JP2667904B2 - Electrophotographic equipment - Google Patents
Electrophotographic equipmentInfo
- Publication number
- JP2667904B2 JP2667904B2 JP1124328A JP12432889A JP2667904B2 JP 2667904 B2 JP2667904 B2 JP 2667904B2 JP 1124328 A JP1124328 A JP 1124328A JP 12432889 A JP12432889 A JP 12432889A JP 2667904 B2 JP2667904 B2 JP 2667904B2
- Authority
- JP
- Japan
- Prior art keywords
- toner
- particle size
- carrier
- developing
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Developing Agents For Electrophotography (AREA)
- Dry Development In Electrophotography (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は複写機やレーザプリンタ等の電子写真装置に
関するものである。Description: BACKGROUND OF THE INVENTION The present invention relates to an electrophotographic apparatus such as a copying machine or a laser printer.
電子写真方式を用いた記録装置の現像方法には、正規
現像と反転現像がある。感光体上に形成した静電潜像の
電荷極性と逆符号の極性をもつトナー粒子を、例えば磁
気ブラシ現像法等により、潜像面に付着させて原稿と同
じポジ画像を作る方式が正規現像である。正規現像方式
を適用している代表的な電子写真装置は、複写機であ
る。一方、均一帯電面から光で電荷が除去されたところ
にトナー粒子を付着させネガ−ポジ型の画像を作る方式
が反転現像である。コンピユータやフアクシミリ等から
のデジタル印刷情報を出力、記録するレーザプリンタ等
には、反転現像方式を用いた装置が多い。その理由は、
文字や線等から成る文章では印字される部分と印字され
ない部分では、その面積を比較すると、通常は印字され
る部分の面積の方がはるかに小さいため、レーザやLE
D、LCD等を使つた露光手段により印字する部分のみ露光
して静電潜像を作り、その像に反転現像でトナー粒子を
付着させる方式の方が、露光手段や感光体の寿命を長く
することができると共に、記録時間の短縮を図ることが
できることにある。しかし、反転現像は感光体帯電面の
電荷極性と同符号のトナー粒子を帯電面の電荷からのク
ーロン反発力を受け、電気力線に従つて露光した低電位
部に付着させなけれならないため、エツジ効果が強く現
れて大面積の黒部(べた黒)のエツジのみは黒く現像さ
れるが中央部は現像されにくく画像濃度が充分にでない
ことや未露光部にトナーが付着してかぶりがでやすい
等、正規現像とは異なる問題点がある。The developing method of the recording apparatus using the electrophotographic method includes regular development and reversal development. Normal development is a method in which toner particles having a polarity opposite to the charge polarity of the electrostatic latent image formed on the photoconductor are attached to the latent image surface by, for example, the magnetic brush development method to create the same positive image as the original. Is. A typical electrophotographic apparatus to which the regular development method is applied is a copying machine. On the other hand, reversal development is a method of forming a negative-positive image by adhering toner particles where the charge is removed from the uniformly charged surface by light. Many laser printers and the like that output and record digital print information from a computer, facsimile, or the like use a reversal development method. The reason is,
When comparing the areas of the printed and non-printed areas of text consisting of characters and lines, the area of the printed area is usually much smaller.
The method of exposing only the portion to be printed by the exposure means using D, LCD, etc. to form an electrostatic latent image and attaching toner particles to the image by reversal development prolongs the life of the exposure means and the photoconductor. And the recording time can be shortened. However, in reversal development, toner particles having the same sign as the charge polarity on the photoconductor charging surface must be subjected to Coulomb repulsion from the charge on the charging surface and adhere to the exposed low-potential portion according to the lines of electric force. The effect is strong, and only the large area black area (solid black) edge is developed black, but the central area is difficult to develop and the image density is not sufficient, and toner is easily attached to the unexposed area and fog easily occurs. However, there is a problem different from regular development.
そのため、従来から反転現像方法のこれら問題点を解
決する技術が検討されてきた。例えば特開昭54−89733
号公報及び特開昭60−154261号公報等に記載されている
ような、電子写真装置の現像器のスリーブに感光体の帯
電電位とほぼ同一の直流電圧を印加し、更に交流電圧を
重畳する手段もその一つである。本発明者は、従来一般
に電子写真装置の感光体として用いられているセレン
(Se)を用いて、これと同様な実験とした。しかし、こ
れらの方法は、従来から一般的に用いられている平均粒
径が100μm以上の磁性キヤリアと平均粒径が十数μm
のトナー粒子を混合した2成分現像剤では効果がある
が、高画質画像を得ることを目的にトナー粒子とキヤリ
ア粒子の微粒子化を図つた2成分現像剤では効果がな
く、濃度不足のうえ濃度むらも多く更にかぶりがあり、
鮮明な記録画像は得ることができなかつた。Therefore, techniques for solving these problems of the reversal developing method have been conventionally studied. For example, JP-A-54-89733
And a DC voltage substantially the same as the charging potential of the photoreceptor is applied to the sleeve of the developing device of the electrophotographic apparatus as described in JP-A-60-154261 and JP-A-60-154261. Means are one of them. The present inventor conducted an experiment similar to this using selenium (Se) which has been conventionally used as a photoconductor of an electrophotographic apparatus. However, in these methods, a magnetic carrier having an average particle diameter of 100 μm or more and an average particle diameter of a dozen or more μm, which have been generally used conventionally, are used.
A two-component developer in which the toner particles are mixed is effective, but a two-component developer in which the toner particles and the carrier particles are miniaturized for the purpose of obtaining a high-quality image has no effect. There are many spots and fog
A clear recorded image could not be obtained.
なお、従来の一般的な2成分現像剤は上記したよう
に、平均粒径が100μm以上の磁性キヤリアと平均粒径
が十数μmのトナー粒子を用いているが、このような現
像剤では、それぞれの粒子が粗いために、精細な線や点
あるいは濃淡差等を再現する高画質の記録画像が得られ
にくいといつた問題がある。そこで、高画質画像を得る
ために、従来から例えば、キヤリア粒子の樹脂コーテイ
ングとかスリーブへのバイアス電圧の印加方法とか、ト
ナー粒子及びキヤリア粒子の微粒子化等の多くの検討が
されてきた。中でも、トナー粒子及びキヤリア粒子の微
粒子化は、レーザプリンタ等の電子写真装置において従
来の240dpi(ドツト/インチ)〜300dpiの記録密度に対
して、記録画像の高画質化のために記録密度を400dpi〜
600dpiに上げた場合等に効果がある。As described above, the conventional general two-component developer uses a magnetic carrier having an average particle diameter of 100 μm or more and toner particles having an average particle diameter of about 10 μm, but in such a developer, There is a problem that it is difficult to obtain a high-quality recorded image that reproduces fine lines, dots, differences in shading, and the like because each particle is coarse. Therefore, in order to obtain a high quality image, many studies have hitherto been made on, for example, a resin coating of carrier particles, a method of applying a bias voltage to a sleeve, and atomization of toner particles and carrier particles. Above all, the toner particles and the carrier particles are reduced to fine particles in an electrophotographic apparatus such as a laser printer, in contrast to the conventional recording density of 240 dpi (dots / inch) to 300 dpi, to increase the recording density to 400 dpi for higher quality of the recorded image. ~
It is effective when it is increased to 600dpi.
しかし、トナー粒子を平均粒径が10μm以下の微粒子
にすると、トナー粒子の摩擦帯電制御が難しくなるばか
りか、凝集が起こり易くなる。更に、微粒子にともない
現像時にトナー粒子に働くクーロン力に対してフアンデ
ルワールス力の影響が増して、画像背景部にもトナー粒
子が付着してかぶりが生じるようになる。また、キヤリ
ア粒子を微粒化していくと、現像器の磁気ロールの磁力
によるスリーブへの吸引力が弱くなり、現像時にスリー
ブから飛散して感光体上に付着してしまうキヤリア飛散
またはキヤリア引きと称する現象が現れ、記録画像を乱
してしまう。特に、反転現像では感光体帯電面の電荷極
性とキヤリア粒子の帯電極性が異符号であるため、キヤ
リア引きが起こり易い。However, when the toner particles are fine particles having an average particle diameter of 10 μm or less, not only is it difficult to control the triboelectric charging of the toner particles, but also aggregation tends to occur. Further, the influence of the Van der Waals force on the Coulomb force acting on the toner particles during development due to the fine particles increases, so that the toner particles adhere to the image background and fog occurs. Further, when the carrier particles are made finer, the attraction force to the sleeve due to the magnetic force of the magnetic roll of the developing device becomes weaker, which is referred to as carrier scattering or carrier pulling, which scatters from the sleeve during development and adheres to the photoreceptor. The phenomenon appears and disturbs the recorded image. In particular, in reverse development, since the charge polarity of the charged surface of the photoconductor and the charge polarity of the carrier particles have different signs, carrier pulling is likely to occur.
以上のように従来技術では、2成分現像剤の微粒子に
よる上述のような副作用及び前記した従来の反転現像方
式の固有の問題も加わるため、実際の電子写真装置にお
いては微粒子化した2成分現像剤を反転現像に用いるの
が困難であつた。As described above, in the conventional technique, since the side effects as described above due to the fine particles of the two-component developer and the problems inherent in the conventional reversal development method described above are added, the two-component developer in the form of fine particles is actually used in the electrophotographic apparatus. Was difficult to use for reversal development.
本発明は、以上の問題を解決すべくなされたもので、
その目的は有機光導電体で構成された感光体と微粒子化
したトナー粒子及びキヤリア粒子で構成される現像剤と
を組み合わせて反転現像することにより、濃度不足や濃
度むら及びかぶりがなく、高画質で鮮明な記録ができる
電子写真装置を提供することにある。The present invention has been made to solve the above problems,
The purpose is to carry out reversal development by combining a photoconductor composed of an organic photoconductor and a developer composed of finely divided toner particles and carrier particles, so that there is no lack of density, density unevenness and fog, and high image quality. An object of the present invention is to provide an electrophotographic device capable of clear recording.
本発明は、上記目的を達成するために、感光体上に形
成した静電潜像を2成分現像剤を用いて反転現像を行う
電子写真装置において、感光体は表面が絶縁性の高い材
料で構成される有機光導電体とし、2成分現像剤は平均
粒径が10μm以下のトナー粒子と抵抗率が107Ω・cm以
上のフエライトキヤリアを混合したものとすることを特
徴とする。In order to achieve the above object, the present invention provides an electrophotographic apparatus in which an electrostatic latent image formed on a photoreceptor is subjected to reversal development using a two-component developer. The organic photoconductor thus constituted is characterized in that the two-component developer is a mixture of toner particles having an average particle diameter of 10 μm or less and ferrite carrier having a resistivity of 10 7 Ω · cm or more.
有機光導電体の絶縁性の高い表面と抵抗率の高いフエ
ライトキヤリアは現像搬送体に印加されるバイアス電圧
により現像領域に作用する電界を安定に保つて画像濃度
を向上させ、10μm以下の微細トナーは前記現像領域で
静電潜像に付着して高精細で高画質の記録画像を再現す
る。The highly insulating surface of the organic photoconductor and the ferrite carrier with a high resistivity improve the image density by stably maintaining the electric field acting on the developing area by the bias voltage applied to the developing carrier, and improve the fine toner of 10μm or less. Adheres to the electrostatic latent image in the developing area to reproduce a high-definition and high-quality recorded image.
先ず、本発明の理解を助けるために、本発明者が行な
つた実験、実験結果とその検討を説明する。First, in order to facilitate understanding of the present invention, an experiment, an experimental result, and a study performed by the inventor will be described.
第2図は、電子写真装置の縦断側面図である。帯電器
20により一様に帯電した感光体21は、データ記録部22か
らの記録信号によつて動作する露光手段23により、印字
部分(トナーを付着させる部分)のみが露光されて該部
分の電位が低くなり、静電潜像が形成される。次に、現
像器24内の現像剤搬送部材としてのスリーブ24Aにより
感光体21の帯電極性と同極性のトナーを現像部に供給し
て、潜像電位の低い部分に付着させることにより、感光
体21上にトナー像を形成する。このトナー像は、用紙カ
セツト26からローラ27,28を介して送られてきた用紙29
に転写器25により転写される。用紙29は、用紙剥離用除
電器30により感光体21から分離され、定着器31へと送ら
れ、定着器31により用紙29上のトナー像を定着した後
に、排紙トレー32へ送られる。一方、感光体21はクリー
ニング器33により表面の余分なトナーを除去した後に、
イレーズ器34により残留電荷を除電して、次の記録工程
に供される。FIG. 2 is a vertical side view of the electrophotographic apparatus. Charger
The photosensitive member 21 uniformly charged by 20 is exposed by the exposure unit 23 that operates according to the recording signal from the data recording unit 22 so that only the printed portion (the portion to which toner is attached) is exposed and the potential of that portion becomes low. And an electrostatic latent image is formed. Next, a toner having the same polarity as the charged polarity of the photoconductor 21 is supplied to the developing section by a sleeve 24A as a developer conveying member in the developing device 24, and is attached to a portion having a low latent image potential, so that the photoconductor is A toner image is formed on 21. This toner image is transferred from the paper cassette 26 via rollers 27 and 28 to the paper 29.
Is transferred by the transfer device 25. The paper 29 is separated from the photoconductor 21 by the paper removing static eliminator 30 and is sent to the fixing device 31. After the toner image on the paper 29 is fixed by the fixing device 31, the paper 29 is sent to the paper discharge tray 32. On the other hand, after removing excess toner on the surface of the photoconductor 21 by the cleaning device 33,
The residual charge is removed by the eraser 34, and the eraser 34 is used for the next recording step.
第1図は、第2図の電子写真装置に使用されている現
像器24の縦断側面図である。現像剤溜り35内にはキヤリ
アとトナーとにより構成される2成分現像剤36があり、
撹拌スクリユー37,38の回転によりトナーはキヤリアと
摩擦して所定の帯電量に帯電する。撹拌された2成分現
像剤36は固定マグネツトロール39を有する現像ロール40
のスリーブ24Aの回転により、現像剤溜り35から汲み上
げられスリーブ24Aの回転方向に搬送される。汲み上げ
られた2成分現像剤36は、ドクターブレード41によりス
リーブ24A上の厚みが規制され、ある一定の量が現像部
に供給され、残りは折り返されスクレーパ42を通つてト
ナー濃度制御センサー部43に導かれる。トナー濃度制御
センサー部43を通過した2成分現像剤36は、現像剤溜り
35に回収され、再び同様な動作を繰り返す。FIG. 1 is a vertical cross-sectional side view of the developing device 24 used in the electrophotographic apparatus of FIG. In the developer pool 35, there is a two-component developer 36 composed of a carrier and toner,
The toner is rubbed against the carrier by the rotation of the stirring screws 37 and 38, and is charged to a predetermined charge amount. The agitated two-component developer 36 includes a developing roll 40 having a fixed magnet roll 39.
Due to the rotation of the sleeve 24A, the developer is pumped up from the developer reservoir 35 and is conveyed in the rotation direction of the sleeve 24A. The thickness of the pumped up two-component developer 36 is regulated on the sleeve 24A by the doctor blade 41, a certain amount is supplied to the developing section, and the rest is turned back and passed through the scraper 42 to the toner concentration control sensor section 43. Be guided. The two-component developer 36 that has passed through the toner density control sensor unit 43 becomes a developer pool.
Collected at 35, repeat the same operation again.
一方、ドクターブレード41部を通過したスリーブ24A
上の2成分現像剤36は感光体21と接した現像部に搬送さ
れ、現像に使われる。現像部を通過した2成分現像剤36
は、再び現像剤溜り35に回収される。現像部では、感光
体21の潜像電位とスリーブ24Aにバイアス電源44から印
加した直流のバイアス電圧が作る電界の作用により、ト
ナーが感光体21上の露光された領域に付着する。On the other hand, the sleeve 24A passed the doctor blade 41 part
The upper two-component developer 36 is conveyed to the developing section in contact with the photoconductor 21 and used for development. Two-component developer 36 that has passed through the developing section
Is collected again in the developer reservoir 35. In the developing section, the toner adheres to the exposed area on the photoconductor 21 due to the action of the electric field created by the latent image potential of the photoconductor 21 and the DC bias voltage applied to the sleeve 24A from the bias power source 44.
2成分現像剤36は、記録特性を一定に保つためトナー
とキヤリアの混合割合であるトナー濃度を一定に保たな
ければならない。そのため、トナー濃度制御センサー部
43によりトナー濃度が監視され、現像によりトナーが消
費されて該2成分現像剤36のトナー濃度が低下すると、
補給ローラ45を回転することによりトナーホツパ46から
トナーが補給される。図中、参照符号47は、補給したト
ナーがすぐに現像溜り35の2成分現像剤36と馴染むよう
に補給ローラ45からトナーが落下する位置に設けた撹拌
パドルである。補給用のトナーは、トナーカートリツジ
48内から撹拌羽根49の回転によりトナーホツパ46へ運ば
れる。撹拌羽根49は、スリーブ24Aが回転しているあい
だは同時に回転するようにする。In the two-component developer 36, the toner density, which is the mixing ratio of the toner and the carrier, must be kept constant in order to keep the recording characteristics constant. Therefore, the toner density control sensor
The toner concentration is monitored by 43, and when the toner is consumed by the development and the toner concentration of the two-component developer 36 decreases,
The toner is supplied from the toner hopper 46 by rotating the supply roller 45. In the drawing, reference numeral 47 denotes a stirring paddle provided at a position where the toner falls from the supply roller 45 so that the supplied toner immediately becomes compatible with the two-component developer 36 in the developing pool 35. To supply toner, use the toner cartridge.
The toner is conveyed to the toner hopper 46 from the inside by the rotation of the stirring blade 49. The stirring blade 49 is rotated simultaneously while the sleeve 24A is rotating.
本発明者は第2図の電子写真装置と第1図の現像器を
用いて特開昭54−89733号公報及び特開昭60−154261号
公報等に示されている方法で検討したが、前記で説明し
たように、記録画像は、べた黒の濃度が低く、且つかぶ
りが多く、細線や点も鮮明に印字できなかつた。種々検
討した結果、この主たる原因はSe感光体を用いたことに
あつたが、さらに高精細で高画質の画像を得るために
は、現像剤及び反転現像プロセスの適合を図る必要があ
つた。The present inventor has studied using the electrophotographic apparatus shown in FIG. 2 and the developing device shown in FIG. 1 according to the method disclosed in JP-A-54-89733 and JP-A-60-154261. As described above, the recorded image has a low solid black density, has a lot of fog, and cannot print fine lines and dots clearly. As a result of various investigations, the main cause was that the Se photoreceptor was used, but in order to obtain a higher definition and higher quality image, it was necessary to adapt the developer and the reversal development process.
以下、本発明者が感光体21の種類、2成分現像剤36に
用いるトナー及びキヤリアの種類と特性、感光体21とス
リーブ24Aとの間隙(以下、現像ギヤツプという)や現
像剤の搬送方法と撹拌方法、バイアス電圧等を種々変更
して実験することにより、用紙29に鮮明な記録画像を得
るためには、これら条件が密接に関係していることを突
き止めた。Hereinafter, the type of the photoconductor 21 and the type and characteristics of the toner and the carrier used for the two-component developer 36 by the present inventor, the gap between the photoconductor 21 and the sleeve 24A (hereinafter, referred to as a development gear), and the method of transporting the developer, By varying the stirring method, bias voltage, etc. and conducting experiments, it was found that these conditions are closely related in order to obtain a clear recorded image on the paper 29.
第3図〜第7図は、この実験により得られた結果を示
した図である。FIG. 3 to FIG. 7 are diagrams showing the results obtained by this experiment.
まず、感光体21の違いによる記録特性の違いについて
説明する。感光体21には円筒状のアルミニウムドラムに
感光層としてSeを約60μmの厚さに蒸着したものと、同
じくアルミニウムドラムに感光層として有機光導電体を
厚さ約17μmに塗布したものを使用した。そのドラムの
直径は100mmであり、周速は125mm/sで時計回りに回転さ
せた。なお、両感光体とも未露光部の電位は650から700
Vで露光部の電位を100V以下にした。但し、帯電極性はS
eが正極性であるのに対して有機感光体は負極性であ
る。First, the difference in recording characteristics due to the difference in the photoconductor 21 will be described. As the photosensitive member 21, a cylindrical aluminum drum having Se deposited as a photosensitive layer to a thickness of about 60 μm, and an aluminum drum coated with an organic photoconductor as a photosensitive layer to a thickness of about 17 μm were used. . The drum had a diameter of 100 mm and a peripheral speed of 125 mm / s and was rotated clockwise. The potential of the unexposed portion of both photoconductors was 650 to 700.
With V, the potential of the exposed portion was set to 100 V or less. However, the charging polarity is S
While e is positive, the organic photoreceptor is negative.
スリーブ24A及びドクターブレード41には、導電性非
磁性であるアルミニウムを使用した。現像ロール40は、
直径40mmの円筒状のスリーブ24Aとその内部に挿入した
円柱状の固定マグネツトロール39から構成され、固定マ
クネツトロール39は固定され、スリーブ24Aのみが回転
可能になつている。スリーブの24Aの周速は、感光体21
の周速に対して2から5倍の速さで可変できるようにし
たが、実験は主として2.58倍の周速で実施した。使用し
た固定マグネツトロール39の磁極数は7極で、その磁力
の強さは、現像部に位置する主極で磁束密度は850ガウ
スであつた。現像ギヤツプは1mmで、ドクターブレード4
1とスリーブ24Aとの間隙であるドクターギヤツプは現像
ギヤツプの0.7倍に設定した。また、2成分現像剤36に
は平均粒径8μmのトナーと抵抗率が109Ω・cm以上の
フエライトキヤリアをトナー濃度が重量比で3%になる
ように混合したものを用いた。トナーの帯電極性は使用
する感光体21と同極性になるようにトナーに含有する帯
電制御系で調整した。The sleeve 24A and the doctor blade 41 are made of conductive non-magnetic aluminum. The developing roll 40 is
It is composed of a cylindrical sleeve 24A having a diameter of 40 mm and a cylindrical fixed magnet roll 39 inserted into the inside thereof. The fixed magnet roll 39 is fixed, and only the sleeve 24A is rotatable. The peripheral speed of the sleeve 24A is
It was made possible to change at a speed of 2 to 5 times the peripheral speed of, but the experiment was mainly carried out at a peripheral speed of 2.58 times. The number of magnetic poles of the fixed magnet roll 39 used was seven, and the intensity of the magnetic force was 850 gauss at the main pole located in the developing section. The developing gap is 1 mm, and the doctor blade 4
The doctor gap, which is the gap between 1 and the sleeve 24A, was set to 0.7 times the developing gap. The two-component developer 36 used was a mixture of a toner having an average particle diameter of 8 μm and a ferrite carrier having a resistivity of 10 9 Ω · cm or more so that the toner concentration was 3% by weight. The charge polarity of the toner was adjusted by the charge control system contained in the toner so as to have the same polarity as the photoconductor 21 used.
第3図は前記2種類の感光体21を用い、バイアス電圧
の大きさと記録画像のべた黒部中央の画像濃度の関係を
調べた結果である。曲線AはSeの結果で、曲線Bが有機
光導電体の結果である。Seの場合、バイアス電圧が小さ
い領域ではバイアス電圧の上昇とともに画像濃度も上が
るが200V位までで飽和してしまい、それ以上バイアス電
圧を上げていくとべた黒にむらが発生して画像濃度が不
安定になるだけで満足する画像濃度まで上げることがで
きない。これはバイアス電圧を上げたことにより感光体
21の表面での電界が強まり、一種のブレークダウンが起
こつているためであると考えられる。特開昭60−154261
号公報に示されているようにバイアス電圧として直流電
圧に交流電圧を重畳したものを用いても画像濃度の不安
定性が増すだけで、鮮明な記録画像を得ることができな
かつた。FIG. 3 shows the result of examining the relationship between the magnitude of the bias voltage and the image density at the center of the solid black portion of the recorded image using the two types of photosensitive members 21. Curve A is the result for Se and curve B is the result for the organic photoconductor. In the case of Se, in the region where the bias voltage is small, the image density rises with the increase of the bias voltage, but it saturates up to around 200V, and if the bias voltage is further increased, uneven solid black occurs and the image density becomes unsatisfactory. It is not possible to increase the image density to a satisfactory level only by stabilization. This is due to the photoreceptor
It is considered that this is because the electric field on the surface of 21 is strengthened and a kind of breakdown occurs. JP-A-60-154261
Even if a bias voltage in which an alternating voltage is superposed on a direct current voltage is used as disclosed in Japanese Patent Laid-Open Publication No. 2003-242242, a clear recorded image cannot be obtained only by increasing the instability of the image density.
一方、有機光導電体21はそのようなことがなく直流バ
イアス電圧の上昇とともに画像濃度も上がり、直流バイ
アス電圧に交流電圧を重畳する等の複雑な方法を用いな
くても満足する画像濃度が得られる。この理由は、2成
分現像剤36が接触する感光体21の表面が有機光導電体の
場合、ポリカーボネート等の絶縁性の高い材質でできて
いるため、Seのような半導体的なものに比べて、先のブ
レークダウンが起こりにくいためであると考えられる。
この結果から反転現像には、表面が絶縁性の高い材質で
できている有機光導電体を用いることが有利であること
がわかつた。On the other hand, the organic photoconductor 21 does not have such a phenomenon, and the image density increases as the DC bias voltage increases, and a satisfactory image density can be obtained without using a complicated method such as superimposing an AC voltage on the DC bias voltage. To be The reason for this is that when the surface of the photoreceptor 21 in contact with the two-component developer 36 is an organic photoconductor, it is made of a highly insulating material such as polycarbonate. It is thought that this is because the previous breakdown is unlikely to occur.
From this result, it was found that it is advantageous to use an organic photoconductor whose surface is made of a material having a high insulating property for reversal development.
次にポイントとなるのが2成分現像剤36に使用するキ
ヤリアの抵抗率である。第4図は、感光体21に有機光導
電体を使用して前記した記録条件と同じ条件で、キヤリ
アの抵抗率のみを変えて記録画像の濃度変化を調べた結
果である。この時、バイアス電圧は−500Vに設定した。
キヤリアは鉄粉とフエライトの2種類を用いた。鉄粉キ
ヤリアの抵抗率はそのままでは約104Ω・cmであるが、
樹脂をコーテイングすることによつて約109Ω・cmまで
変えることができる。一方、フエライトキヤリアはその
ままでも抵抗率が高く約107Ω・cmから109Ω・cmであ
り、更に樹脂をコーテイングすることによつて1014Ω・
cm位まで抵抗率を上げることができる。The next point is the resistivity of the carrier used for the two-component developer 36. FIG. 4 shows the results of examining the density change of the recorded image by changing only the resistivity of the carrier under the same recording conditions as described above using the organic photoconductor for the photoconductor 21. At this time, the bias voltage was set to -500V.
Carriers used two types: iron powder and ferrite. The resistivity of iron powder carrier is about 10 4 Ω · cm as it is,
It can be changed up to about 10 9 Ω · cm by coating the resin. Ferrite carrier, on the other hand, has a high resistivity as it is, about 10 7 Ω · cm to 10 9 Ω · cm, and 10 14 Ω · cm by coating the resin.
The resistivity can be increased to about cm.
画像濃度は107Ω・cm以上の抵抗率のフエライトキヤ
リア使用すれば満足する領域になり、最もよいのが109
Ω・cmから1012Ω・cmの抵抗率のキヤリアを使つた場合
である。それ以上の抵抗率では画像濃度が若干下がる。
また、一般的にはキヤリアの抵抗率を下げた方が現像性
が上がり、画像濃度もよくでると考えられるが、反転現
像の場合、現像ギヤツプが狭くかつバイアス電圧も高い
ため、絶縁性の高い表面をもつ有機光導電体を感光体に
使用しても抵抗率の低い鉄粉のキヤリアを用いると、先
に説明したような感光体21の表面での一種のブレークダ
ウンが起こり易くなり、画像濃度が上がらないばかりか
濃度むらが大きくなる。この結果から平均粒径が10μm
以下のトナーを用いた反転現像には、107Ω・cm以上の
抵抗率のフエライトキヤリアが適していることがわかつ
た。Image density becomes region satisfying if 10 7 Omega · cm or more ferrite Canon rear using resistivity, the best is 10 9
This is the case when a carrier having a resistivity of Ω · cm to 10 12 Ω · cm is used. At a higher resistivity, the image density is slightly reduced.
Generally, lowering the resistivity of the carrier improves the developability and improves the image density. However, in the case of reversal development, the developing gear gap is narrow and the bias voltage is high, so the insulating property is high. Even if an organic photoconductor having a surface is used for the photoreceptor, the use of an iron powder carrier having a low resistivity tends to cause a kind of breakdown on the surface of the photoreceptor 21 as described above, and the image Not only does the density not increase, but the density unevenness increases. From this result, the average particle size was 10 μm.
It has been found that ferrite carriers having a resistivity of 10 7 Ω · cm or more are suitable for reversal development using the following toners.
キヤリアの粒径は、微粒子化したトナーを用いる場合
は撹拌性を上げるために同じく小粒径化を図る必要があ
る。第5図は、上記と同一条件でキヤリア粒子の大きさ
とトナー濃度を種々に変えて、画像濃度とかぶり及びキ
ヤリア引きの限界を求めた結果である。キヤリア粒子の
平均粒径が大きいと、トナーの帯電性が悪くなりかぶり
が発生するため、2成分現像剤36のトナー濃度を上げる
ことができず、かつ画像濃度も低い。一方、キヤリアを
小粒径化していくとキヤリア引きが起こり易くなり、更
に流動性が悪くなる問題が発生し、平均粒径50μm以下
のものは実用的には使用できない。このようなことか
ら、平均粒径が8μmのトナーの場合、これに適合する
キヤリアの粒径は60μmから100μmの範囲内にあつ
た。以上のことから、反転現像に好適なキヤリアの粒径
は、使用するトナーの粒径に対して7.5倍から12.5倍の
範囲内のものとなることがわかつた。In the case of using finely divided toner, it is necessary to reduce the particle size of the carrier in order to increase the stirring property. FIG. 5 shows the results obtained by changing the size of the carrier particles and the toner density under the same conditions as above, and determining the image density, the fog and the limit of the carrier pull. If the average particle size of the carrier particles is large, the chargeability of the toner deteriorates and fog occurs, so that the toner density of the two-component developer 36 cannot be increased and the image density is low. On the other hand, as the particle size of the carrier is reduced, carrier pulling tends to occur and the problem of further deterioration in fluidity occurs, and those having an average particle size of 50 μm or less cannot be used practically. For this reason, in the case of a toner having an average particle diameter of 8 μm, the carrier particle diameter conforming to the average particle diameter was in the range of 60 μm to 100 μm. From the above, it was found that the particle size of the carrier suitable for reversal development was in the range of 7.5 times to 12.5 times the particle size of the toner used.
使用するキヤリアの中に平均粒径に対して小さい粒径
の分布が大きくなるとキヤリア引きが起こり易くなるの
で、平均粒径に対して粒径が0.8以下の小径キヤリアが1
0%以下になるような粒度分布にするとキヤリア引きに
対するマージンが増え、好適であつた。If the size distribution of small particles with respect to the average particle size becomes large in the carrier used, carrier pulling easily occurs.
If the particle size distribution is set to be 0% or less, the margin for carrier drawing increases, which is preferable.
キヤリアの樹脂コーテイングについては、種々検討し
たが、特に目だつた効果はなかつた。これは、フエライ
トキヤリア自身もとから抵抗率が高いためである。それ
ゆえ、本電子写真装置では樹脂コーテイングしたものし
ないもの、どちらを用いてもよい。Various studies were conducted on the resin coating of the carrier, but no noticeable effect was found. This is because the ferrite carrier itself has a high resistivity. Therefore, in this electrophotographic apparatus, either resin coated or not resin coated may be used.
次に反転現像に適したトナーの検討について説明す
る。従来技術で説明したように電子写真装置の記録画像
の高精細化、高画質化には、特公昭59−11103号公報等
に記載されたように、使用するトナー粒子の径を従来11
〜13μmであつたものを10μm以下の微粒子化すること
が有効である。しかし、トナー径を小さくすると同じ重
量でも表面積が増えたことになり、トナー同士の接触が
多くなつて、流動性が悪くなつたりトナー同士が凝集し
やすくなる。そのため、現像部へのトナー補給部で詰ま
り易くなり、安定に補給できない問題がある。このほ
か、現像装置内においてもトナー径を小さくするとキヤ
リアとの混合撹拌特性が悪なり、補給したトナーがなか
なか所定の帯電量まで帯電しなくなる。その結果、トナ
ーのキヤリアへの静電的な付着力が弱く、飛散が多くな
り装置内部が汚れるばかりか、飛び散つたトナーがトナ
ーを付着させる必要のない画像の白地部に付きかぶりを
起こす問題がある。Next, the study of toner suitable for reversal development will be described. As described in the prior art, in order to improve the definition and image quality of a recorded image of an electrophotographic apparatus, as described in Japanese Patent Publication No.
It is effective to make the particles having a size of about 13 μm into fine particles of 10 μm or less. However, when the toner diameter is reduced, the surface area increases even with the same weight, and the contact between the toners increases, so that the fluidity becomes poor or the toners easily aggregate. Therefore, there is a problem in that the toner replenishing portion to the developing portion is likely to be clogged and stable replenishment cannot be achieved. In addition, if the toner diameter is reduced even in the developing device, the mixing and stirring characteristics with the carrier are deteriorated, and the replenished toner is not easily charged to a predetermined charge amount. As a result, the electrostatic adhesion of the toner to the carrier is weak, the scattering is increased and the inside of the apparatus becomes dirty, and the scattered toner causes fogging on a white background portion of an image which does not need to adhere the toner. There is.
そこで、本発明者は種々検討した結果、微粒子化し
たトナーの粒度分布、トナーを構成する素材及び外添
剤の適正化により平均粒径が10μm以下の微粒子トナー
を用いた反転現像において、これら問題を低減できるこ
とを突き止めた。Therefore, as a result of various studies by the present inventor, these problems were found in the reversal development using a fine particle toner having an average particle diameter of 10 μm or less by optimizing the particle size distribution of the fine particle toner, the materials constituting the toner and the external additives Was found to be reduced.
まず、トナーの粒度分布であるが、種々検討した結
果、平均粒径が10μm以下のトナーを用いた反転現像の
場合、平均粒径の0.65倍以下の小粒径のものが重量比で
3%以下かつ平均粒径の2倍以上の大粒径のものが重量
比で1%以下である粒度分布を有するトナーが好適であ
つた。その理由は、小径粒のトナーは、キヤリアへの付
着力が強いため現像で使われにくく、残る傾向がある。
特に、トナー粒子平均粒径の0.65倍以下の小粒径のもの
が重量比で3%以上含まれるとその傾向が強く問題であ
つた。First, regarding the particle size distribution of the toner, as a result of various studies, in the case of reversal development using a toner having an average particle size of 10 μm or less, a small particle size of 0.65 times or less of the average particle size is 3% by weight. A toner having a particle size distribution of 1% or less by weight and having a large particle size of 2 times or more of the average particle size was suitable. The reason for this is that small-diameter toner particles are difficult to use in development and tend to remain because they have strong adhesion to the carrier.
In particular, when 3% or more of the toner particles having a small particle diameter of 0.65 times or less of the average particle diameter is contained in a weight ratio, the tendency is strongly problematic.
次に、トナーを構成する素材及び外添剤の適正化であ
る。反転現像では従来技術の項で説明したように、べた
黒中央部のトナーを感光体21に引き付けようとする電界
が弱い。そこで上記で説明したように、現像ギヤツプを
狭めバイアス電圧による電界を強める対策をとつたとし
ても、本質的にはべた黒中央部のトナー付着量は少な
い。そのため、本発明者はトナー量が少なくても充分な
画像濃度が得られるようにトナーに含まれるカーボン量
の変更を検討した。Next is the optimization of the materials and external additives that make up the toner. In the reversal development, the electric field for attracting the toner in the central portion of the solid black to the photoconductor 21 is weak as described in the section of the related art. Therefore, as described above, even if a measure for narrowing the developing gap and strengthening the electric field by the bias voltage is taken, the toner adhesion amount in the solid black central portion is essentially small. Therefore, the present inventor has considered changing the amount of carbon contained in the toner so that a sufficient image density can be obtained even when the amount of toner is small.
第6図は、第2図の電子写真装置の現像剤にカーボン
量を変えたトナーを用いて、カーボン量と記録した画像
の濃度との関係を調べた結果である。従来から2成分現
像剤に用いられているトナーのカーボン量は多いもので
6%前後である。平均粒径が10μm以下のトナーでは、
第6図の結果のようにトナーに含まれるカーボン量が6
%では、充分な画像濃度が得られない。本検討では、カ
ーボンの量は重量比で8%以上から15%以下で好適であ
つた。それ以上にカーボン量を増やすとトナーの抵抗率
が下がり、トナーの帯電性が悪くなり、記録画像にかぶ
りが発生した。FIG. 6 shows the result of examining the relationship between the amount of carbon and the density of a recorded image using toner having a different amount of carbon as the developer of the electrophotographic apparatus of FIG. The amount of carbon contained in a toner conventionally used for a two-component developer is about 6%. For toner having an average particle size of 10 μm or less,
As shown in FIG. 6, the amount of carbon contained in the toner is 6
%, A sufficient image density cannot be obtained. In this study, the amount of carbon is preferably 8% or more and 15% or less by weight. If the amount of carbon is further increased, the resistivity of the toner decreases, the chargeability of the toner deteriorates, and fog occurs in the recorded image.
トナーに含まれるカーボン量が重量比で8%以上から
15%以下のトナーに、更にシリカ微粉末を重量比で2%
以下及び磁性微粒子を重量比で1%以下の範囲で外添し
て用いるとトナーの流動性がよくなり、凝集性も改善で
き、撹拌帯電性もよくなり、長期的な反転現像の連続使
用に対して現像剤の劣化現象がほとんどなく、安定して
使えることを見いだした。ビニール系樹脂を主たる結着
樹脂とするトナーに疎水性のシリカを外添すると流動性
が良くなり、トナー同士の凝集も少なくなるが、長期的
にこのトナーを連続使用すると、現像装置の混合撹拌特
性が変わり、補給したトナーがなかなか帯電しなくなる
ことがわかつた。このため、かぶりや画像濃度のむらが
増す等の現像剤の劣化現象が生じた。From 8% by weight or more of carbon contained in toner
15% or less of toner and 2% by weight of silica fine powder
When the following and magnetic particles are used by adding externally in the range of 1% by weight or less, the fluidity of the toner is improved, the cohesiveness can be improved, and the stirring and charging property is also improved, which is suitable for long-term continuous reversal development. On the other hand, it was found that there is almost no deterioration of the developer and it can be used stably. When hydrophobic silica is externally added to a toner containing vinyl resin as the main binder resin, the fluidity is improved and aggregation of toner particles is reduced, but if this toner is continuously used for a long period of time, it will be mixed and stirred in the developing device. It was found that the characteristics changed, and the replenished toner was not easily charged. As a result, a phenomenon of deterioration of the developer such as fogging and unevenness of image density is caused.
この原因をよく調べた結果、2つの問題点があること
がわかつた。第1の問題点は、トナーに添加した疎水性
シリカがトナーから離脱して、キヤリア表面に移行し、
キヤリア表面に覆つてしまうこと、第2の問題点は、長
期繰り返し使用によりキヤリア表面にトナーが粘着する
現象(トナーフイルミング)である。これら問題を解決
するために種々の方法を検討した結果、トナー粒子より
も粒径の小さい磁性微粒子をトナー中または現像剤中に
外添して用いることにより、連続使用に対して現像剤の
劣化現象がほとんどないことを見いだした。外添する磁
性微粒子としては、トナー粒子よりも粒径が小さいもの
で、材質は従来の磁性キヤリアに用いるものと同様なも
のでよく、中でも微粉末化が容易なフエライトやマグネ
タイト等が適していることがわかつた。A close examination of the cause revealed that there were two problems. The first problem is that the hydrophobic silica added to the toner separates from the toner and moves to the carrier surface,
The second problem with covering the carrier surface is that the toner adheres to the carrier surface due to repeated use for a long time (toner filming). As a result of investigating various methods for solving these problems, by using externally adding magnetic fine particles having a smaller particle size than the toner particles in the toner or the developer, the deterioration of the developer due to continuous use is deteriorated. I found that there was almost no phenomenon. The magnetic fine particles to be externally added are smaller in particle size than the toner particles, and the material may be the same as that used for the conventional magnetic carrier. Among them, ferrite or magnetite, which can be easily pulverized, is suitable. I can tell you.
以上が現像剤についての条件であり、次にこのような
現像剤を用いて感光体21上に形成した静電線像を現像す
る現像器24に関する条件について述べる。The above is the conditions for the developer. Next, the conditions for the developing device 24 that develops the electrostatic ray image formed on the photoconductor 21 using such a developer will be described.
感光体21とスリーブ24Aとの間隙である現像ギヤツプ
は、先に説明したように反転現像ではバイアス電圧が作
る電界の効果を引き出すために挟める必要がある。第7
図は、第2図の電子写真装置に上記の2成分現像剤36を
用い、現像ギヤツプと画像濃度の関係を求めた結果であ
る。この結果から、上記2成分現像剤36を用いて反転現
像を行う場合、現像ギヤツプは1mm以下が適しているこ
とがわかつた。The development gap, which is the gap between the photoconductor 21 and the sleeve 24A, needs to be sandwiched in order to bring out the effect of the electric field created by the bias voltage in the reversal development as described above. Seventh
The figure shows the result obtained by using the two-component developer 36 in the electrophotographic apparatus of FIG. 2 to determine the relationship between the development gap and the image density. From these results, it was found that when reversal development is performed using the two-component developer 36, a development gap of 1 mm or less is suitable.
現像領域に供給される2成分現像剤36の量は、ドクタ
ーブレード41によるスリーブ24A上の間隙(ドクターギ
ヤツプ)により規制されるが、このドクターギヤツプの
大きさは、現像ギヤツプが1mm以下の場合は画像濃度に
対してそれほど影響しないが、現像ギヤツプに対して0.
8倍以下に設定しないと2成分現像剤36が現像ギヤツプ
で詰まり、感光体21とスリーブ24Aがロツクしやすくな
るという問題があつた。そのため、本電子写真装置では
現像ギヤツプが1mm以下で同時にドクターギヤツプもこ
の現像ギヤツプの0.8倍以下に設定して用いる。The amount of the two-component developer 36 supplied to the developing area is regulated by the gap (doctor gap) on the sleeve 24A by the doctor blade 41. The size of the doctor gap is determined when the developing gap is 1 mm or less. It does not significantly affect the development gap, but it is 0.
If the ratio is not less than eight times, the two-component developer 36 is clogged by the developing gap, and the photosensitive member 21 and the sleeve 24A are easily locked. Therefore, in the present electrophotographic apparatus, the developing gap is set to 1 mm or less and the doctor gap is set to 0.8 times or less of the developing gap at the same time.
2成分現像剤36の搬送速度は、感光体21の移動速度に
対して2から5倍がよく、中でも2.5から3.5倍が画像再
現性に優れていた。2成分現像剤36の搬送速度は、スリ
ーブ24Aの周速で決まるため、スリーブ24Aの風速が上記
条件になるように設定して用いる。また、2成分現像剤
36の搬送方向は、感光体21の移動方向と同方向にしたと
きに高画質の記録画像が得られた。2成分現像剤36の搬
送方向を感光体21の移動方向と逆方向にすると、2成分
現像剤36の摺擦により、一度現像したトナー像を掻き取
る作用が強く、記録画像に掃き目が生じて、鮮明な記録
画像を得ることができない。The transport speed of the two-component developer 36 is preferably 2 to 5 times the moving speed of the photosensitive member 21, and especially 2.5 to 3.5 times the image reproducibility. Since the transport speed of the two-component developer 36 is determined by the peripheral speed of the sleeve 24A, it is set and used so that the wind speed of the sleeve 24A satisfies the above condition. Also, two-component developer
When the transporting direction of 36 was the same as the moving direction of the photoconductor 21, a high-quality recorded image was obtained. When the conveying direction of the two-component developer 36 is set to the opposite direction to the moving direction of the photoconductor 21, the sliding action of the two-component developer 36 has a strong effect of scraping the toner image once developed, resulting in a sweep in the recorded image. Therefore, a clear recorded image cannot be obtained.
本電子写真装置では現像ギヤツプは1mm以下とする
が、このギヤツプの平行度はギヤツプdに対してd±0.
1dの範囲内にすると画像の右端と左端で濃度差がなく、
均一濃度の画像が得られる。現像ギヤツプは装置作製時
にこのように設定しておけばよいが、感光体21や2成分
現像剤36には寿命があり、用紙29の印刷枚数に従つて交
換しなければならない。そのため、感光体21や現像器24
は装置本体から取り出せ、更に簡単に装着できかつ現像
ギヤツプを精度よく設定できるようにしておく必要があ
る。従来、その一つの方法として、スリーブ24Aの径よ
りも2d分だけ大きい径の当てつけリングをスリーブ24A
の軸に設け、このリングを感光体21の両端に当てて現像
器24を設定する方法がある。しかし、この方法は当てつ
けリングが摩耗しない初期の間はよいが、当てつけリン
グが摩耗とすると現像ギヤツプの変動が起こり、記録画
像の濃度むらが生じる。In this electrophotographic apparatus, the developing gap is 1 mm or less, and the parallelism of this gap is d ± 0 with respect to the gap d.
When it is within the range of 1d, there is no density difference between the right end and the left end of the image,
An image with a uniform density is obtained. The developing gap may be set in this way at the time of manufacturing the apparatus, but the photoconductor 21 and the two-component developer 36 have a life and must be replaced according to the number of printed sheets of paper 29. Therefore, the photoconductor 21 and the developing device 24
It is necessary that the developing device can be taken out of the apparatus main body, can be more easily mounted, and the developing gap can be set accurately. Conventionally, as one method, a contact ring with a diameter larger by 2d than the diameter of the sleeve 24A
There is a method of setting the developing device 24 by providing this ring on both ends of the photoconductor 21. However, this method is good during the initial period when the contact ring is not worn, but if the contact ring is worn, the development gap fluctuates and uneven density of the recorded image occurs.
そこで、本発明者はこの方法を用いることなく、第8
図に示すように、感光体21を保持する感光体部材50及び
現像器24がそれぞれ独立に前記電子写真装置本体から脱
着自在で、かつ前記電子写真装置本体の側板51に設けた
ピン52に、感光体保持部材50の一部に設けた位置決め孔
53と、現像器24の一部に設けた位置決め孔54とが共用し
て嵌合することにより現像器24と感光体21を正確に位置
決めして、現像ギヤツプの平行度を出すようにした。感
光体保持部材50及び現像器24の装置本体への挿入及び固
定は、第9図に示すように装置本体奥側の側板55に設け
た軸受56,57に感光体21のドラムの軸58及び現像ロール4
0の軸59が、感光体保持部材50及び現像器24を装置本体
に挿入したときにそれぞれ嵌合するように行なう。感光
体保持部材50は、位置決め孔53を装置本体の挿入側の側
板51に設けたピン52に嵌合し、更にねじ60をねじ孔62に
嵌合して固定する。現像器24は、位置決め孔54を同じよ
うに装置本体の挿入側の側板51に設けたピン52に嵌合
し、更にねじ61をねじ孔63に嵌合して固定する。この様
に1つのピ52を共用することにより、現像器24と感光体
21の位置を正確に決めることができるので、現像ギヤツ
プも精度よく設定できるのである。Therefore, the present inventor does not use this method, and
As shown in the figure, a photoreceptor member 50 holding the photoreceptor 21 and a developing unit 24 are each independently detachable from the electrophotographic apparatus main body, and a pin 52 provided on a side plate 51 of the electrophotographic apparatus main body, Positioning holes provided in part of the photoconductor holding member 50
The developing device 24 and the photoconductor 21 are accurately positioned by fitting together the 53 and the positioning hole 54 provided in a part of the developing device 24, so that the parallelism of the developing gear is obtained. As shown in FIG. 9, the photosensitive member holding member 50 and the developing device 24 are inserted into and fixed to the apparatus main body by bearings 56, 57 provided on a side plate 55 on the back side of the apparatus main body, and the drum shaft 58 of the photosensitive member 21 and Developing roll 4
The shaft 59 of 0 is fitted so that the photosensitive member holding member 50 and the developing device 24 are fitted when the developing device 24 is inserted into the apparatus main body. The photosensitive member holding member 50 has a positioning hole 53 fitted to a pin 52 provided on a side plate 51 on the insertion side of the apparatus main body, and a screw 60 fitted to a screw hole 62 for fixing. In the developing device 24, the positioning hole 54 is similarly fitted to the pin 52 provided on the side plate 51 on the insertion side of the apparatus main body, and further the screw 61 is fitted and fixed to the screw hole 63. By sharing one pin 52 in this way, the developing device 24 and the photosensitive member
Since the position of 21 can be accurately determined, the developing gear can also be set accurately.
更に、感光体や用紙搬送の駆動と現像器系の駆動をベ
ルトやチエーン等の同一系統で実施すると、現像器の負
荷変動により感光体や用紙搬送系の送り速度にわずかな
変動が起こり、それが画像むらとなる。特に本発明で
は、反転現像で現像ギヤツプが狭いため、画像形成プロ
セスにおいて従来の方式に比べてよりこの速度変動の影
響を受けやすいのである。ところで、感光体の回転と用
紙の搬送は同じ速度にしなければならないが、現像器の
スリーブの回転速度等は同じにする必要はない。そこ
で、第2図の電子写真装置では、現像器関係の駆動と感
光体及び用紙搬送系の駆動とを分け、現像器関係を独立
に駆動するようにした。このようにすると感光体や用紙
搬送系の送りは、現像器の負荷変動による速度変動がな
くなり、画質向上が図れた。Furthermore, if the driving of the photoconductor and paper conveyance and the driving of the developing device system are performed by the same system such as a belt and a chain, a slight fluctuation occurs in the feeding speed of the photoconductor and paper conveyance system due to the fluctuation of the load of the developing device. Causes image unevenness. In particular, in the present invention, since the development gap is narrow in reversal development, the image forming process is more susceptible to this speed fluctuation than in the conventional system. By the way, the rotation of the photosensitive member and the conveyance of the paper must be at the same speed, but the rotation speed of the sleeve of the developing device does not need to be the same. Therefore, in the electrophotographic apparatus shown in FIG. 2, the driving of the developing device and the driving of the photosensitive member and the sheet conveying system are separated, and the driving of the developing device is independently driven. With this arrangement, the speed of the photosensitive member and the paper transport system does not fluctuate due to the load fluctuation of the developing device, and the image quality is improved.
以下、本発明の実施例を具体的に説明する。 Hereinafter, examples of the present invention will be specifically described.
実施例1 第1図及び第2図は、本発明を用いた現像器及び電子
写真装置の一実施例である。感光体21は、アルミニウム
ドラム上に有機顔料であるフタロシアニンを主成分とす
る電荷発生層を0.5μmの厚さに塗布した後、その上に
電荷搬送層としてオキサドール誘導体を重量比で30%含
むポリカーボネートを16.5μmの厚さに塗布した2層構
造の有機光導電体を使用した。感光体21の体積抵抗率は
1015Ω・cmであつた。Embodiment 1 FIGS. 1 and 2 show an embodiment of a developing device and an electrophotographic apparatus using the present invention. The photoconductor 21 is a polycarbonate containing a charge generation layer containing phthalocyanine, which is an organic pigment, as a main component on an aluminum drum to a thickness of 0.5 μm, and a 30% by weight ratio of an oxadol derivative as a charge carrier layer on the charge generation layer. Was used to form an organic photoconductor having a two-layer structure. The volume resistivity of the photoconductor 21 is
It was 10 15 Ω · cm.
感光体21の直径は100mmであり、周速は125mm/sで時計
回りに回転する。感光体21の表面の電位は、画像の背景
部にあたる未露光部は−650Vで、画像記録部にあたる露
光部は−100V以下になるように帯電器20の印加電圧及び
露光手段23の露光量を調整した。また、スリーブ24Aに
印加するバイアス電源44の出力電圧は、−500Vとした。The photoconductor 21 has a diameter of 100 mm and a peripheral speed of 125 mm / s and rotates clockwise. The potential of the surface of the photoconductor 21 is −650 V in the unexposed portion corresponding to the background portion of the image, and the applied voltage of the charger 20 and the exposure amount of the exposure unit 23 so that the exposed portion corresponding to the image recording portion is −100 V or less. It was adjusted. The output voltage of the bias power supply 44 applied to the sleeve 24A was -500V.
現像器24のスリーブ24A及びドクターブレード41に
は、導電性非磁性体であるアルミニウムを使用した。現
像ロール40は、直径40mmの円筒状のスリーブ24Aとその
内部に挿入した円柱状の固定マグネツトロール39から構
成され、スリーブ24Aのみが反時計方向に回転し、現像
剤36を搬送する。スリーブの24Aの周速は、感光体21の
周速に対して2.58倍の322.5mm/sとした。固定マグネツ
トロール39の磁極数は7極で、その磁力の強さは、現像
部に位置する主極での磁束密度を850ガウスとした。現
像ギヤツプは1mmで、ドクターギヤツプは0.6mmに設定し
た。Aluminum, which is a conductive nonmagnetic material, is used for the sleeve 24A and the doctor blade 41 of the developing device 24. The developing roll 40 includes a cylindrical sleeve 24A having a diameter of 40 mm and a cylindrical fixed magnet roll 39 inserted therein, and only the sleeve 24A rotates counterclockwise to transport the developer 36. The peripheral speed of the sleeve 24A is 322.5 mm / s, which is 2.58 times the peripheral speed of the photoconductor 21. The number of magnetic poles of the fixed magnet roll 39 is seven, and the strength of the magnetic force is such that the magnetic flux density at the main pole located in the developing section is 850 gauss. The development gear tape was set to 1 mm and the doctor gear tape was set to 0.6 mm.
トナーは、スチレン−アクリル樹脂を主成分に、カー
ボンブラツクを重量比で10%、帯電制御剤としてクロム
合金染料を重量比で3%を含んだものを粉砕し、更に平
均粒径が8μmで平均粒径の0.65倍以下の小径粒のもの
が重量比で3%以下かつ平均粒径の2倍以上の大粒径の
ものが重量比で1%以下になるように分級し、その後シ
リカ微粉末を重量比で1%及び磁性微粒子としてマグネ
タイトの微粉末を重量比で0.5%外添したものを用い
た。このトナーの粒度分布を測つたところ、平均粒径が
8μmで5.2μm以下のが重量比で1.3%かつ16μm以上
のものが重量比で0.3%てあつた。The toner is composed of styrene-acrylic resin as a main component, 10% by weight of carbon black, and 3% by weight of a chromium alloy dye as a charge controlling agent. Small particles with a particle size of 0.65 times or less of the particle size are 3% or less by weight ratio, and large particles with a particle size of 2 times or more the average particle size are 1% or less by weight ratio, and then fine silica powder 1% by weight and fine particles of magnetite 0.5% by weight as magnetic particles were externally added. When the particle size distribution of this toner was measured, the average particle size was 8 μm, 5.2 μm or less was 1.3% by weight, and those having an average particle size of 16 μm or more was 0.3% by weight.
キヤリアは銅−亜鉛を主成分とするフエライトでその
表面にシリコン樹脂が約0.2μmの厚さでコートされて
いるものを用いた。キヤリアの抵抗率は1012Ω・cmであ
つた。また、キヤリアの大きさは、平均粒径91μmで70
μm以下の粒径のものが5%以下になるように分級した
ものを用いた。Carrier used was ferrite mainly composed of copper-zinc, the surface of which was coated with a silicon resin to a thickness of about 0.2 μm. The carrier resistivity was 10 12 Ω · cm. The size of the carrier is 70 μm with an average particle size of 91 μm.
The particles classified so that the particles having a particle diameter of μm or less become 5% or less were used.
2成分現像剤36は、上記トナーとキヤリアをトナー濃
度が重量比で3%になるように混合したものを用いた。
トナー濃度は現像器24内のトナー濃度センサ部43により
検知し、3%を中心に±0.5%の範囲内になるように制
御した。このときのトナーの帯電量は、−20μC/gであ
つた。As the two-component developer 36, a mixture of the toner and the carrier such that the toner concentration becomes 3% by weight was used.
The toner density was detected by a toner density sensor unit 43 in the developing device 24, and was controlled to be within ± 0.5% around 3%. The charge amount of the toner at this time was −20 μC / g.
以上の条件で反転現像を行つた結果、得られた用紙29
上の記録画像は、画像濃度も高く更に濃度むらやかぶり
もなく、高画質で鮮明であつた。引き続き、2成分現像
剤36のトナー濃度が一定になるように逐次トナーを補給
しながら50000枚の連続印字を行つたところ画像濃度
は、殆ど濃度一定でかぶりも少なく、高画質で安定した
記録画像を得ることができた。As a result of reversal development under the above conditions, the resulting paper 29
The upper recorded image was high in image density, free from uneven density and fog, and was clear and high quality. Subsequently, continuous printing of 50,000 sheets was performed while successively replenishing toner so that the toner concentration of the two-component developer 36 became constant. As a result, the image density was almost constant, the fog was small, and a high-quality and stable recorded image was obtained. Could be obtained.
実施例2 本実施例は実施例1と同じ構成の現像器24を使用した
電子写真装置であるが、異なる点は以下のとおりであ
る。Embodiment 2 This embodiment is an electrophotographic apparatus using the developing device 24 having the same structure as that of Embodiment 1, but the different points are as follows.
感光体21の表面の電位は、画像の背景部にあたる未露
光部は−600Vで、画像記録部にあたる露光部は−100V以
下になるように帯電器20の印加電圧及び露光手段23の露
光量を調整した。また、スリーブ21Aに印加するバイア
ス電圧は、−450Vとした。The potential of the surface of the photoconductor 21 is −600 V for the unexposed portion corresponding to the background portion of the image, and −100 V for the exposed portion corresponding to the image recording portion. It was adjusted. Further, the bias voltage applied to the sleeve 21A was −450V.
現像器24は、スリーブの24Aの周速を385mm/sに、現像
ギヤツプは0.8mmで、ドクターギヤツプは0.6mmに設定し
た。In the developing device 24, the peripheral speed of the sleeve 24A was set to 385 mm / s, the developing gap was set to 0.8 mm, and the doctor gap was set to 0.6 mm.
トナーは、スチレン−アクリル樹脂を主成分に、カー
ボンブラツクを重量比で8%、帯電制御剤としてクロム
合金染料を重量比で3%を含んだものを粉砕したもの
で、平均粒径及び粒度分布更に外添剤の混合割合は、実
施例1と同様にした。The toner is obtained by pulverizing a styrene-acryl resin as a main component, containing 8% by weight of carbon black and 3% by weight of a chromium alloy dye as a charge controlling agent, and has an average particle size and particle size distribution. Further, the mixing ratio of the external additive was the same as in Example 1.
キヤリアは銅−亜鉛を主成分とするフエライトで、そ
の表面には樹脂がコートされていないものを用いた。キ
ヤリアの抵抗率は109Ω・cmであつた。キャリアの大き
さは、平均粒径85μmで65μm以下の粒径のものが6%
以下になるように分級したものを用いた。つまり平均粒
径に対して0.76倍(≒65μm/85μm)の粒径のものが6
%以下となるようにしている。Carrier is a ferrite whose main component is copper-zinc, the surface of which is not coated with a resin. The resistivity of the carrier was 10 9 Ω · cm. The size of the carrier is 6% with an average particle size of 85 μm and a particle size of 65 μm or less.
Those classified as follows were used. In other words, the average particle size is 0.76 times (≒ 65μm / 85μm)
% Or less.
2成分現像剤36のトナー濃度は、3.5%を中心に±0.5
%の範囲内になるように制御した。このときのトナーの
帯電量は、−22μC/gであつた。The toner concentration of the two-component developer 36 is ± 0.5 around 3.5%.
%. At this time, the toner charge amount was −22 μC / g.
以上の条件で反転現像を行つた結果、実施例1と同様
に記録画像は、画像濃度も高く更に濃度むらやかぶりも
なく、高画質で鮮明であつた。引き続き、2成分現像剤
36のトナー濃度が一定になるように逐次トナーを補給し
ながら50000枚の連続印字を行つたところ画像濃度は、
殆ど濃度一定でかぶりも少なく、高画質で安定した記録
画像をえることができた。As a result of reversal development under the above conditions, the recorded image had high image density, no density unevenness and no fog, and high image quality and sharpness as in Example 1. Continuously, two-component developer
When continuous printing of 50,000 sheets was performed while replenishing toner successively so that the toner density of 36 became constant, the image density was
It was possible to obtain a stable recorded image with high image quality with almost constant density and little fog.
実施例3 本実施例は実施例2と同じ構成の現像器24を使用した
電子写真装置であるが、異なる点は以下のとうりであ
る。Embodiment 3 This embodiment is an electrophotographic apparatus using a developing unit 24 having the same configuration as that of Embodiment 2, but different points are as follows.
トナーは、ポリエステル樹脂を主成分に、カーボンブ
ラツクを重量比で10%、帯電制御剤としてクロム合金染
料を重量比で3%を含んだものを粉砕し、更に平均粒径
が6μmで平均粒径の0.65倍以下の小粒径のものが重量
比で3%以下かつ平均粒径の2倍以上の大径粒のものが
重量比で1%以下になるように分級し、その後シリカ微
粉末を重量比で2%及び磁性微粒子としてフエライトの
微粉末を重量比で1%外添したものを用いた。このトナ
ーの粒度分布を測つたところ、平均粒径が6μmで3.6
μm以下のが重量比で2.3%かつ12μm以上のものが重
量比で0.5%であつた。The toner is composed of polyester resin as a main component, carbon black in a weight ratio of 10%, and a chromium alloy dye as a charge control agent in a weight ratio of 3%. The toner is crushed, and the average particle size is 6 μm. The particles having a small particle size of 0.65 times or less are classified so that the weight ratio is 3% or less and the large particles having a diameter of 2 times or more the average particle size is 1% or less. 2% by weight and 1% by weight of fine powder of ferrite as magnetic fine particles were used as external additives. When the particle size distribution of this toner was measured, the average particle size was 6 μm and the average particle size was 3.6 μm.
2.3% by weight or less was 0.5 μm and 0.5% by weight was 12 μm or more.
キヤリアはバリウム−亜鉛を主成分とするフエライト
でその表面にはスチレン−アクリル樹脂がコートされて
いるものを用いた。キヤリアの抵抗率は1010Ω・cmであ
つた。キヤリアの大きさは、平均粒径60μmで48μm以
下の粒径のものが8%以下になるように分級したものを
用いた。Carrier used was ferrite containing barium-zinc as a main component, the surface of which was coated with a styrene-acrylic resin. The resistivity of the carrier was 10 10 Ω · cm. The size of the carrier used was classified so that particles having an average particle diameter of 60 μm and a particle diameter of 48 μm or less became 8% or less.
2成分現像剤36のトナー濃度は、3%を中心に±0.5
%の範囲内になるように制御した。このときのトナーの
帯電量は、−18μC/gであつた。The toner concentration of the two-component developer 36 is ± 0.5 around 3%.
%. At this time, the charge amount of the toner was −18 μC / g.
以上の条件で反転現像を行つた結果、記録画像は、画
像濃度も高く更に濃度むらやかぶりもなく、実施例1と
同様かそれ以上に高画質で鮮明であつた。引き続き、現
像剤のトナー濃度が一定になるように逐次トナーを補給
しながら50000枚の連続印字を行つたところ画像濃度
は、殆ど濃度一定でかぶりも少なく、高画質で安定した
記録画像をえることができた。As a result of performing reversal development under the above conditions, the recorded image was high in image density and free from density unevenness and fogging, and was clear with high image quality as in Example 1 or higher. Subsequently, continuous printing of 50,000 sheets was performed while successively replenishing the toner so that the toner concentration of the developer became constant.The image density was almost constant, the fog was small, and a high-quality and stable recorded image was obtained. I was able to.
本発明は、以上説明したように有機光電導体で構成さ
れた感光体と平均粒径が10μm以下となるように微粒化
したトナー粒子及び抵抗率が107Ω・cm以上のフエライ
トキヤリア粒子で構成される2成分現像剤とを組み合わ
せて反転現像することにより、濃度不足や濃度むら及び
かぶりがなく、高画質で鮮明な記録ができる電子写真装
置を提供することができる。As described above, the present invention comprises a photoreceptor composed of an organic photoconductor, toner particles atomized to have an average particle size of 10 μm or less, and ferrite carrier particles having a resistivity of 10 7 Ω · cm or more. By performing reversal development in combination with the two-component developer to be provided, it is possible to provide an electrophotographic apparatus capable of performing high-quality and clear recording without density insufficiency, density unevenness and fog.
第1図は本発明の一実施例の現像器の縦断側面図、第2
図は本発明の一実施例の電子写真装置の縦断側面図、第
3図は感光体の違いによるバイアス電圧と画像濃度の違
いを示す特性図、第4図はキヤリアの抵抗率と記録画像
の濃度変化を示す特性図、第5図は同一条件でキヤリア
粒子の大きさとトナー濃度を種々変えて画像濃度とかぶ
り及びキヤリア引きの限界を求めた特性図、第6図はト
ナーのカーボン量と画像の濃度との関係を示す特性図、
第7図は現像ギヤツプと画像濃度の関係を示す特性図、
第8図は現像器の設定部を示す斜視図、第9図は感光体
と現像器の位置決め構成を示す縦断側面図である。 21……感光体、24……現像器、24A……スリーブ、35…
…現像剤溜り、36……現像剤、40……現像ロール、41…
…ドクターブレード、44……バイアス電圧、45……補給
ローラ、46……トナーホツパ、47……撹拌パドル、48…
…トナーカートリツジ、49……撹拌羽根、50……感光体
保持部材、51……電子写真装置本体側板、52……ピン、
53,54……位置決め孔。FIG. 1 is a longitudinal sectional side view of a developing device according to an embodiment of the present invention, FIG.
FIG. 4 is a vertical sectional side view of an electrophotographic apparatus according to an embodiment of the present invention, FIG. 3 is a characteristic diagram showing a difference in bias voltage and image density due to a difference in photoconductor, and FIG. 4 is a resistivity of a carrier and a recorded image. FIG. 5 is a characteristic diagram showing the density change, FIG. 5 is a characteristic diagram showing the image density and the limit of fogging and carrier pulling obtained by variously changing the size of the carrier particles and the toner concentration under the same conditions, and FIG. Characteristic diagram showing the relationship with the concentration of
FIG. 7 is a characteristic diagram showing a relationship between the developing gear and the image density,
FIG. 8 is a perspective view showing a setting portion of the developing device, and FIG. 9 is a vertical sectional side view showing a positioning structure of the photoconductor and the developing device. 21 ... Photoconductor, 24 ... Developer, 24A ... Sleeve, 35 ...
... developer pool, 36 ... developer, 40 ... developing roll, 41 ...
… Doctor blade, 44… Bias voltage, 45… Supply roller, 46… Toner hopper, 47… Stirring paddle, 48…
... toner cartridge, 49 ... stirring blades, 50 ... photosensitive member holding member, 51 ... electrophotographic apparatus main body side plate, 52 ... pin,
53,54 ... Positioning holes.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03G 15/08 506 G03G 9/10 321 (56)参考文献 特開 昭63−208861(JP,A) 特開 昭63−301960(JP,A) 特開 昭60−170660(JP,A) 特開 平1−167847(JP,A)Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location G03G 15/08 506 G03G 9/10 321 (56) References JP-A-63-208861 (JP, A) JP-A JP-A-63-301960 (JP, A) JP-A-60-170660 (JP, A) JP-A-1-167847 (JP, A)
Claims (1)
剤を用い、現像搬送体と前記感光体との間に直流バイア
ス電圧を印加して反転現像する電子写真装置において、 2成分現像剤のトナーは、その平均粒径が6〜10μm
で、かつトナーに含まれるカーボンの量が重量比で8〜
10%であり、かつ外添剤としてシリカ微粉末が重量比で
1〜2%、磁性微粒子が重量比で0.5〜1%で外添して
あり、前記トナーの粒度分布を平均粒径の0.65倍以下の
小粒径のものが重量比で3%以下、平均粒径の2倍以上
の大粒径のものが重量比で1%以下とし、 キャリアとして、平均粒径60〜100μmで、前記平均粒
径の0.76〜0.8倍の粒径のものが6〜8%以下の含有率
で、かつ抵抗値が107〜1012Ωcmであるフェライトキャ
リアを用い、 現像領域における前記現像搬送体と前記感光体のギャッ
プを1mm以下とし、かつ、前記現像搬送体上の現像剤の
厚さを規制する規制部剤と前記現像搬送体とのギャップ
が前記現像搬送体と前記感光体のギャップに対して0.8
以下としたことを特徴とする電子写真装置。1. An electrophotographic apparatus for reversal developing an electrostatic latent image formed on a photoreceptor by applying a DC bias voltage between a developing carrier and the photoreceptor using a two-component developer. The component developer toner has an average particle diameter of 6 to 10 μm.
And the amount of carbon contained in the toner is 8 to
10%, silica fine powder as an external additive is added in an amount of 1 to 2% by weight, and magnetic fine particles are added in an amount of 0.5 to 1% by weight, and the particle size distribution of the toner is 0.65 of the average particle size. 3% or less by weight ratio of those having a small particle size of 2 times or less, and 1% or less by weight ratio of a large particle size having at least twice the average particle size. A ferrite carrier having a content of 6 to 8% or less and a resistance value of 10 7 to 10 12 Ωcm having a particle size of 0.76 to 0.8 times the average particle size is used. The gap of the photosensitive member is 1 mm or less, and the gap between the developing member and the regulating member that regulates the thickness of the developer on the developing member is relative to the gap between the developing member and the photosensitive member. 0.8
An electrophotographic apparatus characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1124328A JP2667904B2 (en) | 1989-05-19 | 1989-05-19 | Electrophotographic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1124328A JP2667904B2 (en) | 1989-05-19 | 1989-05-19 | Electrophotographic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02304458A JPH02304458A (en) | 1990-12-18 |
JP2667904B2 true JP2667904B2 (en) | 1997-10-27 |
Family
ID=14882621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1124328A Expired - Lifetime JP2667904B2 (en) | 1989-05-19 | 1989-05-19 | Electrophotographic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2667904B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08314215A (en) * | 1995-05-17 | 1996-11-29 | Canon Inc | Image forming device |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4970630A (en) * | 1972-11-08 | 1974-07-09 | ||
JPS54105535U (en) * | 1978-01-10 | 1979-07-25 | ||
JPS58128458U (en) * | 1982-02-25 | 1983-08-31 | キヤノン株式会社 | developing device |
JPS58152647U (en) * | 1982-04-05 | 1983-10-13 | 三洋電機株式会社 | Developing device of electrophotographic copying machine |
JPS60169639U (en) * | 1984-04-19 | 1985-11-11 | オリンパス光学工業株式会社 | electrophotographic copying device |
JPS6231864A (en) * | 1985-08-02 | 1987-02-10 | Hitachi Metals Ltd | Ferrite carrier for electrophotographic development |
JPS6272727A (en) * | 1985-09-26 | 1987-04-03 | Konishiroku Photo Ind Co Ltd | Production of fine resin particle |
JPS62238580A (en) * | 1986-04-09 | 1987-10-19 | 関東電化工業株式会社 | Carrier for electrophotographic developing agent |
JPS62284366A (en) * | 1986-06-02 | 1987-12-10 | Hitachi Metals Ltd | Coating carrier |
JPS62297857A (en) * | 1986-06-18 | 1987-12-25 | Hitachi Metals Ltd | Ferrite carrier for electrophotographic development |
JPS6338947A (en) * | 1986-08-04 | 1988-02-19 | Dainippon Ink & Chem Inc | Toner for developing electrostatic charge image and its production |
JPS6338948A (en) * | 1986-08-04 | 1988-02-19 | Dainippon Ink & Chem Inc | Toner for developing electrostatic charge image and its production |
JPS6338961A (en) * | 1986-08-05 | 1988-02-19 | Toray Ind Inc | Two-component developer |
JPS6373271A (en) * | 1986-09-17 | 1988-04-02 | Canon Inc | Positively electrifiable developer |
JPH07104612B2 (en) * | 1986-10-31 | 1995-11-13 | キヤノン株式会社 | Non-magnetic black polymerized toner and manufacturing method thereof |
JP2572756B2 (en) * | 1986-11-07 | 1997-01-16 | 三菱化学株式会社 | Toner for electrostatic image development |
JPH0820746B2 (en) * | 1987-01-09 | 1996-03-04 | キヤノン株式会社 | Dry developer and image forming method using the developer |
JPH07117769B2 (en) * | 1987-01-09 | 1995-12-18 | キヤノン株式会社 | Dry developer and image forming method using the developer |
JPS63170661A (en) * | 1987-01-09 | 1988-07-14 | Canon Inc | Dry process developer and image forming method using said developer |
DE3786656T2 (en) * | 1987-01-19 | 1994-01-27 | Canon Kk | Color toner and two-component developer containing it. |
JPS63208861A (en) * | 1987-02-26 | 1988-08-30 | Konica Corp | Electrostatic image developer and electrostatic developing method |
JPH01116747A (en) * | 1987-10-29 | 1989-05-09 | Nec Corp | Cache lsi |
-
1989
- 1989-05-19 JP JP1124328A patent/JP2667904B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02304458A (en) | 1990-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5923933A (en) | Electrophotographic apparatus | |
US6829448B2 (en) | Image forming apparatus and image forming method | |
JPH1063081A (en) | Developing device | |
JP4903644B2 (en) | Developing device and image forming apparatus using the same | |
US6868240B2 (en) | Method for developing in hybrid developing apparatus | |
JPH11102115A (en) | Electrophotographic device | |
JPH09251219A (en) | Developing method | |
JP2667904B2 (en) | Electrophotographic equipment | |
JP5244357B2 (en) | Developing device and image forming apparatus including the same | |
JPH1010784A (en) | Positive charge type one-component developer and image forming device using the same | |
JPH11327191A (en) | Image forming device | |
JP2001337521A (en) | Device and method for developing and image forming device | |
JP3763328B2 (en) | Electrophotographic equipment | |
JP2006308732A (en) | Developing device | |
JP2000019840A (en) | Developing device, unit provided with developing mechanism and image forming device | |
JPH0753090Y2 (en) | Development device | |
JPH1184857A (en) | Image forming device | |
JP3112539B2 (en) | Developing device | |
JP2632053B2 (en) | Toner developing device | |
JPH05289485A (en) | Developing device | |
JPH11265121A (en) | Color image forming device | |
JPH0521085Y2 (en) | ||
JPH08114983A (en) | Developing device | |
JPH01101572A (en) | Electrophotographic method | |
JP2001272858A (en) | Developing device, image forming apparatus and image forming processing unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090627 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |