JPH0230465A - Grinding method and device - Google Patents

Grinding method and device

Info

Publication number
JPH0230465A
JPH0230465A JP18227588A JP18227588A JPH0230465A JP H0230465 A JPH0230465 A JP H0230465A JP 18227588 A JP18227588 A JP 18227588A JP 18227588 A JP18227588 A JP 18227588A JP H0230465 A JPH0230465 A JP H0230465A
Authority
JP
Japan
Prior art keywords
workpiece
grindstone
grinding
work
drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18227588A
Other languages
Japanese (ja)
Inventor
Nobuo Takada
高田 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MENTO KENKYUSHO KK
Original Assignee
MENTO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MENTO KENKYUSHO KK filed Critical MENTO KENKYUSHO KK
Priority to JP18227588A priority Critical patent/JPH0230465A/en
Publication of JPH0230465A publication Critical patent/JPH0230465A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To enable grinding of various shapes by rotating a rotary grindstone having a circular recessed face over the whole periphery and bringing the end face of a work into contact with the circular arcuate recessed face by approaching from one end of this circular arcuate recessed face in the direction crossing with the rotary center of the grindstone with revolving a round bar shaped work around its shaft center. CONSTITUTION:A rotary grindstone 1 is rotated and also approached from one end of the circular arcuate recessed face 4' formed over the whole periphery of this grindstone 1 in the direction crossing with the rotary center of the grindstone 1 with revolving a round shaft shaped work 3 around the shaft center thereof. Grinding is then executed in a spherical surface shape, etc., by bringing the end face of this work 3 into contact with this circular arcuate recessed face.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はニー1ルヘアリン、グに用いるニー;・ルの
端部あるいは各種機器に用いる丸軸のようなワークの端
部を球面状などに研削する方法と装置に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is for forming the end of a workpiece such as a needle used for a needle hair ring or a round shaft into a spherical shape or the like for use in various types of equipment into a spherical shape. The present invention relates to a method and apparatus for grinding.

〔従来の技術〕[Conventional technology]

丸軸状のワークの端部を球面状に研削する方法として従
来は研削する目的の形状に合致する凹入面を有する砥石
を用いる方法が一般的である。
Conventionally, a common method for grinding the end of a round shaft-shaped workpiece into a spherical shape is to use a grindstone having a concave surface that matches the shape of the object to be ground.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の研削方法の場合、被研削面の半径や
形状が変ると、この半径や形状に応じた凹入面を有する
砥石と取替える必要がある。従って各種の半径や形状の
凹入面を有する砥石をあらかしめ多数用意しておくか、
または、半径や形状が異なる毎に砥石の凹入面を修正す
る必要があり、手数がかかるとともに、コスト高の原因
になる。
In the case of the conventional grinding method as described above, if the radius or shape of the surface to be ground changes, it is necessary to replace the grindstone with a grindstone having a concave surface corresponding to the radius or shape. Therefore, it is best to prepare a large number of grindstones with concave surfaces of various radii and shapes.
Alternatively, it is necessary to correct the recessed surface of the grinding wheel each time the radius or shape changes, which is time consuming and causes high costs.

この発明は上記のような従来方法の問題点に鑑みて、砥
石を取替えるごとなく各種の大きさのf、ト面や球面に
近い任意の形状の研削ができる方法と装置を捉供するこ
とを目的とするものである。
In view of the above-mentioned problems with the conventional method, the purpose of this invention is to provide a method and device that can grind f of various sizes and any shape close to a spherical surface or a spherical surface without having to replace the grindstone. That is.

〔課題を解決するだめの手段〕[Failure to solve the problem]

」二記の目的を達成するために、この発明は全周に亘る
円弧状凹入面を有する回転砥石を回転させ、丸軸状のワ
ークをその軸心の回りに自転させながら、」二記砥石の
回転中心に交叉する方向で、」二記砥石の円弧状凹入面
の一端から進入してワークの端面を円弧状凹入面に接触
させることにより球面状などに研削することを特徴とす
る研削方法と、外周を一葉双曲線となるように形成して
その外周面にワーク保持用の複数のリテーナを回転軸芯
に対して一定の角度となるように配置した回転1ラムと
、上記ドラムの各リテーナ間に丸軸状のワークを供給す
る手段と、ドラムの回転方向と逆の方向に走行しつつリ
テーナ間のワークに接触してワクを1−ラムの回転方向
と逆の方向に自転させるベルトと、自転により生じた推
力により軸方向に移動しようとするワークの移動方向の
端部を支持するバンキングプレー1・からなるワークの
送り手段と、この送り手段により円弧状経路に沿って移
動するワークの先端部を受りてワークの先端部を所定の
形状に研削する円弧状凹入面を外周に存する砥石により
構成した研削装置とを提供するものである。
In order to achieve the object described in ``2'', this invention rotates a rotary grindstone having an arc-shaped concave surface over the entire circumference, and rotates a round shaft-shaped workpiece around its axis. It is characterized by grinding into a spherical shape etc. by entering from one end of the arc-shaped concave surface of the grindstone and bringing the end face of the workpiece into contact with the arc-shaped concave surface in a direction that intersects the rotation center of the grindstone. A rotating ram having an outer periphery formed into a single-lobed hyperbola and having a plurality of retainers for holding workpieces arranged on the outer periphery at a constant angle with respect to the rotational axis, and the above-mentioned drum. means for supplying a round shaft-shaped work between each retainer; a belt that moves the workpiece, and a banking play 1 that supports the end of the workpiece in the moving direction that is to be moved in the axial direction by the thrust generated by rotation, and the workpiece is moved along an arcuate path by this feeding means. The present invention provides a grinding device comprising a grindstone having an arcuate concave surface on its outer periphery for receiving the tip of a work and grinding the tip of the work into a predetermined shape.

〔実施例〕〔Example〕

第1図に示す実施例において、1は回転軸2の端部に固
定した砥石、3は丸軸状のワークである。
In the embodiment shown in FIG. 1, 1 is a grindstone fixed to the end of a rotating shaft 2, and 3 is a round shaft-shaped workpiece.

砥石2の外周には円弧状凹入面4を全周に亘って形成す
る。
An arc-shaped recessed surface 4 is formed on the outer periphery of the grindstone 2 over the entire circumference.

」二記凹入面4は第2図のようにワーク3の端部を半径
rの球面aに研削しようとする場合、Rp+rの半径の
円弧状凹入面4を砥石1の全周に設しノる。
2. When grinding the end of the workpiece 3 into a spherical surface a with a radius r as shown in FIG. Shinoru.

そして、」二記凹入面40円弧の中心0と同心の半径R
2の円弧をワーク3の端面から半径rだけ入った位置の
ワーク3の中心O6が通るようにワーク3を平行移動さ
せると、ワーク3の端面は球面aとなる。
Then, the radius R concentric with the center 0 of the arc of the concave surface 40
When the work 3 is moved in parallel so that the center O6 of the work 3 at a position a radius r from the end face of the work 3 passes through the circular arc of 2, the end face of the work 3 becomes a spherical surface a.

上記の場合の砥石の成形は第3図のように軸4を中心に
回転するドレッサホルダ5の先端にダイヤモンドドレッ
サ6壱固定して半径Rp+rで砥石1の全周を整形すれ
ばよい。
To shape the grindstone in the above case, a diamond dresser 6 is fixed to the tip of a dresser holder 5 rotating around an axis 4 as shown in FIG. 3, and the entire circumference of the grindstone 1 is shaped with a radius Rp+r.

また、第4図のように、ドレッサホルダ5の先端に、ダ
イヤモンドドレッサ6を軸7により回転自在に取付+j
、軸7を中心としてドレッサ6を回転させながら軸4を
中心にドレッサボルダ5を回転させても凹入面4の形状
は第2図のものと同じである。
Further, as shown in Fig. 4, a diamond dresser 6 is rotatably attached to the tip of the dresser holder 5 by means of a shaft 7.
Even if the dresser boulder 5 is rotated about the shaft 4 while the dresser 6 is rotated about the shaft 7, the shape of the recessed surface 4 is the same as that in FIG. 2.

上記の砥石1の凹入面4′の形状と、ワーク3の自転と
連続送りとが合致すればワーク3の端部の球面成形が行
われる。
If the shape of the recessed surface 4' of the grindstone 1 matches the rotation and continuous feeding of the work 3, the end of the work 3 will be formed into a spherical surface.

第5図はその一実施例で、11はドラムであって、その
外周に複数のリテーナ12を一定の間隔で固定して矢印
方向に回転させる。
FIG. 5 shows one embodiment of the drum, in which a plurality of retainers 12 are fixed at regular intervals on the outer periphery of a drum 11 and rotated in the direction of the arrow.

13はベルトで、ローラ14.15でドラム11の外周
に圧着し、矢印方向に駆動する。
A belt 13 is pressed against the outer periphery of the drum 11 by rollers 14 and 15, and is driven in the direction of the arrow.

加工されるワーク3はシュート16」二を転がってトラ
ム11の下方からリテーナ12の間に入り、ドラム11
の回転に伴いリテーナ12とともに上方に回り、ベルト
13の内側に入る。
The workpiece 3 to be machined rolls down the chute 16'2, enters between the retainers 12 from below the tram 11, and enters the drum 11.
As the belt rotates, it rotates upward together with the retainer 12 and enters the inside of the belt 13.

ベル1−13はドラム110回転方向と逆の方向へ走行
しているため、リテーナ12の間から出ているワーク3
の外周かベルト13に摺擦されてドラム11と逆の方へ
回転しながら上方へ移動して排出し、排出シュート17
へ排出される。
Since the bell 1-13 is running in the opposite direction to the rotation direction of the drum 110, the workpiece 3 coming out from between the retainers 12
The outer periphery of the drum 11 is rubbed by the belt 13, rotates in the opposite direction to the drum 11, moves upward, and is ejected from the ejection chute 17.
is discharged to.

上記の機構は各ワーク3に回転運動を与えるだけのもの
であるから、さらに軸方向の位置決めが必要である。
Since the above-described mechanism merely provides rotational motion to each workpiece 3, axial positioning is also required.

ワーク3を軸方向に送る方法の一例として第6図に示す
方法がある。
An example of a method for feeding the workpiece 3 in the axial direction is a method shown in FIG.

この第6図に示すように、ドラム11の外周を一葉双曲
面に加工し、その外周面18に一定の間隔で、ドラム1
1の軸芯19に対して一定の角度で傾斜した仮想の線を
ワークの母線20とし、ワ−り3がこの母線20に沿う
ように各リテーナ12を配置する。
As shown in FIG. 6, the outer periphery of the drum 11 is processed into a single-leaf hyperboloid, and the drum
An imaginary line inclined at a constant angle with respect to the axis 19 of the work piece 1 is defined as a generatrix line 20 of the workpiece, and each retainer 12 is arranged so that the work piece 3 is along this generatrix line 20.

第7図は展開図でドラム11が左方へ回転し、ベルト1
3が右方へ走行したとき各ワーク3は矢印の方向に回転
し、ドラム11とワーク3に働く分力によって各ワーク
3ばバッキングプレー1・21に押し付けられながら移
動する。
Figure 7 is a developed view in which the drum 11 rotates to the left and the belt 1
3 travels to the right, each work 3 rotates in the direction of the arrow, and moves while being pressed against the backing plays 1 and 21 by the force acting on the drum 11 and the work 3.

上記で明らかなように各ワーク3はドラム11の外周に
沿って自転しながら円弧状に移動する。
As is clear from the above, each workpiece 3 moves in an arc along the outer periphery of the drum 11 while rotating.

すなわち、前記第2図の場合はワーク3は砥石1の回転
中心に平行な面に沿って前進させながら、砥石1の曲面
に沿って横移動させる方法であったが、第5図ないし第
7図のようなワーク3の駆動方法の場合は第8図のよう
なワークの送りとなる。
That is, in the case of FIG. 2, the workpiece 3 is moved laterally along the curved surface of the grindstone 1 while being advanced along a plane parallel to the center of rotation of the grindstone 1, but in the case of FIGS. In the case of the method of driving the workpiece 3 as shown in the figure, the workpiece is fed as shown in FIG.

すなわち、第8図において、砥石1の回転軸8八に対し
て直角または所定角度となったワークの公転軸芯Bを中
心とする円弧Cに沿ってワーク3を公転させながら自転
さセてワーク3を軸方向に送ることになる。
That is, in FIG. 8, the workpiece 3 is rotated along an arc C centered on the revolution axis B of the workpiece, which is perpendicular or at a predetermined angle to the rotation axis 88 of the grindstone 1. 3 in the axial direction.

この場合ワークの端面を所望の形状に研磨しなければな
らないから金形状を球面と考えて、前記の砥石の成形法
に合致させようとすれば、第8図のように90°の範囲
でワーク3の先端形状を先端より外周に至る間の連続接
触の研削点aの軌跡が得られるように砥石1とワーク3
の関係位置を定めればよい。
In this case, the end face of the workpiece must be polished into the desired shape, so if we consider the metal shape to be a spherical surface and try to match the grindstone forming method described above, we can polish the end face of the workpiece within a 90° range as shown in Figure 8. Grinding wheel 1 and workpiece 3 are adjusted so that the trajectory of the grinding point a of continuous contact from the tip to the outer periphery is obtained.
All you have to do is determine the relative position of .

第8図によりその位置の基本は、 化ワーク尖端の研削位置は、ワークの軸芯が砥石の中ノ
ら弓こ向いていること。
As shown in Figure 8, the basics of the position are as follows: The grinding position of the tip of the workpiece is such that the axis of the workpiece is facing towards the center of the grindstone.

U、ワークの外周9面の終点位置は、砥石研削面のどこ
かで接触していること。
U. The end point position of the outer 9 surfaces of the workpiece must be in contact with the grinding surface of the whetstone somewhere.

ること。Things.

二 ワークは、自転すること。2. The work must rotate on its own axis.

である。It is.

この条件をワークの通過する砥石面の形状をモデル化し
て図解すると第9図のようになる。
This condition can be illustrated by modeling the shape of the grindstone surface through which the workpiece passes, as shown in FIG. 9.

すなわち、ワーク3の自転を加味するとリング状のチュ
ーブ内面が研削されるということになる。
In other words, when the rotation of the workpiece 3 is taken into account, the inner surface of the ring-shaped tube is ground.

この第9図の研削の場合の研削点は図示点線のようにリ
ング状チューブの90°範囲の外周でつながり、この線
を研削線すとする。
In the case of the grinding shown in FIG. 9, the grinding points are connected at the outer periphery of the ring-shaped tube within a 90° range as shown by the dotted line, and this line is assumed to be the grinding line.

このようにチューブの外周面の研削点の連続がチューブ
断面の90’の範囲でつながっておれば所定のワーク形
状の研削が出来る。
In this way, if the series of grinding points on the outer peripheral surface of the tube are connected within the range of 90' of the cross section of the tube, it is possible to grind a predetermined workpiece shape.

成形形状の考え方は、第9図のチューブ状リングを砥石
面に押し当てたとき砥石面との接触が研削線すに沿って
いればよいことになる。
The concept of the molding shape is that when the tubular ring shown in FIG. 9 is pressed against the grindstone surface, it is sufficient that the contact with the grindstone surface is along the grinding line.

従って、ワーク3の砥石に対する当て方はこの条件さえ
満足すればどのような相対的方向でも良いごとになる。
Therefore, the work 3 can be applied to the grindstone in any relative direction as long as this condition is satisfied.

今1例として、第10圓のように砥石面にチューブ状リ
ングを押しつけ、このリングと砥石面とは、図の点線の
ような接触をするとずれば、このチュブの代わりに前記
第5図乃至第7図で説明したようなワーク3の送り機構
によりワーク3の先端を砥石1に当てればワーク3の自
転公転により所定の研削加工ができる。
As an example, if a tubular ring is pressed against the grinding wheel surface like the 10th circle, and this ring and the grinding wheel surface are in contact with each other as shown by the dotted line in the figure, then instead of this tube, the ring shown in FIG. By applying the tip of the work 3 to the grindstone 1 using the workpiece 3 feeding mechanism as explained in FIG. 7, a predetermined grinding process can be performed by the rotation and revolution of the workpiece 3.

すなわち、このような砥石の成形は1ポイント成形ダイ
ヤモンドドレッサで第10図、第11図に示すリング状
チューブ拡大図に示すように、P点の回転角とドレッサ
ー先端の回転角を同期させれば、砥石の形状は成る成形
形状(水平ドレス)となる。
In other words, such a grindstone can be formed using a one-point forming diamond dresser by synchronizing the rotation angle at point P and the rotation angle at the tip of the dresser, as shown in the enlarged views of the ring tube shown in Figures 10 and 11. , the shape of the grindstone becomes a formed shape (horizontal dress).

その形状は、第12図にて説明すると、軸端外周P1よ
り軸端尖端:P2迄水平ドレスにて成形され、ワークは
ドレスの通過点に合致して、研削される軌道は、図の水
平ドレス軌跡で表される。
Its shape is explained in Fig. 12. It is formed by horizontal dressing from the shaft end outer circumference P1 to the shaft end tip: P2, the workpiece matches the passing point of the dressing, and the trajectory to be ground is horizontal as shown in the figure. Represented by dress locus.

このとき任意のドレス位置23点ではチューブの内面に
対しΔ景だけ砥石の成形は不足していることになってい
る。これは水平ドレスと本来移動すべきドレス点とのず
れによって生じたものである。
At this time, at 23 arbitrary dress positions, the grindstone is insufficiently formed by Δview with respect to the inner surface of the tube. This is caused by a deviation between the horizontal dress and the dress point that should originally be moved.

このドレス不足量は補正しなければ正しい形状が得られ
ないのは当然で、その数値は次式(1)又は(1)′−
水平ドレスにてドレスする場合の補正値−にて補正すれ
ばよい。
It goes without saying that the correct shape cannot be obtained unless this amount of dress shortage is corrected, and its numerical value is calculated using the following formula (1) or (1)'-
It may be corrected using the correction value - for the case of horizontal dressing.

x2/r2+y2/b2=1、y=Xtanαよりx2
/ r2+x” jan”α/−1、X 2−(1/ 
r 2−t−tan2α/b2 )△−x/cosα △−]/cosα[1/ (]/r2+ tan2α/
 (R2cos2α+ 2 Rr + r 2) l 
] ””=−=(f)0式において、α−45°が最大
であり、α−45°方向をy軸とし水平ドレス軌跡をy
軸とした場合、 y″a cos4.5 x 十c・・・・・・・・・・
■となり、はぼ0式と一致する。
x2/r2+y2/b2=1, x2 from y=Xtanα
/ r2+x"jan"α/-1, X2-(1/
r 2-t-tan2α/b2 ) △-x/cosα △-]/cosα[1/ (]/r2+ tan2α/
(R2cos2α+ 2 Rr + r 2) l
] ""=-=(f) In the 0 formula, α-45° is the maximum, and the horizontal dress trajectory is y with the α-45° direction as the y-axis.
When used as an axis, y″a cos4.5 x 10c・・・・・・・・・
■, which is consistent with Habo 0 formula.

これを関解すると、第130の如くなる。即ち、ドレン
シングアームの旋回角の×4.5の増速をし、旋回中心
より偏心量・aの円運動をドレッサーに伝えて補正する
か、或はその形状のカムを取り付けてドレッサー尖端補
正を行えば正規の砥石形状が得られる。
If you understand this, it becomes like the 130th. In other words, the speed is increased by 4.5 times the turning angle of the draining arm, and a circular motion of eccentricity a from the turning center is transmitted to the dresser to correct it, or a cam of that shape is installed to correct the dresser tip. By doing this, you can obtain a regular grindstone shape.

上記の砥石の成形方法で、ワークを回転キャリアにて連
続送りをする場合での砥石の成形を説明したが、この基
本の姿は前記第1図の点研削であるから、砥石とワーク
の相対位置やドレス半径によって研削出来る形状は、第
14図の原理により第15図に示すような種々のものが
得られる。
In the above-mentioned grindstone forming method, we have explained how to form a grindstone when the workpiece is continuously fed on a rotating carrier, but since the basic form is point grinding as shown in Figure 1 above, the relative relationship between the grindstone and the workpiece is Various shapes that can be ground depending on the position and dressing radius can be obtained as shown in FIG. 15 based on the principle shown in FIG. 14.

また、基準点旋回の角速度と基準点における、ドレッザ
ー回転半径二rの回転角速度との相対速度を、2軸間時
制御によってコントロールし砥石の成型をすることによ
って、ワークの加ニー先端形状は、凸面の範囲内で自由
に研削できる。この両面速度の制御−2軸制御は、例え
ば基準点旋回と、ドレッサー旋回の動力をパルスモータ
とし、パルス制御する方法、あるいは歯車伝動などの機
械的な方法などによって容易に実行可能である。
In addition, by controlling the relative speed between the angular velocity of the reference point rotation and the rotational angular velocity of the Drezer rotation radius 2r at the reference point using two-axis time control and shaping the grindstone, the shape of the machining tip of the workpiece can be Can be freely ground within the range of the convex surface. This double-sided speed control--two-axis control can be easily executed, for example, by using a pulse motor as the power for reference point rotation and dresser rotation, and performing pulse control, or by a mechanical method such as gear transmission.

〔発明の効果〕〔Effect of the invention〕

この発明は前記のように、全周に亘る円弧状凹入面を有
する回転砥石を回転させ、丸軸状のワタをその軸心の回
りに自転させながら、上記砥石の回転中心に交叉する方
向で、上記砥石の円弧状凹入面の一端から進入してワー
クの端面を円弧状凹入面に接触させるものであるから、
砥石とワークの相対位置やドレス半径により種々の形状
の研削が行えるものである。
As described above, this invention rotates a rotary whetstone having an arc-shaped recessed surface over the entire circumference, and rotates a round shaft-shaped grain around its axis in a direction intersecting the center of rotation of the whetstone. Since the grinding wheel enters from one end of the arcuate recessed surface and brings the end surface of the workpiece into contact with the arcuate recessed surface,
It is possible to grind various shapes depending on the relative position of the grindstone and the workpiece and the dressing radius.

また、装置としては外周を一葉双曲線となるように形成
してその外周面にワーク保持用の複数のリテーナを回転
軸芯に対して一定の角度となるように配置した回転ドラ
ムと、上記ドラムの各リテーナ間に丸軸状のワークを供
給する手段と、ドラのワークに接鼠虫して、ワークをド
ラムの回転方向と逆の方向に自転させるベルトによりワ
ークを自転させつつ送るものであるから、ワークは自転
するとともに推力を生じてバッキングプレートに押しつ
けられるのでワークの保持および長さ精度の維持が確実
であり、このようなワークの送り手段により送られるワ
ークの先端部を砥石の円弧状凹入面に圧着せしめて研削
するものであるから、連続研削が行え、量産に適してい
る。
In addition, the device includes a rotating drum whose outer periphery is formed into a single-lobed hyperbola, and a plurality of retainers for holding workpieces are arranged on the outer periphery at a constant angle with respect to the rotational axis. This is because the workpiece is sent while being rotated by a means for supplying a round shaft-shaped workpiece between each retainer and a belt that attaches to the workpiece of the drum and rotates the workpiece in the opposite direction to the rotational direction of the drum. As the workpiece rotates on its own axis and is pressed against the backing plate by generating a thrust force, it is possible to securely hold the workpiece and maintain its length accuracy. Since the grinding process is performed by crimping the inlet surface, continuous grinding can be performed, making it suitable for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法の原理を示す正面図、第2図は同
上の要部を示す拡大正面図、第3図、第4図は砥石のト
レス状態を示す拡大正面図、第50はワークの連続送り
装置の一例を示す斜視図、第6図は同上のドラムの詳細
を示す斜視図、第7図は同上の外周部の展開図、第8図
は砥石によるワークの研削点を示す斜視図、第9図はワ
ークの通過する砥石面をモデル化した斜視図、第10図
は同上を砥石に当てかった状態の斜視図、第11図は同
上の一部の拡大斜視図、第12図は同上を更に詳細に説
明するための正面図と側面図と断面図、第13圀はドレ
ッサの尖端補正の説明図、第141ffiは各種形状の
研削状態の正面図、第15図は各種仕上品の一部切欠正
面図である。 1・・・・・・砥石、     3・・・・・・ワーク
、4′・・・・・・円弧状凹入面、11・・・・・・ド
ラム、12・・・・・リテーナ、 13・・・・・・ベ
ルト。 特許出願人 株式会社メント研究所 同 代理人 鎌 田 文 第14図 C而 第15図
Fig. 1 is a front view showing the principle of the method of this invention, Fig. 2 is an enlarged front view showing the main parts of the same as above, Figs. 3 and 4 are enlarged front views showing the grinding stone state, and Fig. 50 is a workpiece. FIG. 6 is a perspective view showing details of the same drum, FIG. 7 is a developed view of the outer periphery of the above, and FIG. 8 is a perspective view showing the point at which the workpiece is ground by the grindstone. Figure 9 is a perspective view modeling the surface of the grindstone through which the workpiece passes, Figure 10 is a perspective view of the same as above in contact with the grindstone, Figure 11 is an enlarged perspective view of a part of the same as above, Figure 12 is The figures are a front view, a side view, and a cross-sectional view to explain the same as above in more detail, No. 13 is an explanatory diagram of the correction of the tip of the dresser, No. 141ffi is a front view of grinding states of various shapes, and Fig. 15 is a view of various finishes. It is a partially cutaway front view of the product. 1... Grindstone, 3... Work, 4'... Arc-shaped concave surface, 11... Drum, 12... Retainer, 13 ······belt. Patent applicant Ment Research Institute Co., Ltd. Agent Aya Kamata Figure 14 C and Figure 15

Claims (2)

【特許請求の範囲】[Claims] (1)全周に亘る円弧状凹入面を有する回転砥石を回転
させ、丸軸状のワークをその軸心の回りに自転させなが
ら、上記砥石の回転中心に交叉する方向で、上記砥石の
円弧状凹入面の一端から進入してワークの端面を円弧状
凹入面に接触させることにより球面状などに研削するこ
とを特徴とする研削方法。
(1) Rotate a rotary grindstone having an arc-shaped recessed surface over the entire circumference, rotate the round shaft-shaped workpiece around its axis, and rotate the grindstone in a direction intersecting the rotation center of the grindstone. A grinding method characterized by grinding the workpiece into a spherical shape by entering from one end of the arcuate recessed surface and bringing the end face of the workpiece into contact with the arcuate recessed surface.
(2)外周を一葉双曲線となるように形成してその外周
面にワーク保持用の複数のリテーナを回転軸芯に対して
一定の角度となるように配置した回転ドラムと、上記ド
ラムの各リテーナ間に丸軸状のワークを供給する手段と
、ドラムの回転方向と逆の方向に走行しつつリテーナ間
のワークに接触してワークをドラムの回転方向と逆の方
向に自転させるベルトと、自転により生じた推力により
軸方向に移動しようとするワークの移動方向の端部を支
持するバッキングプレートからなるワークの送り手段と
、この送り手段により円弧状経路に沿って移動するワー
クの先端部を受けてワークの先端部を所定の形状に研削
する円弧状凹入面を外周に有する砥石により構成した研
削装置。
(2) A rotating drum whose outer periphery is formed into a single-lobed hyperbola and on which a plurality of retainers for holding workpieces are arranged at a constant angle with respect to the rotational axis, and each retainer of the drum. means for supplying a round shaft-shaped work between the retainers; a belt that runs in the opposite direction to the rotation direction of the drum and contacts the work between the retainers to rotate the work in the opposite direction to the rotation direction of the drum; a workpiece feeding means consisting of a backing plate that supports the end of the workpiece in the moving direction that is about to be moved in the axial direction by the thrust generated by the movement; A grinding device consisting of a grindstone with an arc-shaped concave surface on the outer periphery for grinding the tip of a workpiece into a predetermined shape.
JP18227588A 1988-07-20 1988-07-20 Grinding method and device Pending JPH0230465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18227588A JPH0230465A (en) 1988-07-20 1988-07-20 Grinding method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18227588A JPH0230465A (en) 1988-07-20 1988-07-20 Grinding method and device

Publications (1)

Publication Number Publication Date
JPH0230465A true JPH0230465A (en) 1990-01-31

Family

ID=16115418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18227588A Pending JPH0230465A (en) 1988-07-20 1988-07-20 Grinding method and device

Country Status (1)

Country Link
JP (1) JPH0230465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276635A (en) * 1988-09-10 1990-03-16 Sanwa Niidorubearingu Kk Continuous processing method and device for round chamfering of shaft end
JPH05177524A (en) * 1991-06-18 1993-07-20 Gmn Georg Miller Nurnberg Ag Apparatus and method for rounding edge of semiconductor circular blank
WO2018225719A1 (en) * 2017-06-06 2018-12-13 日立金属株式会社 Tapered ferrite core, method and device for manufacturing same, and inductance element in which same is used
CN110666610A (en) * 2019-08-28 2020-01-10 铜陵狮达防火门有限责任公司 Fire door fillet grinding device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125949A (en) * 1974-08-28 1976-03-03 Hitachi Ltd Nyushutsuryokusochi no shiteihoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125949A (en) * 1974-08-28 1976-03-03 Hitachi Ltd Nyushutsuryokusochi no shiteihoho

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276635A (en) * 1988-09-10 1990-03-16 Sanwa Niidorubearingu Kk Continuous processing method and device for round chamfering of shaft end
JPH05177524A (en) * 1991-06-18 1993-07-20 Gmn Georg Miller Nurnberg Ag Apparatus and method for rounding edge of semiconductor circular blank
WO2018225719A1 (en) * 2017-06-06 2018-12-13 日立金属株式会社 Tapered ferrite core, method and device for manufacturing same, and inductance element in which same is used
CN110741455A (en) * 2017-06-06 2020-01-31 日立金属株式会社 Ferrite core with taper, method and apparatus for manufacturing the same, and inductance component using the same
JPWO2018225719A1 (en) * 2017-06-06 2020-04-16 日立金属株式会社 Tapered ferrite core, method and apparatus for manufacturing the same, and inductance element using the same
EP3637447A4 (en) * 2017-06-06 2021-03-10 Hitachi Metals, Ltd. Tapered ferrite core, method and device for manufacturing same, and inductance element in which same is used
CN110741455B (en) * 2017-06-06 2022-12-02 日立金属株式会社 Inductance element, method for manufacturing inductance element, and electronic pen
US11670450B2 (en) 2017-06-06 2023-06-06 Proterial, Ltd. Tapered ferrite core, its production method and apparatus, and inductance device comprising it
CN110666610A (en) * 2019-08-28 2020-01-10 铜陵狮达防火门有限责任公司 Fire door fillet grinding device

Similar Documents

Publication Publication Date Title
JPH02109672A (en) Device and method for grinding and polishing
US3030739A (en) Grinding apparatus and method
US2187471A (en) Grinding
JPH0230465A (en) Grinding method and device
SU1071411A1 (en) Apparatus for three-dimensional polishing
JP3964150B2 (en) Double-head surface grinding method and apparatus
JP2002254293A (en) Method and device for superfinishing raceway surface of ball bearing
JPS618273A (en) Grinding liquid feeder
JP4208364B2 (en) Spherical surface generating device and spherical surface generating method
US4534137A (en) Method for pattern generation and surfacing of optical elements
SU919855A2 (en) Tool for finishing bodies of revolution by plastic deformation method
JP4250594B2 (en) Moving device and plane polishing machine using planetary gear mechanism
JPH085002B2 (en) Spherical honing method
US3541733A (en) Apparatus for machining spherical heads of elongate workpieces
JP2574278B2 (en) Toric surface processing equipment
JPH088062Y2 (en) Circumferential groove grinding machine
JPH03221362A (en) Toric face polishing device
JP2000117600A (en) Centerless grinding machine
JPH04331058A (en) Concave lens finishing method and device
JP2001038592A (en) Polishing method and polishing device
JPH09109017A (en) Honing method
JP2886184B2 (en) Spherical processing equipment
JP2000061790A (en) Machining method of cam surface of loading cam device and machining device
JPH02237767A (en) Truing method for grinding grindstone and method and device for dressing
JPS6254660A (en) Surface finishing tool