクス109の出力信
号に対し110でホワイトバランス調整やγ補iEを行
ったRGB(;3号は、前述の色信号レベル減衰回路1
12ど同様な構成で入力端がRG Bの3人力である色
信号レベル減衰回路70mに人力され、VAPC(3号
の大きさにより社交レベルイ3号と人力信号とが切り換
えられ゛C小直偽色が除去されたRGB信号として出力
される。
As shown in FIG. 7, the output signal of the RGB matrix 109 is subjected to white balance adjustment and γ compensation iE at 110.
12 has a similar configuration, and the input terminal is manually powered by a 70m color signal level attenuation circuit with RG, B, and the VAPC (social level level 3 and human power signal are switched depending on the size of 3). It is output as an RGB signal with color removed.

その後、色信号レベル減衰回路701の動作により発生
した急激なゲイン変化を第6図に示オ′よう・な構成の
1.、 P Fを3系統もつLPF113で第1実施例
と同様な動作を行う。二とで防いでいる。LPF113
の出力は色差マド・リクス回路111に人力され、色差
信−号R−Y、B−Yに変換された後、D/A変換さね
出力される。
After that, the rapid gain change caused by the operation of the color signal level attenuation circuit 701 is observed in the configuration 1. shown in FIG. , PF 113 having three systems performs the same operation as in the first embodiment. It is prevented by two things. LPF113
The output is inputted to the color difference matrix circuit 111, converted into color difference signals RY and BY, and then output after D/A conversion.

、:のようにR,G B信号の段階で垂直エツジ部分の
信号を減衰させても偽色対策とL/て効果的である。
, : Attenuating the signal at the vertical edge portion at the R, G, B signal stage is also effective as a countermeasure against false colors.

なお、本実施例の色信号減衰回路701の構成を第3図
の6A衰回路の構成としてf?、GB低信号減衰させて
も同線に効果がある。
Note that if the configuration of the color signal attenuation circuit 701 of this embodiment is the configuration of the 6A attenuation circuit in FIG. 3, f? , GB low signal attenuation is effective on the same line.

(他の実施例) 以l。は、第2図(a)の色分離フィルタ配列をフレー
ム蓄積電−−ドでインタレ−・ス走査した場合の説明で
あったが、第9図(a)のような色分離フィルタ配列を
フレーム蓄積千−ドでノンインタレースあるいはインタ
レース走査した信号を一度A/D変化を行って、フレー
ムメそりに記憶したものをbt出して色の同時化を行う
場合でも、2次元の補間により、垂直エツジに偽色を生
じるので、本発明が実施できる。
(Other Examples) Below. This was an explanation of the case where the color separation filter array shown in Fig. 2(a) was interlaced scanned using a frame storage voltage, but the color separation filter arrangement shown in Fig. 9(a) was scanned in a frame manner. Even if you perform A/D conversion on a non-interlaced or interlaced scanned signal with 1,000-bit storage and then output the data stored in the frame memory and perform color synchronization, two-dimensional interpolation will The present invention can be implemented because it produces false colors on vertical edges.

また、第9図(a)の色分離フィルタ配列をフィールド
蓄積モードで2画素混合で読み出した場合や第9図(b
)のように1画素に2枚の異る色フィルタを装着した色
フィルタ配列をインタレース定食した場合に得られる4
0信号C,=Mg+Cy、C2=Gr+Ye、C3=M
H+Cy、C4=Gr+Yeに対して補間フィルタによ
る同時化を行う場合でも垂直エツジで偽色を生じるので
本発明が実施できる。
Furthermore, when the color separation filter array shown in FIG. 9(a) is read out in a two-pixel mixture in field accumulation mode, and when the color separation filter array shown in FIG.
), which is obtained when a color filter array with two different color filters attached to one pixel is used as an interlace set.
0 signal C,=Mg+Cy, C2=Gr+Ye, C3=M
Even when synchronization is performed using an interpolation filter for H+Cy and C4=Gr+Ye, the present invention can be implemented since false colors occur at vertical edges.

以上は、ディジタル処理を前提に説明を行ったが、前述
のIHメモリをIHディレィに、係数器を適当なkr!
幅器に変更するだけでアナログ処理に関しても本発明が
実施できることはいうまでもない。
The above explanation was based on digital processing, but the above-mentioned IH memory is used as an IH delay, and the coefficient multiplier is used as an appropriate kr!
It goes without saying that the present invention can also be implemented in analog processing by simply changing to a width scale.

また、CCDセンサで説明を行ったが、本発明はこれに
限定されるものではなく、補間フィルタにより色信号の
同時化を行う必要のある他の撮像素−f−を用いる撮像
装置の信号IAJIF装置にも通Il′7できる。
Furthermore, although the description has been given using a CCD sensor, the present invention is not limited to this, and the signal IAJIF of an imaging device using another image sensor -f that requires synchronization of color signals by an interpolation filter. It can also be connected to the device.

(発明の効果〕 以上説明したように、本発明によれば、垂直エツジ部分
を検出し、偽色の発生するエツジ部分の色信号レベルを
減衰させ、その後ローパスフィルタリングすることで偽
色除去後の画像の振幅の急激な変化を防ぎ、垂直偽色を
自然な状態で除去することができる。
(Effects of the Invention) As described above, according to the present invention, vertical edge portions are detected, the color signal level of the edge portion where false color occurs is attenuated, and then low-pass filtering is performed to remove false color. It is possible to prevent sudden changes in image amplitude and remove vertical false colors in a natural manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例のブロック図、第2図は色
分離フィルタ配列を示す図、第3図は本発明の第2実施
例の要部のブロック図、第4図は減衰レベルを示す図、
第5図は減衰回路のブロック図、第6図はローパスフィ
ルタのブロック図、第7図は本発明の第3実施例のブロ
ック図、第8図は従来例のブロック図、第9図は他の色
分離フィルタ配列を示す図である。
Fig. 1 is a block diagram of the first embodiment of the present invention, Fig. 2 is a diagram showing a color separation filter array, Fig. 3 is a block diagram of the main part of the second embodiment of the invention, and Fig. 4 is attenuation. A diagram showing the levels,
Fig. 5 is a block diagram of the attenuation circuit, Fig. 6 is a block diagram of the low-pass filter, Fig. 7 is a block diagram of the third embodiment of the present invention, Fig. 8 is a block diagram of the conventional example, and Fig. 9 is a block diagram of the other example. FIG. 2 is a diagram showing a color separation filter array of FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)色分離フィルタを装着した撮像素子からの信号を
受けて垂直エッジ部分を検出する検出手段と、前記撮像
素子からの信号を受け同時化する補間フィルタと、該補
間フィルタからの信号を受け前記検出手段の出力に応じ
て該信号のレベルを減衰させる減衰手段と、前記減衰手
段の出力を受け帯域制限を行う帯域制限手段とを備えて
いることを特徴とする撮像装置のための信号処理装置。
(1) A detection means that receives a signal from an image sensor equipped with a color separation filter and detects a vertical edge portion, an interpolation filter that receives and synchronizes the signal from the image sensor, and a signal that receives the signal from the interpolation filter. Signal processing for an imaging device, comprising attenuation means for attenuating the level of the signal according to the output of the detection means, and band limiting means for receiving the output of the attenuation means and limiting the band. Device.
JP1124561A 1989-05-19 1989-05-19 Signal processor for image pickup device Pending JPH02305195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124561A JPH02305195A (en) 1989-05-19 1989-05-19 Signal processor for image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124561A JPH02305195A (en) 1989-05-19 1989-05-19 Signal processor for image pickup device

Publications (1)

Publication Number Publication Date
JPH02305195A true JPH02305195A (en) 1990-12-18

Family

ID=14888526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124561A Pending JPH02305195A (en) 1989-05-19 1989-05-19 Signal processor for image pickup device

Country Status (1)

Country Link
JP (1) JPH02305195A (en)

Similar Documents

Publication Publication Date Title
US5767899A (en) Image pickup device
JPH0823543A (en) Image pickup device
JP4641675B2 (en) Image signal processing device
US6147707A (en) Method and apparatus for gain adjustment of an image sensor
US6690418B1 (en) Image sensing apparatus image signal controller and method
JPS58100590A (en) Synthesis method for sampling output
JP3576600B2 (en) Color imaging device
US7250967B2 (en) Apparatus for modifying reproduction frequency band of video signal
JPH02305195A (en) Signal processor for image pickup device
JP3837881B2 (en) Image signal processing method and electronic camera
JP3115123B2 (en) Image signal processing device
JP4193281B2 (en) Image signal processing apparatus and camera apparatus
JP3417664B2 (en) Contour correction circuit for multi-chip color imaging device
JP2698404B2 (en) Luminance signal processing device
JP3410638B2 (en) Video camera system
JP3089423B2 (en) Signal processing device
JP2703928B2 (en) Imaging device
JP3591257B2 (en) Video signal processing method and video signal processing device
JPS61150486A (en) Color image pickup device
JPH0614333A (en) Digital video camera signal processor
JPH07107496A (en) Solid state image pickup device
JPS59168790A (en) Color image pickup device
JPS6054586A (en) Single plate type color pickup device
JPH0898189A (en) Video signal processing circuit
JPS63283294A (en) Color camera device