JPH02304458A - Electrophotographic device - Google Patents

Electrophotographic device

Info

Publication number
JPH02304458A
JPH02304458A JP1124328A JP12432889A JPH02304458A JP H02304458 A JPH02304458 A JP H02304458A JP 1124328 A JP1124328 A JP 1124328A JP 12432889 A JP12432889 A JP 12432889A JP H02304458 A JPH02304458 A JP H02304458A
Authority
JP
Japan
Prior art keywords
toner
photoreceptor
developer
less
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1124328A
Other languages
Japanese (ja)
Other versions
JP2667904B2 (en
Inventor
Akira Shimada
昭 島田
Tetsuro Akasaki
赤崎 鉄郎
Katsumasa Mikami
克雅 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1124328A priority Critical patent/JP2667904B2/en
Publication of JPH02304458A publication Critical patent/JPH02304458A/en
Application granted granted Critical
Publication of JP2667904B2 publication Critical patent/JP2667904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To record with high quality and cleanness by reversal developing with the combination of a photosensitive body constituted from an organic photo conductive body and developer constituted from particulated toner particles and carrier particles. CONSTITUTION:A surface of a photosensitive body 21 in the electrophotographic device which carries out reversal developing of an electrostatic latent image which is formed on the photosensitive body 21 utilizing two component developer 36 of the organic photoconductive body which is constituted from material of high insulation, and the two component developer 36 is made to be a mixture of toner particles with an average diameter of the particle smaller than 10mum and ferritic carrier with electrical resistance of over 10<7>OMEGA.cm. That is, electric field which affects a developing range by bias voltage impressed on a developer carrier is maintained stable by the surface with the high insulation of the organic photo conductive body and ferritic carrier with the high electrical resistance. Thus image density is improved, fine toner particle of 10mum and less are stuck to the electrostatic latent image in the developing range, and a recording image of high definition and high image quality is reproduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複写機やレーザプリンタ等の電子写真装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to electrophotographic devices such as copying machines and laser printers.

〔従来の技術〕[Conventional technology]

電子写真方式を用いた記録装置の現像方法には、正規現
像と反転現像がある。感光体上に形成した静電潜像の電
荷極性と逆符号の極性をもつトナー粒子を1例えば磁気
ブラシ現像法等により、潜像面に付着させて原稿と同じ
ポジ画像を作る方式が正規現像である。正規現像方式を
適用している代表的な電子写真装置は、複写機である。
Developing methods for recording apparatuses using electrophotography include regular development and reversal development. Regular development is a method in which toner particles with a polarity opposite to that of the charge polarity of the electrostatic latent image formed on the photoreceptor are attached to the latent image surface using, for example, magnetic brush development, to create a positive image that is the same as the original. It is. A typical electrophotographic apparatus that uses a regular development method is a copying machine.

一方、均一帯電面から光で電荷が除去されたところにト
ナー粒子を付着させネガ−ポジ型の画像を作る方式が反
転現像である。コンピュータやファクシミリ等からのデ
ジタル印刷情報を出力、記録するレーザプリンタ等には
1反転現像力式を用いた装置が多い。その理由は、文字
や線等から成る文章では印字される部分と印字されない
部分では、その面積を比較すると、通常は印字される部
分の面積の方がはるかに小さいため、レーザやLED、
LCD等を使った露光手段により印字する部分のみ露光
して静電潜像を作り、その像に反転現像でトナー粒子を
付着させる方式の方が、露光手段や感光体の寿命を長く
することができると共に、記録時間の短縮を図ることが
できることにある。しかし、反転現像は感光体帯電面の
電荷極性と同符号のトナー粒子を帯電面の電荷からのク
ーロン反発力を受け、電気力線に従って露光した低電位
部に付着させなけれならないため、エツジ効果が強く現
れて大面積の黒部(べた黒)のエツジのみは黒く現像さ
れるが中央部は現像されにくく画像濃度が充分にでない
ことや未露光部にトナーが付着してかぶりがでやすい等
、正規現像とは異なる問題点がある。
On the other hand, reversal development is a method of creating a negative-positive image by attaching toner particles to a portion of a uniformly charged surface from which the charge has been removed by light. Many laser printers and the like that output and record digital print information from computers, facsimiles, etc. use a one-reversal developing force type. The reason for this is that when comparing the areas of printed and non-printed parts of text consisting of characters and lines, the area of the printed part is usually much smaller, so lasers, LEDs, etc.
A method of exposing only the area to be printed using an exposure means such as an LCD to create an electrostatic latent image, and then attaching toner particles to that image through reversal development can extend the life of the exposure means and photoreceptor. In addition, it is possible to shorten the recording time. However, in reversal development, toner particles with the same polarity as the charge polarity on the charged surface of the photoconductor must receive Coulomb repulsion from the charge on the charged surface and adhere to the exposed low-potential area along the lines of electric force, which causes the edge effect. Only the edges of large black areas (solid black) that appear strongly are developed black, but the central areas are difficult to develop, resulting in insufficient image density, and toner tends to adhere to unexposed areas and cause fogging. There are different problems than developing.

そのため、従来から反転現像方法のこれら問題点を解決
する技術が検討されてきた。例えば特開昭54−897
33号公報及び特開昭60’−154261号公報等に
記載されているような、電子写真装置の現像器のスリー
ブに感光体の帯電電位とほぼ同一の直流電圧を印加し、
更に交流電圧を重畳する手段もその一つである。本発明
者は、従来一般に電子写真装置の感光体として用いられ
ているセレン(Ss)を用いて、これと同様な実験とし
た。しかし、これらの方法は、従来から一般的に用いら
れている平均粒径が100μm以上の磁性キャリアと平
均粒径が十数μmのトナー粒子を混合した2成分現像剤
では効果があるが、高画質画像を得ることを目的にトナ
ー粒子とキャリア粒子の微粒子化を図った2成分現像剤
では効果がなく、濃度不足のうえ濃度むらも多く更にか
ぶりがあり、鮮明な記録画像は得ることができなかった
Therefore, techniques for solving these problems of the reversal development method have been studied. For example, JP-A-54-897
Applying a DC voltage that is almost the same as the charged potential of the photoreceptor to the sleeve of a developing device of an electrophotographic device, as described in Japanese Patent Application Laid-open No. 33 and Japanese Patent Application Laid-open No. 154261/1983,
Furthermore, means for superimposing an alternating current voltage is also one of them. The inventor conducted a similar experiment using selenium (Ss), which has been conventionally used as a photoreceptor in electrophotographic devices. However, these methods are effective for conventional two-component developers that are a mixture of magnetic carrier with an average particle size of 100 μm or more and toner particles with an average particle size of more than 10 μm; A two-component developer in which the toner particles and carrier particles are made finer to obtain high-quality images is not effective; it lacks density, has uneven density, and has fog, making it impossible to obtain clear recorded images. There wasn't.

なお、従来の一般的な2成分現像剤は上記したように、
平均粒径が100μm以上の磁性キャリアと平均粒径が
十数μmのトナー粒子を用いているが、このような現像
剤では、それぞれの粒子が粗いために、精細な線や点あ
るいは濃淡差等を再現する高画質の記録画像が得られに
くいといった問題がある。そこで、高画質画像を得るた
めに、従来から例えば、キャリア粒子の樹脂コーティン
グとかスリーブへのバイアス電圧の印加方法とか。
In addition, as mentioned above, the conventional general two-component developer is
A magnetic carrier with an average particle size of 100 μm or more and toner particles with an average particle size of more than 10 μm are used, but in such a developer, each particle is coarse, so fine lines, dots, differences in density, etc. There is a problem in that it is difficult to obtain high-quality recorded images that reproduce images. Therefore, in order to obtain high-quality images, conventional methods include coating carrier particles with resin and applying a bias voltage to the sleeve.

トナー粒子及びキャリア粒子の微粒子化等の多くの検討
がされてきた。中でも、トナー粒子及びキャリア粒子の
微粒子化は、レーザプリンタ等の電子写真装置において
従来の240dpi(ドツト/インチ)〜300dpi
の記録密度に対して、記録画像の高画質化のために記録
密度を400dpi〜600dpiに上げた場合等に効
果がある。
Many studies have been made, such as making toner particles and carrier particles finer. Among these, finer particles of toner particles and carrier particles are used in electrophotographic devices such as laser printers, which are capable of printing at conventional speeds of 240 dpi (dots/inch) to 300 dpi.
This is effective when the recording density is increased to 400 dpi to 600 dpi in order to improve the quality of recorded images.

しかし、トナー粒子を平均粒径が10μm以下の微粒子
にすると、トナー粒子の摩擦帯電制御が難しくなるばか
りか、凝集が起こり易くなる。更に、微粒子にともない
現像時にトナー粒子に働くクーロン力に対してファンデ
ルワールス力の影響が増して、画像背景部にもトナー粒
子が付着してかぶりが生じるようになる。また、キャリ
ア粒子を微粒化していくと、現像器の磁気ロールの磁力
によるスリーブへの吸引力が弱くなり、現像時にスリー
ブから飛散して感光体上に付着してしまうキャリア飛散
またはキャリア引きと称する現象が現れ、記録画像を乱
してしまう。特に、反転現像では感光体帯電面の電荷極
性とキャリア粒子の帯電極性が異符号であるため、キャ
リア引きが起こり易い。
However, if the toner particles are made into fine particles with an average particle diameter of 10 μm or less, not only will it be difficult to control the triboelectric charging of the toner particles, but agglomeration will likely occur. Furthermore, as the particles become smaller, the effect of van der Waals force on the Coulomb force acting on the toner particles during development increases, and the toner particles also adhere to the background of the image, resulting in fogging. In addition, as the carrier particles become atomized, the attraction force to the sleeve due to the magnetic force of the magnetic roll of the developing device becomes weaker, resulting in a phenomenon called carrier scattering or carrier pulling, in which the carrier particles scatter from the sleeve and adhere to the photoreceptor during development. A phenomenon appears and disturbs the recorded image. In particular, in reversal development, carrier attraction tends to occur because the charge polarity of the charged surface of the photoreceptor and the charge polarity of the carrier particles are of opposite signs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように従来技術では、2成分現像剤の微粒子によ
る上述のような副作用及び前記した従来の反転現像方法
の固有の問題も加わるため、実際の電子写真装置におい
ては微粒子化した2成分現像剤を反転現像に用いるのが
困難であった。
As described above, in the conventional technology, since the above-mentioned side effects caused by the fine particles of the two-component developer and the inherent problems of the conventional reversal development method described above are added, it is difficult to use the fine-grained two-component developer in an actual electrophotographic apparatus. It was difficult to use it for reversal development.

本発明は、以上の問題を解決すべくなされたもので、そ
の目的は有機光導電体で構成された感光体と微粒子化し
たトナー粒子及びキャリア粒子で構成される現像剤とを
組み合わせて反転現像することにより、濃度不足や濃度
むら及びかぶりがなく、高画質で鮮明な記録ができる電
子写真装置を提供することにある。
The present invention was made to solve the above problems, and its purpose is to perform reversal development by combining a photoreceptor made of an organic photoconductor and a developer made of finely divided toner particles and carrier particles. By doing so, it is an object of the present invention to provide an electrophotographic apparatus that can record clear images with high image quality without insufficient density, uneven density, or fog.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、感光体上に形成
した静電潜像を2成分現像剤を用いて反転現像を行う電
子写真装置において、感光体は表面が絶縁性の高い材料
で構成される有機光導電体とし、2成分現像剤は平均粒
径が10μm以下のトナー粒子と抵抗率が107Ω・1
以上のフェライトキャリアを混合したものとすることを
特徴とする。
In order to achieve the above object, the present invention provides an electrophotographic apparatus in which an electrostatic latent image formed on a photoreceptor is reversely developed using a two-component developer, in which the photoreceptor has a surface made of a highly insulating material. The two-component developer consists of toner particles with an average particle size of 10 μm or less and a resistivity of 107Ω·1.
It is characterized by being a mixture of the above ferrite carriers.

(作用〕 有機光導電体の絶縁性の高い表面と抵抗率の高いフェラ
イトキャリアは現像搬送体に印加されるバイアス電圧に
より現像領域に作用する電界を安定に保って画像濃度を
向上させ、10μm以下の微細トナーは前記現像領域で
静電潜像に付着して高精細で高画質の記録画像を再現す
る。
(Function) The highly insulating surface of the organic photoconductor and the high-resistivity ferrite carrier keep the electric field acting on the development area stable by the bias voltage applied to the development carrier, improving image density and improving image density to 10 μm or less. The fine toner adheres to the electrostatic latent image in the development area and reproduces a high-definition, high-quality recorded image.

〔実施例〕〔Example〕

先ず、本発明の理解を助けるために、本発明者が行なっ
た実験、実験結果とその検討を説明する。
First, in order to aid understanding of the present invention, experiments conducted by the present inventor, the results of the experiments, and their discussion will be explained.

第2図は、電子写真装置の縦断側面図である。FIG. 2 is a longitudinal sectional side view of the electrophotographic apparatus.

帯電器20により一様に帯電した感光体21は、データ
記録部22からの記録信号によって動作する露光手段2
3により、印字部分(トナーを付着させる部分)のみが
露光されて該部分の電位が低くなり、静電潜像が形成さ
れる。次に、現像器24内の現像剤搬送部材としてのス
リーブ24Aにより感光体21の帯電極性と同極性のト
ナーを現像部に供給して、潜像電位の低い部分に付着さ
せることにより、感光体21上にトナー像を形成する。
The photoreceptor 21 uniformly charged by the charger 20 is exposed to the exposure means 2 operated by a recording signal from the data recording section 22.
3, only the printed portion (the portion to which the toner is attached) is exposed to light, the potential of this portion is lowered, and an electrostatic latent image is formed. Next, toner having the same polarity as the charging polarity of the photoreceptor 21 is supplied to the developing section by the sleeve 24A as a developer conveying member in the developing device 24, and is deposited on the portion of the photoreceptor 21 where the latent image potential is low. A toner image is formed on 21.

このトナー像は、用紙カセット26から口−ラ27,2
8を介して送られてきた用紙29に転写器25により転
写される。用紙29は、用紙剥離用除電器30により感
光体21から分離され、定着器31へと送られ、定着器
31により用紙29上のトナー像を定着した後に、排紙
トレー32へ送られる。一方、感光体21はクリーニン
グ器33により表面の余分なトナーを除去した後に、イ
レーズ器34により残留電荷を除電して、次の記録工程
に供される。
This toner image is transferred from the paper cassette 26 to the printers 27 and 2.
The image is transferred by the transfer device 25 onto the paper 29 sent through the paper 8 . The paper 29 is separated from the photoreceptor 21 by a paper-separating static eliminator 30 and sent to a fixing device 31. After the toner image on the paper 29 is fixed by the fixing device 31, the paper 29 is sent to a paper discharge tray 32. On the other hand, after excess toner on the surface of the photoreceptor 21 is removed by a cleaning device 33, residual charges are removed by an eraser 34, and the photoreceptor 21 is used for the next recording process.

第1図は、第2図の電子写真装置に使用されている現像
器24の縦断側面図である。現像剤溜り35内にはキャ
リアとトナーとにより構成される2成分現像剤36があ
り、撹拌スクリュー37゜38の回転によりトナーはキ
ャリアと摩擦して所定の帯電量に帯電する。撹拌された
2成分現像剤36は固定マグネットロール39を有する
現像ロール40のスリーブ24Aの回転により、現像剤
溜り35から汲み上げられスリーブ24Aの回転方向に
搬送される。汲み上げられた2成分現像剤36は、ドク
ターブレード41によりスリーブ24A上の厚みが規制
され、ある一定の量が現像部に供給され、残りは折り返
されスクレーパ42を通ってトナー濃度制御センサ一部
43に導かれる。トナー濃度制御センサ一部43を通過
した2成分現像剤36は、現像剤溜り35に回収され、
再び同様な動作を繰り返す。
FIG. 1 is a longitudinal sectional side view of a developing device 24 used in the electrophotographic apparatus shown in FIG. Inside the developer reservoir 35 is a two-component developer 36 composed of carrier and toner, and as stirring screws 37 and 38 rotate, the toner rubs against the carrier and is charged to a predetermined amount of charge. The agitated two-component developer 36 is drawn up from the developer reservoir 35 by the rotation of the sleeve 24A of the developing roll 40 having the fixed magnet roll 39 and is conveyed in the rotational direction of the sleeve 24A. The thickness of the pumped two-component developer 36 on the sleeve 24A is regulated by the doctor blade 41, a certain amount is supplied to the developing section, and the rest is folded back and passed through the scraper 42 to the toner concentration control sensor part 43. guided by. The two-component developer 36 that has passed through the toner concentration control sensor portion 43 is collected in a developer reservoir 35.
Repeat the same action again.

一方、ドクターブレード41部を通過したスリーブ24
A上の2成分現像剤36は感光体21と接した現像部に
搬送され、現像に使われる。現像部を通過した2成分現
像剤36は、再び現像剤溜り35に回収される。現像部
では、感光体21の潜像電位とスリーブ24Aにバイア
ス電源44から印加した直流のバイアス電圧が作る電界
の作用により、トナーが感光体21上の露光された領域
に付着する。
On the other hand, the sleeve 24 that has passed through the doctor blade 41 section
The two-component developer 36 on A is conveyed to the developing section in contact with the photoreceptor 21 and used for development. The two-component developer 36 that has passed through the developing section is collected again into the developer reservoir 35. In the developing section, toner adheres to the exposed area on the photoreceptor 21 due to the action of the electric field created by the latent image potential of the photoreceptor 21 and the DC bias voltage applied to the sleeve 24A from the bias power supply 44.

2成分現像剤36は、記録特性を一定に保つためトナー
とキャリアの混合割合であるトナー濃度を一定に保たな
ければならない。そのため、トナー濃度制御センサ一部
43によりトナー濃度が監視され、現像によりトナーが
消費されて該2成分現像剤36のトナー濃度が低下する
と、補給ローラ45を回転することによりトナーホッパ
46からトナーが補給される1図中、参照符号47は、
補給したトナーがすぐに現像器り35の2成分現像剤3
6と馴染むように補給ローラ45からトナーが落下する
位置に設けた撹拌パドルである。補給用のトナーは、ト
ナーカートリッジ48内から撹拌羽根49の回転により
トナーホッパ46へ運ばれる。撹拌羽根49は、スリー
ブ24Aが回転しているあいだは同時に回転するように
する。
The two-component developer 36 must maintain a constant toner concentration, which is the mixing ratio of toner and carrier, in order to maintain constant recording characteristics. Therefore, the toner concentration is monitored by the toner concentration control sensor part 43, and when the toner is consumed during development and the toner concentration of the two-component developer 36 decreases, the toner is replenished from the toner hopper 46 by rotating the replenishment roller 45. 1, reference numeral 47 is
The replenished toner is immediately transferred to the two-component developer 3 in the developing unit 35.
This is a stirring paddle provided at a position where the toner falls from the replenishment roller 45 so as to be similar to 6. Toner for replenishment is transported from inside the toner cartridge 48 to the toner hopper 46 by rotation of the stirring blade 49. The stirring blade 49 is made to rotate simultaneously while the sleeve 24A is rotating.

本発明者は第2図の電子写真装置と第1図の現像器を用
いて特開昭54−89733号公報及び特開昭60−1
54261号公報等に示されている方法で検討したが、
前記で説明したように、記録画像は、べた黒の濃度が低
く、且つかぶりが多く、細線や点も鮮明に印字できなか
った6種々検討した結果、この主たる原因はSs感光体
を用いたことにあったが、さらに高精細で高画質の画像
を得るためには。
The present inventor used the electrophotographic apparatus shown in FIG. 2 and the developing device shown in FIG.
I investigated using the method shown in Publication No. 54261, etc., but
As explained above, the recorded image had a low solid black density and a lot of fogging, and even fine lines and dots could not be printed clearly.6 After various studies, we found that the main reason for this was the use of an Ss photoreceptor. However, in order to obtain even higher definition and higher quality images.

現像剤及び反転現像プロセスの適合を図る必要があった
It was necessary to adapt the developer and the reversal development process.

以下9本発明者が感光体21の種類、2成分現像剤36
に用いるトナー及びキャリアの種類と特性、感光体21
とスリーブ24Aとの間隙(以下。
The following 9 inventors have determined the type of photoreceptor 21, the two-component developer 36,
Types and characteristics of toner and carrier used for photoreceptor 21
and the gap between the sleeve 24A (see below).

現像ギャップという)や現像剤の搬送方法と撹拌方法、
バイアス電圧等を種々変更して実験することにより、用
紙29に鮮明な記録画像を得るためには、これら条件が
密接に関係していることを突き止めた。
development gap), developer transport method and stirring method,
By experimenting with various changes in bias voltage, etc., it was found that in order to obtain a clear recorded image on the paper 29, these conditions are closely related.

第3図〜第7図は、この実験により得られた結果を示し
た図である。
FIGS. 3 to 7 are diagrams showing the results obtained from this experiment.

まず、感光体21の違いによる記録特性の違いについて
説明する。感光体21には円筒状のアルミニウムドラム
に感光層としてSeを約60μmの厚さに蒸着したもの
と、同じくアルミニウムドラムに感光層として有機光導
電体を厚さ約17μmに塗布したものを使用した。その
ドラムの直径はLoomlであり、周速は125■/S
で時計回りに回転させた。なお、雨感光体とも未露光部
の電位は650から700vで露光部の電位を100v
以下にした。但し、帯電極性はSeが正極性であるのに
対して有機感光体は負極性である。
First, differences in recording characteristics due to differences in photoreceptor 21 will be explained. The photoreceptor 21 used was a cylindrical aluminum drum on which Se was vapor-deposited as a photosensitive layer to a thickness of about 60 μm, and a cylindrical aluminum drum coated with an organic photoconductor as a photosensitive layer to a thickness of about 17 μm on the same aluminum drum. . The diameter of the drum is Looml, and the peripheral speed is 125■/S
rotated it clockwise. In addition, the potential of the unexposed part of the rain photoconductor is 650 to 700V, and the potential of the exposed part is 100V.
I made it below. However, while Se has a positive charge polarity, the organic photoreceptor has a negative charge polarity.

スリーブ24A及びドクターブレード41には、導電性
非磁性であるアルミニウムを使用した。現像ロール40
は、直径40mの円筒状のスリーブ24Aとその内部に
挿入した円柱状の固定マグネットロール39から構成さ
れ、固定マクネットロール39は固定され、スリーブ2
4Aのみが回転可能になっている。スリーブの24Aの
周速は、感光体21の周速に対して2から5倍の速さで
可変できるようにしたが、実験は主として2.58倍の
周速で実施した。使用した固定マグネットロール39の
磁極数は7極で、その磁力の強さは。
For the sleeve 24A and the doctor blade 41, conductive and non-magnetic aluminum was used. Developing roll 40
is composed of a cylindrical sleeve 24A with a diameter of 40 m and a cylindrical fixed magnet roll 39 inserted into the sleeve.The fixed magnet roll 39 is fixed and the sleeve 2
Only 4A is rotatable. Although the circumferential speed of the sleeve 24A could be varied from 2 to 5 times the circumferential speed of the photoreceptor 21, experiments were mainly conducted at a circumferential speed of 2.58 times. The number of magnetic poles of the fixed magnet roll 39 used is 7, and the strength of its magnetic force is as follows.

現像部に位置する主極で磁束密度は850ガウスであっ
た。現像ギャップはIIIWIで、ドクターブレード4
1とスリーブ24Aとの間隙であるドクターギャップは
現像ギャップの0.7 倍に設定した。
The magnetic flux density at the main pole located in the developing section was 850 Gauss. The development gap is IIIWI, and the doctor blade is 4.
The doctor gap between the sleeve 24A and the sleeve 24A was set to 0.7 times the developing gap.

また、2成分現像剤36には平均粒径8μmのトナーと
抵抗率が109Ω・1以上のフェライトキャリアをトナ
ー濃度が重量比で3%になるように混合したものを用い
た。トナーの帯電極性は使用する感光体21と同極性に
なるようにトナーに含有する帯電制御系で調整した。
The two-component developer 36 used was a mixture of a toner having an average particle size of 8 μm and a ferrite carrier having a resistivity of 10 9 Ω·1 or more such that the toner concentration was 3% by weight. The charging polarity of the toner was adjusted using a charging control system contained in the toner so that it had the same polarity as the photoreceptor 21 used.

第3図は前記2種類の感光体21を用い、バイアス電圧
の大きさと記録画像のべた黒部中央の画像濃度の関係を
調べた結果である0曲線AはSeの結果で、曲線Bが有
機光導電体の結果である。
FIG. 3 shows the results of investigating the relationship between the magnitude of the bias voltage and the image density at the center of a solid black part of the recorded image using the two types of photoreceptors 21. Curve A is the result for Se, and curve B is the result for organic light. This is the result of a conductor.

Seの場合、バイアス電圧が小さい領域ではバイアス電
圧の上昇とともに画像濃度も上がるが20OV位までで
飽和してしまい、それ以上バイアス電圧を上げていくと
べた黒にむらが発生して画像濃度が不安定になるだけで
満足する画像濃度まで上げることができない。これはバ
イアス電圧を上げたことにより感光体21の表面での電
界が強まり、一種のブレークダウンが起こっているため
であると考えられる。特開昭60−154261号公報
に示されているようにバイアス電圧として直流電圧に交
流電圧を重畳したものを用いても画像濃度の不安定性が
増すだけで、鮮明な記録画像を得ることができなかった
In the case of Se, in the region where the bias voltage is small, the image density increases as the bias voltage increases, but it becomes saturated at about 20OV, and if the bias voltage is increased further, unevenness occurs in the solid black and the image density becomes poor. It is not possible to increase the image density to a satisfactory level even if it becomes stable. This is considered to be because the electric field on the surface of the photoreceptor 21 is strengthened by increasing the bias voltage, and a type of breakdown occurs. As shown in Japanese Patent Application Laid-Open No. 60-154261, using a bias voltage in which an alternating current voltage is superimposed on a direct current voltage only increases the instability of the image density, but it is not possible to obtain a clear recorded image. There wasn't.

一方、有機光導電体21はそのようなことがなく直流バ
イアス電圧の上昇とともに画像濃度も上がり、直流バイ
アス電圧に交流電圧を重畳する等の複雑な方法を用いな
くても満足する画像濃度が得られる。この理由は、2成
分現像剤36が接触する感光体21の表面が有機光導電
体の場合、ポリカーボネート等の絶縁性の高い材質でで
きているため、Seのような半導体的なものに比べて、
先のブレークダウンが起こりにくいためであると考えら
れる。この結果から反転現像には、表面が絶縁性の高い
材質でできている有機光導電体を用いることが有利であ
ることがわかった。
On the other hand, the organic photoconductor 21 does not have such a problem, and the image density increases as the DC bias voltage increases, and a satisfactory image density can be obtained without using a complicated method such as superimposing an AC voltage on a DC bias voltage. It will be done. The reason for this is that when the surface of the photoreceptor 21 that the two-component developer 36 comes into contact with is an organic photoconductor, it is made of a highly insulating material such as polycarbonate, so it is less sensitive than a semiconductor material such as Se. ,
This is thought to be because the previous breakdown is less likely to occur. From this result, it was found that it is advantageous to use an organic photoconductor whose surface is made of a highly insulating material for reversal development.

次にポイントとなるのが2成分現像剤36に使用するキ
ャリアの抵抗率である。第4図は、感光体21に有機光
導電体を使用して前記した記録条件と同じ条件で、キャ
リアの抵抗率のみを変えて記録画像の濃度変化を調べた
結果である。この時、バイアス電圧は一500Vに設定
した。キャリアは鉄粉とフェライトの2種類を用いた。
The next important point is the resistivity of the carrier used in the two-component developer 36. FIG. 4 shows the results of examining changes in the density of a recorded image under the same recording conditions as described above using an organic photoconductor as the photoreceptor 21 and changing only the resistivity of the carrier. At this time, the bias voltage was set to -500V. Two types of carriers were used: iron powder and ferrite.

鉄粉キャリアの抵抗率はそのままでは約104Ω・国で
あるが、樹脂をコーティングすることによって約101
1Ω・1まで変えることができる。一方、フェライトキ
ャリアはそのままでも抵抗率が高く約107Ω・値から
10eΩ・口であり、更に樹脂をコーティングすること
によって1014Ω・〔位まで抵抗率を上げることがで
きる。
The resistivity of the iron powder carrier is approximately 104Ω as it is, but it increases to approximately 101Ω by coating it with resin.
It can be changed up to 1Ω・1. On the other hand, the ferrite carrier has a high resistivity as it is, ranging from about 10 7 Ω· to 10 e Ω·, and by further coating it with resin, the resistivity can be increased to about 10 14 Ω·.

画像濃度は107Ω・1以上の抵抗率のフェライトキャ
リア使用すれば満足する領域になり、最もよいのが10
9Ω・国から1012Ω・■の抵抗率のキャリアを使っ
た場合である。それ以上の抵抗率では画像濃度が若干下
がる。また、一般的にはキャリアの抵抗率を下げた方が
現像性が上がり、画像濃度もよくでると考えられるが、
反転現像の場合、現像ギャップが狭くかつバイアス電圧
も高いため、絶縁性の高い表面をもつ有機光導電体を感
光体に使用しても抵抗率の低い鉄粉のギヤ。リアを用い
ると、先に説明したような感光体21の表面での一種の
ブレークダウンが起こり易くなり、画像濃度が上がらな
いばかりか濃度むらが大きくなる。この結果から平均粒
径が10μm以下のトナーを用いた反転現像には、10
7Ω・1以上の抵抗率のフェライトキャリアが適してい
ることがわかった。
The image density can be satisfied by using a ferrite carrier with a resistivity of 107Ω・1 or higher, and the best is 10Ω.
This is the case when using a carrier with a resistivity of 9Ω·1 to 1012Ω·■. If the resistivity is higher than that, the image density will decrease slightly. In addition, it is generally thought that lowering the resistivity of the carrier improves developability and improves image density.
In the case of reversal development, the development gap is narrow and the bias voltage is high, so even if an organic photoconductor with a highly insulating surface is used as a photoreceptor, the iron powder gear has low resistivity. If the rear is used, a type of breakdown on the surface of the photoreceptor 21 as described above tends to occur, and not only does the image density not increase, but density unevenness increases. From this result, for reversal development using toner with an average particle size of 10 μm or less, 10
It was found that a ferrite carrier with a resistivity of 7Ω·1 or more is suitable.

キャリアの粒径は、微粒子化したトナーを用いる場合は
撹拌性を上げるために同じく小粒径化を図る必要がある
。第5図は、上記と同一条件でキャリア粒子の大きさと
トナー濃度を種々に変えて、画像濃度とかぶり及びキャ
リア引きの限界を求めた結果である。キャリア粒子の平
均粒径が大きいと、トナーの帯電性が悪くなりかぶりが
発生するため、2成分現像剤36のトナー濃度を上げる
ことができず、かつ画像濃度も低い。一方、キャリアを
小粒径化していくとキャリア引きが起こり易くなり、更
に流動性が悪くなる問題が発生し、平均粒径50μm以
下のものは実用的には使用できない。このようなことか
ら、平均粒径が8μmのトナーの場合、これに適合する
キャリアの粒径は60μmから100μmの範囲内にあ
った0以上のことから1反転現像に好適なキャリアの粒
径は、使用するトナーの粒径に対して7.5倍から12
.5倍の範囲内のものとなることがわかった。
When using a finely divided toner, it is necessary to reduce the carrier particle size in order to improve stirring performance. FIG. 5 shows the results of determining the image density, fogging, and carrier pull limits under the same conditions as above, varying the carrier particle size and toner density. If the average particle diameter of the carrier particles is large, the charging properties of the toner will deteriorate and fog will occur, making it impossible to increase the toner concentration of the two-component developer 36 and resulting in low image density. On the other hand, as the particle size of the carrier is reduced, carrier pull tends to occur and fluidity becomes worse, and carriers with an average particle size of 50 μm or less cannot be used practically. Therefore, in the case of a toner with an average particle size of 8 μm, the particle size of a carrier suitable for this is within the range of 60 μm to 100 μm.Since the particle size is 0 or more, the particle size of a carrier suitable for 1 reversal development is , 7.5 times to 12 times the particle size of the toner used
.. It was found that the value was within the range of 5 times.

使用するキャリアの中に平均粒径に対して小さい粒径の
分布が大きくなるとキャリア引きが起こり易くなるので
、平均粒径に対して粒径が0.8以下の小径キャリアが
10%以下になるような粒度分布にするとキャリア引き
に対するマージンが増え、好適であった。
If the distribution of particles smaller than the average particle size in the carrier used increases, carrier pull will occur more easily, so the proportion of small carriers with a particle size of 0.8 or less relative to the average particle size should be 10% or less. Such a particle size distribution increased the margin for carrier attraction, which was preferable.

キャリアの樹脂コーティングについては1種々検討した
が、特に目だった効果はなかった。これは、フェライト
キャリア自身もとがら抵抗率が高いためである。それゆ
え1本電子写真装置では樹脂コーティングしたものしな
いもの、どちらを用いてもよい。
Various resin coatings for the carrier were investigated, but no particularly noticeable effects were found. This is because the ferrite carrier itself has a high resistivity. Therefore, in a single electrophotographic device, either one coated with resin or one not coated may be used.

次に反転現像に適したトナーの検討について説明する。Next, consideration of toner suitable for reversal development will be explained.

従来技術で説明したように電子写真装置の記録画像の高
精細化、高画質化には、特公昭59−11103号公報
等に記載されたように、使用するトナー粒子の径を従来
11〜13μmであったものを10μm以下の微粒子化
することが有効である。しかし、トナー径を小さくする
と同じ重量でも表面積が増えたことになり、トナー同士
の接触が多くなって、流動性が悪くなったりトナー同士
が凝集しやすくなる。そのため、現像部へのトナー補給
部で詰まり易くなり、安定に補給できない問題がある。
As explained in the prior art section, in order to improve the definition and quality of images recorded by electrophotographic devices, the diameter of toner particles used has conventionally been reduced to 11 to 13 μm, as described in Japanese Patent Publication No. 11103/1983. It is effective to make the particles into particles of 10 μm or less. However, when the toner diameter is reduced, the surface area increases even with the same weight, and the toners come into contact with each other more, resulting in poor fluidity and a tendency for the toners to aggregate with each other. Therefore, there is a problem that the toner replenishing section for the developing section is easily clogged, making it impossible to replenish the toner stably.

このほか、現像装置内においてもトナー径を小さくする
とキャリアとの混合撹拌特性が悪なり、補給したトナー
がなかなか所定の帯電量まで?lFtしなくなる。その
結果、トナーのキャリアへの静電的な付着力が弱く、飛
散が多くなり装置内部が汚れるばかりか、飛び散ったト
ナーがトナーを付着させる必要のない画像の白地部に付
きかぶりを起こす問題がある。
In addition, if the toner diameter is reduced in the developing device, the mixing and agitation characteristics with the carrier deteriorate, making it difficult for the replenished toner to reach the desired charge level. lFt will no longer occur. As a result, the electrostatic adhesion of the toner to the carrier is weak, causing more scattering, which not only pollutes the inside of the device, but also causes the problem that the scattered toner sticks to the white background of the image where toner does not need to be attached, causing fogging. be.

そこで、本発明者は種々検討した結果、■微粒子化した
トナーの粒度用布、■トナーを構成する素材及び外添剤
の適正化により平均粒径が10μm以下の微粒子トナー
を用いた反転現像において、これら問題を低減できるこ
゛とを突き止めた。
Therefore, as a result of various studies, the inventors of the present invention found that: (1) cloth for particle size of finely divided toner; (2) optimization of materials and external additives constituting the toner; We have found that these problems can be reduced.

まず、トナーの粒度分布であるが1種々検討した結果、
平均粒径が10μm以下のトナーを用いた反転現像の場
合、平均粒径の0.65倍以下の小粒径のものが重量比
で3%以下かつ平均粒径の2倍以上の大粒径のものが重
量比で1%以下である粒度分布を有するトナーが好適で
あった。その理由は、小粒径のトナーは、キャリアへの
付着力が強いため現像で使われにくく、残る傾向がある
First, as a result of various studies regarding the particle size distribution of toner,
In the case of reversal development using toner with an average particle size of 10 μm or less, small particles with a weight ratio of 0.65 times or less than the average particle size account for 3% or less, and large particles with a weight ratio of 2 times or more the average particle size. Toners having a particle size distribution of 1% or less by weight were preferred. The reason for this is that toner with a small particle size has a strong adhesion to the carrier, so it is difficult to be used in development and tends to remain.

特に、トナー粒子平均粒径の0.65倍以下の小粒径の
ものが重量比で3%以上含まれるとその傾向が強く問題
であった。
Particularly, when particles with a small particle diameter of 0.65 times or less than the average particle diameter of toner particles are contained in an amount of 3% or more by weight, this tendency is strong and becomes a problem.

次に、トナーを構成する素材及び外添剤の適正化である
。反転現像では従来技術の項で説明したように、べた黒
牛央部のトナーを感光体21に引き付けようとする電界
が弱い、そこで上記で説明したように、現像ギャップを
狭めバイアス電圧による電界を強める対策をとったとし
ても、本質的にはべた黒牛央部のトナー付着量は少ない
。そのため1本発明者はトナー量が少なくても充分な画
像濃度が得られるようにトナーに含まれるカーボン量の
変更を検討した。
Next is the optimization of the materials and external additives that make up the toner. In reversal development, as explained in the prior art section, the electric field that tries to attract the toner in the center of the solid black area to the photoreceptor 21 is weak, so as explained above, the electric field due to the bias voltage is reduced by narrowing the development gap. Even if measures are taken to strengthen the toner, the amount of toner adhering to the central part of the solid black cow is essentially small. Therefore, one of the present inventors has considered changing the amount of carbon contained in the toner so that sufficient image density can be obtained even with a small amount of toner.

第6図は、第2図の電子写真装置の現像剤にカーボン量
を変えたトナーを用いて、カーボン量と記録した画像の
濃度との関係を調べた結果である。
FIG. 6 shows the results of investigating the relationship between the amount of carbon and the density of the recorded image using toners with different amounts of carbon as the developer of the electrophotographic apparatus shown in FIG.

従来から2成分現像剤に用いられているトナーのカーボ
ン量は多いもので6%前後である。平均粒径が10μm
以下のトナーでは、第6図の結果のようにトナーに含ま
れるカーボン量が6%では、充分な画像濃度が得られな
い、本検討では、カーボンの量は重量比で8%以上から
15%以下で好適であった。それ以上にカーボン量を増
やすとトナーの抵抗率が下がり、トナーの帯電性が悪く
なり、記録画像にかぶりが発生した。
The amount of carbon in toners conventionally used in two-component developers is around 6% at most. Average particle size is 10μm
In the following toners, sufficient image density cannot be obtained when the amount of carbon contained in the toner is 6% as shown in the results in Figure 6. In this study, the amount of carbon is 8% or more to 15% by weight. The following were suitable. When the amount of carbon was increased more than that, the resistivity of the toner decreased, the charging property of the toner deteriorated, and fogging occurred in the recorded image.

トナーに含まれるカーボン量が重量比で8%以上から1
5%以下のトナーに、更にシリカ微粉末を重量比で2%
以下及び磁性微粒子を重量比で1%以下の範囲で外添し
て用いるとトナーの流動性がよくなり、凝集性も改善で
き、撹拌IF電性もよくなり、長期的な反転現像の連続
使用に対して現像剤の劣化現象がほとんどなく、安定し
て使えることを見いだした。ビニール系樹脂を主たる結
着樹脂とするトナーに疎水性のシリカを外添すると流動
性が良くなり、トナー同士の凝集も少なくなるが、長期
的にこのトナーを連続使用すると、現像装置の混合撹拌
特性が変わり、補給したトナーがなかなか帯電しなくな
ることがわかった。このため、かぶりや画像濃度のむら
が増す等の現像剤の劣化現象が生じた。
The amount of carbon contained in the toner is 8% or more by weight to 1
Add 2% by weight of fine silica powder to less than 5% toner.
When the following and magnetic fine particles are externally added in a weight ratio of 1% or less, the fluidity of the toner can be improved, the cohesiveness can be improved, the stirring IF conductivity can also be improved, and long-term continuous use of reversal development can be achieved. However, it was found that there was almost no deterioration phenomenon of the developer, and it could be used stably. Externally adding hydrophobic silica to a toner whose main binder is vinyl resin improves fluidity and reduces toner aggregation, but if this toner is used continuously over a long period of time, mixing and agitation in the developing device may occur. It was found that the characteristics changed and the replenished toner became difficult to charge. As a result, developer deterioration phenomena such as increased fogging and uneven image density occurred.

この原因をよく調べた結果、2つの問題点があることが
わかった。第1の問題点は、トナーに添加した疎水性シ
リカがトナーから離脱して、キャリア表面に移行し、キ
ャリア表面に覆ってしまうこと、第2の問題点は、長期
繰り返し使用によりキャリア表面にトナーが粘着する現
象(トナーフィルミング)である。これら問題を解決す
るために種々の方法を検討した結果、トナー粒子よりも
粒径の小さい磁性微粒子をトナー中または現像剤中に外
添して用いることにより、連続使用に対して現像剤の劣
化現象がほとんどないことを見いだした。外添する磁性
微粒子としては、トナー粒子よりも粒径が小さいもので
、材質は従来の磁性キャリアに用いるものと同様なもの
でよく、中でも微粉末化が容易なフェライトやマグネタ
イト等が適していることがわかった。
After carefully investigating the cause of this problem, we found that there are two problems. The first problem is that the hydrophobic silica added to the toner separates from the toner and migrates to the carrier surface, covering the carrier surface. This is a phenomenon in which toner sticks (toner filming). As a result of examining various methods to solve these problems, we found that by externally adding magnetic fine particles with a smaller particle size than the toner particles to the toner or developer, the deterioration of the developer due to continuous use could be reduced. We found that there were almost no phenomena. The externally added magnetic fine particles must have a particle size smaller than that of the toner particles, and the material may be the same as that used for conventional magnetic carriers. Among them, ferrite and magnetite, which are easily pulverized, are suitable. I understand.

以上が現像剤についての条件であり、次にこのような現
像剤を用いて感光体21上に形成した静電潜像を現像す
る現像器24に関する条件について述べる。
The above are the conditions regarding the developer, and next, the conditions regarding the developing device 24 which develops the electrostatic latent image formed on the photoreceptor 21 using such developer will be described.

感光体21とスリーブ24Aとの間隙である現像ギャッ
プは、先に説明したように反転現像ではバイアス電圧が
作る電界の効果を引き出すために狭める必要がある。第
7図は、第2図の電子写真装置に上記の2成分現像剤3
6を用い、現像ギャップと画像濃度の関係を求めた結果
である。この結果から、上記2成分現像剤36を用いて
反転現像を行う場合、現像ギャップは1+m以下が適し
ていることがねかった。
As explained above, the development gap, which is the gap between the photoreceptor 21 and the sleeve 24A, needs to be narrowed in order to bring out the effect of the electric field created by the bias voltage in reverse development. FIG. 7 shows the above two-component developer 3 in the electrophotographic apparatus shown in FIG.
6 is used to determine the relationship between the development gap and image density. From this result, when performing reversal development using the two-component developer 36, it was found that a development gap of 1+m or less is suitable.

現像領域に供給される2成分現像剤36の量は、ドクタ
ーブレード41によるスリーブ24A上の間隙(ドクタ
ーギャップ)により規制されるが。
The amount of the two-component developer 36 supplied to the development area is regulated by the gap (doctor gap) on the sleeve 24A caused by the doctor blade 41.

このドクターギャップの大きさは、現像ギャップが10
111以下の場合は画像濃度に対してそれほど影響しな
いが、現像ギャップに対して0.8 倍以下に設定しな
いと2成分現像剤36が現像ギャップで詰まり、感光体
21とスリーブ24Aがロックしやすくなるという問題
があった。そのため1本電子写真装置では現像ギャップ
が1mm以下で同時にドクターギャップもこの現像ギャ
ップの0.8倍以下に設定して用いる。
The size of this doctor gap is that the development gap is 10
If it is less than 111, it will not have much effect on the image density, but if it is not set to 0.8 times or less than the development gap, the two-component developer 36 will become clogged in the development gap, and the photoreceptor 21 and sleeve 24A will likely lock. There was a problem. Therefore, in a single electrophotographic apparatus, the developing gap is set to 1 mm or less, and the doctor gap is also set to 0.8 times or less of this developing gap.

2成分現像剤36の搬送速度は、感光体21の移動速度
に対して2から5倍がよく、中でも2.5から3.5倍
が画像再現性に優れていた。2成分現像剤36の搬送速
度は、スリーブ24Aの周速で決まるため、スリーブ2
4Aの周速が上記条件になるように設定して用いる。ま
た、2成分現像剤3Gの搬送方向は、感光体21の移動
方向と同方向にしたときに高画質の記録画像が得られた
The transport speed of the two-component developer 36 was preferably 2 to 5 times the moving speed of the photoreceptor 21, and among them, the image reproducibility was excellent when the transport speed was 2.5 to 3.5 times. The transport speed of the two-component developer 36 is determined by the circumferential speed of the sleeve 24A.
The circumferential speed of 4A is set and used so as to meet the above conditions. Furthermore, when the two-component developer 3G was transported in the same direction as the moving direction of the photoreceptor 21, high-quality recorded images were obtained.

2成分現像剤36の搬送方向を感光体21の移動方向と
逆方向にすると、2成分現像剤36の摺擦により、一度
現像したトナー像を掻き取る作用が強く、記録画像に掃
き目が生じて、鮮明な記録画像を得ることができない。
When the direction of conveyance of the two-component developer 36 is opposite to the direction of movement of the photoreceptor 21, the sliding action of the two-component developer 36 has a strong effect of scraping off the once developed toner image, resulting in scratches on the recorded image. Therefore, clear recorded images cannot be obtained.

本電子写真装置では現像ギャップは1a!以下とするが
、このギャップの平行度はギャップdに対してd±0.
1d の範囲内にすると画像の右端と左端で濃度差がな
く、均一濃度の画像が得られる。
In this electrophotographic device, the development gap is 1a! As shown below, the parallelism of this gap is d±0.
If it is within the range of 1d, there will be no difference in density between the right and left ends of the image, and an image with uniform density will be obtained.

現像ギャップは装置作製時にこのように設定しておけば
よいが、感光体21や2成分現像剤36には寿命があり
、用紙29の印刷枚数に従って交換しなければならない
、そのため、感光体21や現像器24は装置本体から取
り出せ、更に簡単に装着できかつ現像ギャップを精度よ
く設定できるようにしておく必要がある。従来、その一
つの方法として、スリーブ24Aの径よりも2d分だけ
大きい径の当てつけリングをスリーブ24Aの軸に設け
、このリングを感光体21の両端に当てて現像器24を
設定する方法がある。しかし、この方法は当てつけリン
グが摩耗しない初期の間はよいが、当てつけリングが摩
耗すると現像ギャップの変動が起こり、記録画像の濃度
むらが生じる。
The developing gap can be set in this way when manufacturing the device, but the photoconductor 21 and the two-component developer 36 have a limited lifespan and must be replaced according to the number of sheets of paper 29 printed. The developing device 24 must be able to be taken out from the main body of the apparatus, be easily installed, and be able to accurately set the developing gap. Conventionally, one of the methods is to provide a contact ring with a diameter 2d larger than the diameter of the sleeve 24A on the shaft of the sleeve 24A, and to set the developing device 24 by applying this ring to both ends of the photoreceptor 21. . However, although this method is good in the initial stage when the abutment ring is not worn, when the abutment ring wears out, the development gap changes, causing density unevenness in the recorded image.

そこで、本発明者はこの方法を用いることなく。Therefore, the inventor did not use this method.

第8図に示すように、v6光体21を保持する感光体部
材50及び現像器24がそれぞれ独立に前記電子写真装
置本体から脱着自在で、かつ前記電子写真装置本体の側
板51に設けたピン52に、感光体保持部材50の一部
に設けた位置決め孔53と、現像器24の一部に設けた
位置決め孔54とが共用して嵌合することにより現像器
24と感光体21を正確に位置決めして、現像ギャップ
の平行度を出すようにした。感光体保持部材50及び現
像器24の装置本体への挿入及ぞ固定は、第9図に示す
ように装置本体奥側の側板55に設けた軸受56,57
に感光体21のドラムの軸58及び現像ロール40の軸
59が、感光体保持部材50及び現像@24を装置本体
に挿入したときにそれぞれ嵌合するように行なう。感光
体保持部材50は、位置決め孔53を装置本体の挿入側
の側板51に設けたピン52に嵌合し、更にねじ60を
ねじ孔62に嵌合して固定する。現像器24は、位置決
め孔53を同じように装置本体の挿入側の側板51に設
けたピン52に嵌合し、更にねじ61をねじ孔63に嵌
合して固定する。この様に1つのピン52を共用するこ
とにより、現像器24と感光体21の位置を正確に決め
ることができるので、現像ギャップも精度よく設定でき
るのである。
As shown in FIG. 8, the photoreceptor member 50 holding the V6 light body 21 and the developing device 24 are each independently removable from the main body of the electrophotographic apparatus, and pins are provided on the side plate 51 of the main body of the electrophotographic apparatus. 52, the positioning hole 53 provided in a part of the photoreceptor holding member 50 and the positioning hole 54 provided in a part of the developing unit 24 are commonly fitted, so that the developing unit 24 and the photoreceptor 21 can be accurately aligned. The development gap was positioned to ensure parallelism. The photoreceptor holding member 50 and the developing unit 24 are inserted into and fixed in the apparatus main body using bearings 56 and 57 provided on a side plate 55 on the back side of the apparatus main body, as shown in FIG.
The shaft 58 of the drum of the photoreceptor 21 and the shaft 59 of the developing roll 40 are fitted into each other when the photoreceptor holding member 50 and the developer @ 24 are inserted into the main body of the apparatus. The photoreceptor holding member 50 is fixed by fitting a positioning hole 53 into a pin 52 provided on a side plate 51 on the insertion side of the apparatus main body, and further fitting a screw 60 into the screw hole 62. The developing device 24 is fixed by fitting the positioning hole 53 into the pin 52 provided on the side plate 51 on the insertion side of the apparatus main body in the same way, and further fitting the screw 61 into the screw hole 63. By sharing one pin 52 in this manner, the positions of the developing device 24 and the photoreceptor 21 can be determined accurately, and the developing gap can also be set with high precision.

更に、感光体や用紙搬送の駆動と現像器系の駆動をベル
トやチェーン等の同一系統で実施すると、現像器の負荷
変動により感光体や用紙搬送系の送り速度にわずかな変
動が起こり、それが画像むらとなる。特に本発明では、
反転現像で現像ギャップが狭いため、画像形成プロセス
において従来の方式に比べてよりこの速度変動の影響を
受けやすいのである。ところで、感光体の回転と用紙の
搬送は同じ速度にしなければならないが、現像器のスリ
ーブの回転速度等は同じにする必要はない。
Furthermore, if the photoreceptor and paper transport drive and the developer system are driven by the same system, such as a belt or chain, slight fluctuations in the feed speed of the photoreceptor and paper transport system will occur due to changes in the load on the developer. The image becomes uneven. In particular, in the present invention,
Because the development gap is narrow in reversal development, the image forming process is more susceptible to speed fluctuations than conventional systems. Incidentally, although the rotation of the photoreceptor and the conveyance of the paper must be at the same speed, it is not necessary that the rotation speed of the sleeve of the developing device be the same.

そこで、第2図の電子写真装置では、現像器関係の駆動
と感光体及び用紙搬送系の駆動とを分け。
Therefore, in the electrophotographic apparatus shown in FIG. 2, the driving of the developing unit and the driving of the photoreceptor and paper conveyance system are separated.

現像器関係を独立に駆動するようにした。このようにす
ると感光体や用紙搬送系の送りは、現像器の負荷変動に
よる速度変動がなくなり、画質向上が図れた。
The developing device is now driven independently. In this way, the speed of the photoreceptor and paper transport system does not fluctuate due to load fluctuations on the developing device, and image quality can be improved.

以下、本発明の実施例を具体的に説明する。Examples of the present invention will be specifically described below.

実施例1 第1図及び第2図は、本発明を用いた現像器及び電子写
真装置の一実施例である。感光体21は、アルミニウム
ドラム上に有機顔料であるフタロシアニンを主成分とす
る電荷発生層を0.5μmの厚さに塗布した後、その上
に電荷搬送層としてオキサドール誘導体を重量比で30
%含むポリカーボネートを16.5μmの厚さに塗布し
た2層構造の有機光導電体を使用した。感光体21の体
琶゛抵抗率は101!5Ω・■であった。
Embodiment 1 FIGS. 1 and 2 show an embodiment of a developing device and an electrophotographic apparatus using the present invention. The photoreceptor 21 is constructed by coating an aluminum drum with a charge generation layer mainly composed of phthalocyanine, an organic pigment, to a thickness of 0.5 μm, and then applying an oxadol derivative as a charge transport layer thereon at a weight ratio of 30 μm.
A two-layer organic photoconductor coated with 16.5 μm thick polycarbonate comprising The body resistivity of the photoreceptor 21 was 101!5 Ω·■.

感光体21の直径は100nnであり、周速は125m
/sで時計回りに回転する。感光体21の表面の電位は
、画像の背景部にあたる未露光部は一650vで、画像
記録部にあたる露光部は一100V以下になるように帯
電器20の印加電圧及び露光手段23の露光量を調整し
た。また、スリーブ24Aに印加するバイアス電源44
の出力電圧は、−500Vとした。
The diameter of the photoreceptor 21 is 100 nn, and the peripheral speed is 125 m.
/s to rotate clockwise. The voltage applied to the charger 20 and the exposure amount of the exposure means 23 are adjusted so that the potential on the surface of the photoreceptor 21 is -650V in the unexposed area, which is the background of the image, and -100V or less in the exposed area, which is the image recording area. It was adjusted. Also, a bias power supply 44 applied to the sleeve 24A
The output voltage was -500V.

現像器24のスリーブ24A及びドクターブレード41
には、導電性非磁性体であるアルミニウムを使用した。
Sleeve 24A of developing device 24 and doctor blade 41
Aluminum, which is a conductive non-magnetic material, was used.

現像ロール40は、直径40mmの円筒状のスリーブ2
4Aとその内部に挿入した円柱状の固定マグネットロー
ル39から構成され、スリーブ24Aのみが反時計方向
に回転し、現像剤36を搬送する。スリーブの24Aの
周速は、感光体21の周速に対して2.58倍の322
.511fl/sとした。固定マグネットロール39の
磁極数は7極で、その磁力の強さは、現像部に位置する
主極での磁束密度を850ガウスとした。現像ギャップ
は1mで、ドクターギャップは0.6mn+に設定した
The developing roll 40 has a cylindrical sleeve 2 with a diameter of 40 mm.
4A and a cylindrical fixed magnet roll 39 inserted therein, only the sleeve 24A rotates counterclockwise to convey the developer 36. The peripheral speed of the sleeve 24A is 322, which is 2.58 times the peripheral speed of the photoreceptor 21.
.. It was set to 511 fl/s. The number of magnetic poles of the fixed magnet roll 39 was seven, and the strength of the magnetic force was such that the magnetic flux density at the main pole located in the developing section was 850 Gauss. The development gap was set to 1 m, and the doctor gap was set to 0.6 m+.

トナーは、スチレン−アクリル樹脂を主成分に。The main component of the toner is styrene-acrylic resin.

カーボンブラックを重量比で10%、帯電制御剤として
クロム合金染料を重量比で3%を含んだものを粉砕し、
更に平均粒径が8μmで平均粒径の0.65倍以下の小
径粒のものが重量比で3%以下かつ平均粒径の2倍以上
の大粒径のものが重量比で1%以下になるように分赦し
、その後シリカ微粉末を重量比で1%及び磁性微粒子と
してマグネタイトの微粉末を重量比で0.5%外添した
ものを用いた。このトナーの粒度分布を測ったところ、
平均粒径が8μmで5.2μm以下のが重量比で1.3
%かつ16μm以上のものが重量比で0.3%であった
A material containing 10% by weight of carbon black and 3% by weight of chromium alloy dye as a charge control agent is pulverized,
In addition, small particles with an average particle size of 8 μm and 0.65 times or less of the average particle size account for 3% or less by weight, and large particles with an average particle size of more than twice the average particle size account for 1% or less by weight. After that, 1% by weight of fine silica powder and 0.5% by weight of fine magnetite powder were externally added as magnetic fine particles. When we measured the particle size distribution of this toner, we found that
The weight ratio of particles with an average particle size of 8 μm and 5.2 μm or less is 1.3.
% and those with a diameter of 16 μm or more were 0.3% by weight.

キャリアは銅−亜鉛を主成分とするフェライトでその表
面にシリコン樹脂が約0.2μmの厚さでコートされて
いるものを用いた。キャリアの抵抗率は10izΩ・l
であった。また、キャリアの大きさは、平均粒径91μ
mで7oμm以下の粒径のものが5%以下になるように
分級したものを用いた。
The carrier used was a ferrite whose main component was copper-zinc, the surface of which was coated with silicone resin to a thickness of about 0.2 μm. The resistivity of the carrier is 10izΩ・l
Met. In addition, the size of the carrier is an average particle size of 91μ
The particles were classified so that 5% or less of the particles had a particle size of 7 μm or less.

2成分現像剤36は、上記トナーとキャリアをトナー濃
度が重量比で3%になるように混合したものを用いた。
The two-component developer 36 used was a mixture of the above toner and carrier so that the toner concentration was 3% by weight.

トナー濃度は現像器24内のトナー濃度センサ部43に
より検知し、3%を中心に±0.5%の範囲内になるよ
うに制御した。このときのトナーの帯電量は、−20μ
C/gであった。
The toner concentration was detected by a toner concentration sensor section 43 in the developing device 24, and was controlled to be within a range of ±0.5% around 3%. The amount of charge on the toner at this time is -20μ
C/g.

以上の条件で反転現像を行った結果、得られた用紙29
上の記録画像は、画像濃度も高く更に濃度むらやかぶり
もなく、高画質で鮮明であった。
Paper 29 obtained as a result of reversal development under the above conditions
The above recorded image had high image density, no density unevenness or fog, and was high quality and clear.

引き続き、2成分現像剤36のトナー濃度が一定になる
ように逐次トナーを補給しながら5oooo枚の連続印
字を行ったところ画像濃度は、殆ど濃度一定でかぶりも
少なく、高画質で安定した記録画像を得ることができた
Subsequently, 500 sheets were continuously printed while sequentially replenishing the toner so that the toner concentration of the two-component developer 36 remained constant.The image density was almost constant and there was little fogging, resulting in a high quality and stable recorded image. was able to obtain.

実施例2 本実施例は実施例1と同じ構成の現像器24を使用した
電子写真装置であるが、異なる点は以下のとおりである
Embodiment 2 This embodiment is an electrophotographic apparatus using the developing device 24 having the same configuration as in Embodiment 1, but the differences are as follows.

感光体21の表面の電位は1画像の背景部にあたる未露
光部は一600Vで1画像記録部にあたる露光部は一1
00v以下になるように帯電器20の印加電圧及び露光
手段23の露光量を調整した。また、スリーブ24Aに
印加するバイアス電圧は、−450Vとした。
The potential on the surface of the photoreceptor 21 is -600 V for the unexposed area, which is the background of one image, and -11 V for the exposed area, which is the recording area of one image.
The applied voltage of the charger 20 and the exposure amount of the exposure means 23 were adjusted so that the voltage was 00 V or less. Further, the bias voltage applied to the sleeve 24A was set to -450V.

現像器24は、スリーブの24Aの周速を385m/s
に、現像ギャップは0.8 @mで、ドクターギャップ
は0 、6 m Lニー設定した2トナーは、スチレン
−アクリ、ル樹脂を主成分に、カーボッブラックを重量
比で8%、帯電制御剤としてクロム合金染料を重量比で
3%を含んだものを粉砕したもので、平均粒径及び粒度
分布更に外添剤の混合割合は、実施例1と同様にした。
The developing device 24 has a circumferential speed of the sleeve 24A of 385 m/s.
The development gap is 0.8@m, the doctor gap is 0, and the two toners set at 6 mL knee are mainly composed of styrene-acrylic resin, 8% by weight of carbo black, and charge control. The powder contained 3% by weight of a chromium alloy dye as an agent, and the average particle size, particle size distribution, and mixing ratio of external additives were the same as in Example 1.

キャリアは銅−亜鉛を主成分とするフェライトで、その
表面には樹脂がコートされていないものを用いた。キャ
リアの抵抗率は109Ω・lであった。キャリアの大き
さは、平均粒径85μmで65μm以下の粒径のものが
6%以下になるように分級したものを用いた。
The carrier used was ferrite whose main component was copper-zinc, and whose surface was not coated with resin. The resistivity of the carrier was 109Ω·l. The size of the carrier used was one classified so that the average particle size was 85 μm and 6% or less of the particles had a particle size of 65 μm or less.

2成分現像剤36のトナー濃度は、3.5% を中心に
±0.5%の範囲内になるように制御した。
The toner concentration of the two-component developer 36 was controlled to be within a range of ±0.5% around 3.5%.

このときのトナーの帯電量は、−22μC/gであった
The charge amount of the toner at this time was -22 μC/g.

以上の条件で反転現像を行った結果、実施例1と同様に
記録画像は、画像濃度も高く更に濃度むらやかぶりもな
く、高画質で鮮明であった。引き続き、2成分現像剤3
6のトナー濃度が一定になるように逐次トナーを補給し
ながら5oooo枚の連続印字を行ったところ画像濃度
は、殆ど濃度一定でかぶりも少なく、高画質で安定した
記録画像をえることができた。
As a result of performing reversal development under the above conditions, as in Example 1, the recorded image had a high image density, was free from density unevenness and fogging, and was of high quality and clear. Next, two-component developer 3
When I continuously printed 500 sheets while replenishing the toner sequentially so that the toner density of 6 was constant, the image density was almost constant and there was little fogging, and I was able to obtain a high quality and stable recorded image. .

実施例3 本実施例は実施例2と同じ構成の現像器24を使用した
電子写真装置であるが、異なる点は以下のとうりである
Embodiment 3 This embodiment is an electrophotographic apparatus using the developing device 24 having the same configuration as that of Embodiment 2, except for the following differences.

トナーは、ポリエステル樹脂を主成分に、カーボンブラ
ックを重量比で10%、帯電制御剤としてクロム合金染
料を重量比で3%を含んだものを粉砕し、更に平均粒径
が6μmで平均粒径の0.65倍以下の小粒径のものが
重量比で3%以下かつ平均粒径の2倍以上の大粒径のも
のが重量比で1%以下になるように分級し、その後シリ
カ微粉末を重量比で2%及び磁性微粒子としてフェライ
トの微粉末を重量比で1%外添したものを用いた。この
トナーの粒度分布を測ったところ、平均粒径が6μmで
3.6μm以下のが重量比で2.3%かつ12μm以上
のものが重量比で0.5%であった。
The toner is made by pulverizing a material whose main component is polyester resin, 10% by weight of carbon black, and 3% by weight of chromium alloy dye as a charge control agent, and the average particle size is 6 μm. The particles are classified so that the weight ratio of particles with a small particle size of 0.65 times or less than 0.65 times the average particle size is 3% or less, and the large particle size of 2 times or more the average particle size is 1% or less by weight. The powder used was 2% by weight, and 1% by weight of fine ferrite powder was externally added as magnetic fine particles. When the particle size distribution of this toner was measured, it was found that the average particle size was 6 μm, 2.3% by weight was 3.6 μm or less, and 0.5% by weight was 12 μm or more.

キャリアはバリウム−亜鉛を主成分とするフェライトで
その表面にはスチレン−アクリル樹脂がコートされてい
るものを用いた。キャリアの抵抗率は1010Ω±印で
あった。キャリアの大きさは、平均粒径60μmで48
μm以下の粒径のものが8%以下になるように分級した
ものを用いた。
The carrier used was ferrite whose main component was barium-zinc, and the surface of which was coated with styrene-acrylic resin. The resistivity of the carrier was 1010Ω±mark. The carrier size is 48 mm with an average particle size of 60 μm.
The particles used were classified so that particles with a particle size of μm or less were 8% or less.

2成分現像剤36のトナー濃度は、3%を中心に±0.
5%の範囲内になるように制御した。このときのトナー
の帯電量は、−18μC/gであった。
The toner density of the two-component developer 36 is within ±0.0% around 3%.
It was controlled to be within a range of 5%. The charge amount of the toner at this time was -18 μC/g.

以上の条件で反転現像を行った結果、記録画像は、画像
濃度も高く更に濃度むらやかぶりもなく。
As a result of performing reversal development under the above conditions, the recorded image had a high image density and was free from density unevenness and fog.

実施例1と同様かそれ以上に高画質で鮮明であった。引
き続き、現像剤のトナー濃度が一定になるように逐次ト
ナーを補給しながら5oooo枚の連続印字を行ったと
ころ画像濃度は、殆ど濃度一定でかぶりも少なく、高画
質で安定した記録画像をえることができた。
The image quality was similar to or higher than that of Example 1 and was clearer. Subsequently, 500 sheets were continuously printed while sequentially replenishing the toner so that the toner concentration of the developer remained constant.The image density was almost constant, with little fogging, and a high quality and stable recorded image was obtained. was completed.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように有機光導電体で構成され
た感光体と平均粒径が10μm以下となるように微粒化
したトナー粒子及び抵抗率が107Ω・1以上のフェラ
イトキャリア粒子で構成される2成分現像剤とを組み合
わせて反転現像することにより、濃度不足や濃度むら及
びかぶりがなく。
As explained above, the present invention comprises a photoreceptor made of an organic photoconductor, toner particles atomized to have an average particle size of 10 μm or less, and ferrite carrier particles having a resistivity of 10 7 Ω·1 or more. By performing reversal development in combination with a two-component developer, there is no lack of density, uneven density, or fog.

高画質で鮮明な記録ができる電子写真装置を提供するこ
とができる。
It is possible to provide an electrophotographic device that can record clear images with high image quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の現像器の縦断側面図、第2
図は本発明の一実施例の電子写真装置の縦断側面図、第
3図は感光体の違いによるバイアス電圧と画像濃度の違
いを示す特性図、第4図はキャリアの抵抗率と記録画像
の濃度変化を示す特性図、第5図は同一条件でキャリア
粒子の大きさとトナー濃度を種々変えて画像濃度とかぶ
り及びキャリア引きの限界を求めた特性図、第6図はト
ナーのカーボン量と画像の濃度との関係を示す特性図、
第7図は現像ギャップと画像濃度の関係を示す特性図、
第8図は現像器の設定部を示す斜視図、第9図は感光体
と現像器の位置決め構成を示す縦断側面図である。 21・・・感光体、24・・・現像器、24A・・・ス
リー・ブ、35・・・現像剤溜り、36・・・現像剤、
40・・・現像ロール、41・・・ドクターブレード、
44・・・バイアス電圧、45・・・補給ローラ、46
・・・トナーホッパ、47・・・撹拌パドル、48・・
・トナーカートリッジ、49・・・撹拌羽根、50・・
・感光体保持部材、51・・・電子写真装置本体側板、
52・・・ピン、53.54第1図 第2図 26・・・・・・用紙カセット   34・・・イレー
ズ器第3図 第4図 キャリア抵抗率〔Ω・口〕 第5図 第6図 カーボン量〔チ〕 第7図 現像ギャップ(掴) 第8図
FIG. 1 is a longitudinal cross-sectional side view of a developing device according to an embodiment of the present invention, and FIG.
The figure is a vertical side view of an electrophotographic apparatus according to an embodiment of the present invention, FIG. 3 is a characteristic diagram showing the difference in bias voltage and image density due to different photoreceptors, and FIG. A characteristic diagram showing density changes. Figure 5 is a characteristic diagram showing the image density, fog, and carrier pull limit obtained by varying the carrier particle size and toner concentration under the same conditions. Figure 6 is a characteristic diagram showing the toner carbon content and image. A characteristic diagram showing the relationship with the concentration of
Figure 7 is a characteristic diagram showing the relationship between development gap and image density.
FIG. 8 is a perspective view showing a setting section of the developing device, and FIG. 9 is a longitudinal sectional side view showing the positioning structure of the photoreceptor and the developing device. 21... Photoreceptor, 24... Developing device, 24A... Sleeve, 35... Developer reservoir, 36... Developer,
40...Developing roll, 41...Doctor blade,
44... Bias voltage, 45... Supply roller, 46
... Toner hopper, 47... Stirring paddle, 48...
・Toner cartridge, 49... Stirring blade, 50...
- Photoreceptor holding member, 51... electrophotographic device main body side plate,
52... Pin, 53.54 Fig. 1 Fig. 2 26... Paper cassette 34... Eraser Fig. 3 Fig. 4 Carrier resistivity [Ω/port] Fig. 5 Fig. 6 Carbon amount [chi] Figure 7 Development gap (grip) Figure 8

Claims (1)

【特許請求の範囲】 1、主成分が樹脂であつてカーボンおよび帯電制御剤が
混合されたトナーと、磁性材料で構成されたキャリアと
を混合撹拌して用いる2成分現像剤を現像領域に搬送す
る現像搬送体と静電潜剤を作る感光体との間に直流のバ
イアス電圧を印加して、前記感光体の均一帯電面から露
光手段により露光され電荷が除去されたところに前記ト
ナーを付着させる反転現像方法を用いた電子写真装置に
おいて、前記感光体を有機光導電体とし、かつ前記2成
分現像剤のトナーを平均粒径10μm以下、キャリアを
抵抗率が10^7Ω・cm以上のフェライトキャリアと
したことを特徴とする電子写真装置。 2、感光体上に形成した静電潜像を2成分現像剤を用い
て反転現像する電子写真装置において、前記感光体を有
機光導電体にすると共に、前記2成分現像剤のトナーの
粒度分布を、その平均粒径が10μm以下で、平均粒径
の0.65倍以下の小粒径のものが重量比で3%以下、
平均粒径の2倍以上の大粒径のものが重量比で1%以下
としたことを特徴とする電子写真装置。 3、感光体上に形成した静電潜像を2成分現像剤を用い
て反転現像する電子写真装置において、前記感光体を有
機光導電体にすると共に、前記2成分現像剤のトナーは
、その平均粒径が10μm以下であり、かつ該トナーに
含まれるカーボンの量が重量比で8%以上から15%以
下であり、更にシリカ微粉末を重量比で2%以下及び磁
性微粒子を重量比で1%以下外添してあることを特徴と
する電子写真装置。 4、感光体上に形成した静電潜像を2成分現像剤を用い
て反転現像する電子写真装置において、前記感光体を有
機光導電体にすると共に、前記2成分現像剤は、キャリ
アが10^7Ω・cm以上の抵抗率を有するフェライト
キャリアであつて、その平均粒径が100μm以下であ
りかつ平均粒径の0.8倍以下の小粒径のものが、重量
比で10%以下である粒度分布であることを特徴とする
電子写真装置。 5、請求項1記載の電子写真装置において、現像領域に
おける現像搬送体と感光体とのギャップが1mm以下で
あり、かつ現像搬送体上の現像剤の厚さを規制するため
に設けた規制部材と現像搬送体とのギャップが前記の現
像搬送体と感光体とのギャップに対して0.8以下であ
ることを特徴とする電子写真装置。 6、請求項5記載の電子写真装置において、感光体を保
持する部材及び現像搬送体を保持する部材は、それぞれ
独立に前記電子写真装置本体から着脱自在で、かつ前記
電子写真装置本体の側板に設けたピンに、感光体保持部
材の一部に設けた孔と現像搬送体を保持する部材の一部
に設けた孔とを共用して嵌合することにより現像搬送体
と感光体を位置決めすることを特徴とする電子写真装置
。 7、請求項1記載の電子写真装置において、現像領域に
おける現像搬送体と感光体の移動方向を同方向としたこ
とを特徴とする電子写真装置。 8、請求項1記載の電子写真装置において、2成分現像
剤を現像領域に搬送する現像搬送体と現像剤の撹拌部材
及び補給用のトナーを貯蔵しておくトナーカートリッジ
内の攪拌部材を同期して回転させることを特徴とする電
子写真装置。 9、請求項8記載の電子写真装置において、現像搬送体
及び現像剤の攪拌部材並びにトナーを現像搬送体部に補
給するための補給ローラと補給用のトナーを貯蔵してお
くトナーカートリッジ内の撹拌部材を一まとめにして、
前記電子写真装置本体の駆動部から分離独立させて回転
駆動するようにしたことを特徴とする電子写真装置。
[Claims] 1. A two-component developer that is used by mixing and stirring a toner whose main component is a resin mixed with carbon and a charge control agent and a carrier made of a magnetic material is transported to a development area. A direct current bias voltage is applied between the developing conveyor and the photoreceptor that forms the electrostatic latent agent, and the toner is attached to the uniformly charged surface of the photoreceptor where the electric charge has been removed by exposure by an exposure means. In an electrophotographic apparatus using a reversal development method, the photoreceptor is an organic photoconductor, the toner of the two-component developer is an average particle size of 10 μm or less, and the carrier is a ferrite having a resistivity of 10^7 Ω·cm or more. An electrophotographic device characterized in that it is a carrier. 2. In an electrophotographic apparatus in which an electrostatic latent image formed on a photoconductor is reversely developed using a two-component developer, the photoconductor is an organic photoconductor, and the particle size distribution of the toner of the two-component developer is , whose average particle size is 10 μm or less, and 3% or less by weight of small particles that are 0.65 times or less than the average particle size,
An electrophotographic device characterized in that the weight ratio of particles having a large particle size that is twice or more the average particle size is 1% or less. 3. In an electrophotographic apparatus in which an electrostatic latent image formed on a photoreceptor is reversely developed using a two-component developer, the photoreceptor is an organic photoconductor, and the toner of the two-component developer is The average particle size is 10 μm or less, and the amount of carbon contained in the toner is from 8% to 15% by weight, and further contains 2% or less of silica fine powder and 2% or less of magnetic fine particles by weight. An electrophotographic device characterized by containing 1% or less of external additives. 4. In an electrophotographic apparatus in which an electrostatic latent image formed on a photoreceptor is reversely developed using a two-component developer, the photoreceptor is an organic photoconductor, and the two-component developer has a carrier of 10 A ferrite carrier having a resistivity of ^7Ω・cm or more, with an average particle size of 100 μm or less, and a small particle size of 0.8 times or less of the average particle size, with a weight ratio of 10% or less. An electrophotographic device characterized by having a certain particle size distribution. 5. In the electrophotographic apparatus according to claim 1, the gap between the developer transport member and the photoreceptor in the development region is 1 mm or less, and a regulating member provided to regulate the thickness of the developer on the developer transport member. An electrophotographic apparatus characterized in that the gap between the developing conveying body and the developing conveying body is 0.8 or less with respect to the gap between the developing conveying body and the photoreceptor. 6. In the electrophotographic apparatus according to claim 5, the member for holding the photoreceptor and the member for holding the development conveyor are each independently removable from the main body of the electrophotographic apparatus, and are attached to a side plate of the main body of the electrophotographic apparatus. The developer transport member and the photoreceptor are positioned by fitting the provided pin into a hole provided in a part of the photoreceptor holding member and a hole provided in a part of the member holding the developer transport member. An electrophotographic device characterized by: 7. The electrophotographic apparatus according to claim 1, wherein the development transport member and the photoreceptor move in the same direction in the development area. 8. In the electrophotographic apparatus according to claim 1, the developer transporting member that conveys the two-component developer to the development area, the developer stirring member, and the stirring member in the toner cartridge storing toner for replenishment are synchronized. An electrophotographic device characterized in that the device is rotated by rotating the device. 9. In the electrophotographic apparatus according to claim 8, a stirring member for the developer and the developer, a replenishment roller for replenishing the toner to the developer and the conveyor, and stirring in the toner cartridge that stores the toner for replenishment. Put the parts together,
An electrophotographic apparatus, characterized in that the electrophotographic apparatus is rotatably driven separately from a drive section of the electrophotographic apparatus main body.
JP1124328A 1989-05-19 1989-05-19 Electrophotographic equipment Expired - Lifetime JP2667904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1124328A JP2667904B2 (en) 1989-05-19 1989-05-19 Electrophotographic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1124328A JP2667904B2 (en) 1989-05-19 1989-05-19 Electrophotographic equipment

Publications (2)

Publication Number Publication Date
JPH02304458A true JPH02304458A (en) 1990-12-18
JP2667904B2 JP2667904B2 (en) 1997-10-27

Family

ID=14882621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1124328A Expired - Lifetime JP2667904B2 (en) 1989-05-19 1989-05-19 Electrophotographic equipment

Country Status (1)

Country Link
JP (1) JP2667904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314215A (en) * 1995-05-17 1996-11-29 Canon Inc Image forming device

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970630A (en) * 1972-11-08 1974-07-09
JPS54105535U (en) * 1978-01-10 1979-07-25
JPS58128458U (en) * 1982-02-25 1983-08-31 キヤノン株式会社 developing device
JPS58152647U (en) * 1982-04-05 1983-10-13 三洋電機株式会社 Developing device of electrophotographic copying machine
JPS60169639U (en) * 1984-04-19 1985-11-11 オリンパス光学工業株式会社 electrophotographic copying device
JPS6231864A (en) * 1985-08-02 1987-02-10 Hitachi Metals Ltd Ferrite carrier for electrophotographic development
JPS6272727A (en) * 1985-09-26 1987-04-03 Konishiroku Photo Ind Co Ltd Production of fine resin particle
JPS62238580A (en) * 1986-04-09 1987-10-19 関東電化工業株式会社 Carrier for electrophotographic developing agent
JPS62284366A (en) * 1986-06-02 1987-12-10 Hitachi Metals Ltd Coating carrier
JPS62297857A (en) * 1986-06-18 1987-12-25 Hitachi Metals Ltd Ferrite carrier for electrophotographic development
JPS6338947A (en) * 1986-08-04 1988-02-19 Dainippon Ink & Chem Inc Toner for developing electrostatic charge image and its production
JPS6338961A (en) * 1986-08-05 1988-02-19 Toray Ind Inc Two-component developer
JPS6338948A (en) * 1986-08-04 1988-02-19 Dainippon Ink & Chem Inc Toner for developing electrostatic charge image and its production
JPS6373271A (en) * 1986-09-17 1988-04-02 Canon Inc Positively electrifiable developer
JPS63113560A (en) * 1986-10-31 1988-05-18 Canon Inc Polymerized toner
JPS63118756A (en) * 1986-11-07 1988-05-23 Mitsubishi Kasei Corp Electrostatic charge image developing toner
JPS63170661A (en) * 1987-01-09 1988-07-14 Canon Inc Dry process developer and image forming method using said developer
JPS63170660A (en) * 1987-01-09 1988-07-14 Canon Inc Dry process developer and image forming method using said developer
JPS63170662A (en) * 1987-01-09 1988-07-14 Canon Inc Dry developer and image forming method using said developer
JPS63208861A (en) * 1987-02-26 1988-08-30 Konica Corp Electrostatic image developer and electrostatic developing method
JPS63301960A (en) * 1987-01-19 1988-12-08 Canon Inc Full color toner kit, developer, and color toner composition and image forming method
JPH01116747A (en) * 1987-10-29 1989-05-09 Nec Corp Cache lsi

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4970630A (en) * 1972-11-08 1974-07-09
JPS54105535U (en) * 1978-01-10 1979-07-25
JPS58128458U (en) * 1982-02-25 1983-08-31 キヤノン株式会社 developing device
JPS58152647U (en) * 1982-04-05 1983-10-13 三洋電機株式会社 Developing device of electrophotographic copying machine
JPS60169639U (en) * 1984-04-19 1985-11-11 オリンパス光学工業株式会社 electrophotographic copying device
JPS6231864A (en) * 1985-08-02 1987-02-10 Hitachi Metals Ltd Ferrite carrier for electrophotographic development
JPS6272727A (en) * 1985-09-26 1987-04-03 Konishiroku Photo Ind Co Ltd Production of fine resin particle
JPS62238580A (en) * 1986-04-09 1987-10-19 関東電化工業株式会社 Carrier for electrophotographic developing agent
JPS62284366A (en) * 1986-06-02 1987-12-10 Hitachi Metals Ltd Coating carrier
JPS62297857A (en) * 1986-06-18 1987-12-25 Hitachi Metals Ltd Ferrite carrier for electrophotographic development
JPS6338947A (en) * 1986-08-04 1988-02-19 Dainippon Ink & Chem Inc Toner for developing electrostatic charge image and its production
JPS6338948A (en) * 1986-08-04 1988-02-19 Dainippon Ink & Chem Inc Toner for developing electrostatic charge image and its production
JPS6338961A (en) * 1986-08-05 1988-02-19 Toray Ind Inc Two-component developer
JPS6373271A (en) * 1986-09-17 1988-04-02 Canon Inc Positively electrifiable developer
JPS63113560A (en) * 1986-10-31 1988-05-18 Canon Inc Polymerized toner
JPS63118756A (en) * 1986-11-07 1988-05-23 Mitsubishi Kasei Corp Electrostatic charge image developing toner
JPS63170661A (en) * 1987-01-09 1988-07-14 Canon Inc Dry process developer and image forming method using said developer
JPS63170660A (en) * 1987-01-09 1988-07-14 Canon Inc Dry process developer and image forming method using said developer
JPS63170662A (en) * 1987-01-09 1988-07-14 Canon Inc Dry developer and image forming method using said developer
JPS63301960A (en) * 1987-01-19 1988-12-08 Canon Inc Full color toner kit, developer, and color toner composition and image forming method
JPS63208861A (en) * 1987-02-26 1988-08-30 Konica Corp Electrostatic image developer and electrostatic developing method
JPH01116747A (en) * 1987-10-29 1989-05-09 Nec Corp Cache lsi

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08314215A (en) * 1995-05-17 1996-11-29 Canon Inc Image forming device

Also Published As

Publication number Publication date
JP2667904B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US6829448B2 (en) Image forming apparatus and image forming method
JPS5931979A (en) Developing device
US4239845A (en) Electrophotographic copying method using two toners on magnetic brush
JP4903644B2 (en) Developing device and image forming apparatus using the same
JP3356948B2 (en) Developing device
US6466760B2 (en) Development device and development method, and image-forming device
JP2667904B2 (en) Electrophotographic equipment
JP2611192B2 (en) Electrostatic latent image developing method
JPH11327191A (en) Image forming device
JP4890099B2 (en) Developing device, process cartridge, and image forming apparatus
JP2006308732A (en) Developing device
JP2000019840A (en) Developing device, unit provided with developing mechanism and image forming device
JP3763328B2 (en) Electrophotographic equipment
JPH1184857A (en) Image forming device
JP2632053B2 (en) Toner developing device
JP3112539B2 (en) Developing device
JP2001125366A (en) Developing device
JPH05289485A (en) Developing device
JP3920845B2 (en) Developing device and image forming apparatus
JPH0753090Y2 (en) Development device
JP2537849B2 (en) Development device
JP2912793B2 (en) Developing device, developing method, and image forming apparatus
JP2003215923A (en) Developing device and image forming apparatus
JPH01101572A (en) Electrophotographic method
JPH08129295A (en) Non-magnetic one-component developing device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term