JPH02304390A - Particle detector - Google Patents

Particle detector

Info

Publication number
JPH02304390A
JPH02304390A JP12530589A JP12530589A JPH02304390A JP H02304390 A JPH02304390 A JP H02304390A JP 12530589 A JP12530589 A JP 12530589A JP 12530589 A JP12530589 A JP 12530589A JP H02304390 A JPH02304390 A JP H02304390A
Authority
JP
Japan
Prior art keywords
particles
magnetic field
secondary electron
light
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12530589A
Other languages
Japanese (ja)
Inventor
Yoshio Kita
好夫 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12530589A priority Critical patent/JPH02304390A/en
Publication of JPH02304390A publication Critical patent/JPH02304390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To detect the incident particle with high sensitivity by providing a secondary electron emission plate for emitting a secondary electron when the incident particle is emitted through one piece of incident port, and a constitution which can apply an electric field in the direction coinciding with the direction of a magnetic field. CONSTITUTION:An incident particle such as a neutral particle, a charged particle, etc., irradiates a secondary electron emission plate 1 through an incident port 0, and a secondary electron is generated. On the other hand, by applying a voltage between the secondary electron emission plate 1 and an acceleration electrode 2 from an acceleration power source 3, the secondary electron is accelerated in the direction of a line of magnetic force to irradiate a fluorescent screen 4 and light is generated, and this light is condensed by a condensing lens 5. Subsequently, this light is detected by a photodetector 7. In this case, in the acceleration electrode 2, since an electric field is applied in the direction coinciding with the direction of a magnetic field B, the electron is accelerated in a shape wound to the line of magnetic force, therefore, it does not occur that deterioration of sensitivity caused by a magnetic field is generated.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は中性粒子、荷電粒子等の入射粒子を検出する粒
子検出器に係り、特に強磁場中でも入射粒子を感度阜く
検出し得るようにした粒子検出器に関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) The present invention relates to a particle detector that detects incident particles such as neutral particles and charged particles, and particularly relates to a particle detector that detects incident particles even in a strong magnetic field. The present invention relates to a particle detector capable of easily detecting particles.

(従来の技術) 従来から、中性粒子、荷電粒子等の入射粒子を検出する
粒子検出器としては、入射粒子による2次電子を増倍す
る方式を用いたセラトロン検出器あるいはマイクロチャ
ンネル検出器等が多く採用されてきている。
(Prior Art) Conventionally, particle detectors for detecting incident particles such as neutral particles and charged particles include Ceratron detectors or microchannel detectors that use a method of multiplying secondary electrons caused by incident particles. have been widely adopted.

セラトロン検出器は、内面に2次電子放出物質が塗酊さ
れたセラミックで作られており、開口部先端とラッパ状
の開口部の後に続くヘリカル状の管の端との間に電圧が
印加される。入射した粒子は、ラッパの内面に当たって
2次電子を発生し、印加された磁場によりヘリカル管の
内面で何度もぶつかりながら電子増倍される。そして、
この電子はヘリカル管の端から放出され、コレクタとの
間の電界によりコレクタに集められ、プリアンプで信号
増幅され、カウンタで計数される。一方、マイクロチャ
ンネル検出器は、内面に2次電子放出物質が塗布された
ガラスパイプが複数本並設されて作られており、電圧が
印加される。入射した粒子は、バイブの内面に当たって
2次電子を発生し、印加された磁場によりパイプの内面
で何度もぶつかりながら電子増倍され、カウンタで計数
される。
The Ceratron detector is made of ceramic whose inner surface is coated with a secondary electron emitting material, and a voltage is applied between the tip of the opening and the end of the helical tube that follows the trumpet-shaped opening. Ru. The incident particles hit the inner surface of the trumpet and generate secondary electrons, and the applied magnetic field causes the particles to collide with the inner surface of the helical tube many times, causing the electrons to be multiplied. and,
These electrons are emitted from the end of the helical tube, are collected at the collector by the electric field between them, are amplified as a signal by a preamplifier, and are counted by a counter. On the other hand, a microchannel detector is made of a plurality of glass pipes, each of which has an inner surface coated with a secondary electron emitting material, arranged in parallel, to which a voltage is applied. The incident particles hit the inner surface of the vibrator and generate secondary electrons, which are multiplied by colliding with the inner surface of the pipe many times due to the applied magnetic field and counted by a counter.

しかしながら、これらの検出器は、磁場「1〕で動作さ
せた場合、2次電子増倍中の7に子の軌道が磁力線に巻
き付くことになり、セラトロン検出器の場合には数十ガ
ウス、マイクロチャンネル検出器の場合には数百ガウス
で感度の低下が生じ、それ以上の場合には感度の低下が
顕著となり、入射粒子が感度良く検出できなくなる。す
なわち、セラトロン検出器に特に強い磁場(例えば、1
にガウス以上)が印加された場合、電子の運動は磁力線
に沿ってしか動くことができないため、極端な場合ラッ
パ管に垂直に磁場が印加されたとすると、2次電子はヘ
リカル管に入っていかないため、本来の電子増倍が行な
われなくなる。また、マイクロチャンネル検出器の場合
にも、形こそ違うものの原理はまったく同様であるため
、2次電子が磁力線に巻き付くことにより、本来の電子
増倍が起こらなくなり、増倍度が低下する。
However, when these detectors are operated in a magnetic field of "1", the orbit of the 7-pole during secondary electron multiplication wraps around the magnetic field lines, and in the case of the Ceratron detector, it is several tens of Gauss, In the case of microchannel detectors, sensitivity decreases at a few hundred Gauss, and at higher frequencies the decrease in sensitivity becomes so pronounced that incident particles cannot be detected with good sensitivity. For example, 1
Gauss or higher) is applied, the electrons can only move along the magnetic field lines, so in the extreme case if a magnetic field is applied perpendicular to the trumpet tube, the secondary electrons will not enter the helical tube. Therefore, the original electron multiplication is no longer performed. Furthermore, in the case of a microchannel detector, although the shape is different, the principle is exactly the same, so when secondary electrons wrap around magnetic lines of force, the original electron multiplication does not occur, and the multiplication factor decreases.

(発明が解決しようとする課題) 以上のように、従来の粒子検出器では、強磁場中におい
ては感度が著しく低下し、入射粒子を検出することがで
きないという問題があった。
(Problems to be Solved by the Invention) As described above, conventional particle detectors have a problem in that their sensitivity decreases significantly in a strong magnetic field, making it impossible to detect incident particles.

本発明の目的は、強磁場中においても確実に動作し入射
粒子を極めて感度良く検出することが可能な信頼性の高
い粒子検出器を提1」(することにある。
An object of the present invention is to provide a highly reliable particle detector that operates reliably even in a strong magnetic field and can detect incident particles with extremely high sensitivity.

[発明の(114成] (課題を解決するだめの手段) 上記の目的を達成するために、中性粒子、荷rv粒子等
の入射粒子を、当該入射粒子の方向と異なる方向の磁場
中で検出する粒子検出器を、第1の本発明では、1個の
入射口を通して入射粒子が照射されると2次電子を放出
する2次電子放出板と、磁場の方向と一致する方向に電
場を印加可能な構成を有し、2次電子放出板から放出さ
れる電子を加速する加速電極と、加速電極で加速された
電子を光に変換する蛍光板と、蛍光板からの光を検出す
る光検出器とを備えて構成し、また第2の本発明では、
N個(Nは2以上の整数)の入射口を通して入射粒子が
照射されると2次電子を放出する2次電子放出板と、磁
場の方向と一致する方向に電場を印加可能な構成を有し
、2次電子放出板から放出される各電子を共通に加速す
る加速電極と、加速電極で加速された各電子をそれぞれ
個別に光に変換するN個の蛍光板と、各蛍光板からの光
をそれぞれ個別に検出するN個の光検出器と、各光検出
器からの出力信号を入力とし、これらに基づいて粒子の
空間分布を求めるデータ処理手段とを備えて構成してい
る。
[Composition 114 of the invention] (Means for solving the problem) In order to achieve the above object, incident particles such as neutral particles and charged RV particles are placed in a magnetic field in a direction different from the direction of the incident particles. In the first aspect of the present invention, a particle detector for detecting particles includes a secondary electron emitting plate that emits secondary electrons when an incident particle is irradiated through one entrance port, and an electric field that applies an electric field in a direction that coincides with the direction of the magnetic field. An accelerating electrode that accelerates electrons emitted from the secondary electron emission plate, a fluorescent plate that converts the electrons accelerated by the accelerating electrode into light, and a photodetector that detects the light from the fluorescent plate. In the second aspect of the present invention,
It has a secondary electron emitting plate that emits secondary electrons when incident particles are irradiated through N (N is an integer of 2 or more) entrance ports, and a configuration that can apply an electric field in a direction that matches the direction of the magnetic field. There is an accelerating electrode that commonly accelerates each electron emitted from the secondary electron emission plate, N fluorescent plates that individually convert each electron accelerated by the accelerating electrode into light, and the light from each fluorescent plate. It is configured to include N photodetectors that individually detect each one, and a data processing means that receives output signals from each photodetector and calculates the spatial distribution of particles based on these.

(作用) 従って、第1の本発明の粒子検出器においては、入射粒
子が2次電子放出板に照射されると2次電子が発生し、
2次電子は磁場に沿った方向に放出される。この2次電
子は、加速電極による電場によって加速され、蛍光板に
当たって光が発生し、この光が光検出器で検出されるこ
とになる。
(Function) Therefore, in the particle detector of the first aspect of the present invention, when an incident particle is irradiated onto the secondary electron emission plate, secondary electrons are generated,
Secondary electrons are emitted in a direction along the magnetic field. These secondary electrons are accelerated by the electric field generated by the accelerating electrode, strike the fluorescent screen, and generate light, which is detected by a photodetector.

この場合、加速電極においては、磁場の方向と一致する
方向に電場が印加されることにより、磁力線に巻き付い
た形で電子が加速されるため、磁場による感度の低下が
生じることはない。また、第2の本発明の粒子検出器に
おいては、第1の本発明の粒子検出器の作用に加えて、
各光検出器からの出力信号に基づいて、粒子の空間分布
が求められることになる。
In this case, in the accelerating electrode, an electric field is applied in a direction that coincides with the direction of the magnetic field, and the electrons are accelerated while being wrapped around the lines of magnetic force, so there is no reduction in sensitivity due to the magnetic field. Moreover, in the particle detector of the second invention, in addition to the action of the particle detector of the first invention,
Based on the output signal from each photodetector, the spatial distribution of particles will be determined.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明による粒子検出器の構成例を示す図で
ある。本実施例の粒子検出器は図示のように、2次電子
放出板1と、加速電極2と、加速?tS源3と、蛍光板
4と、集光レンズ5と、光ケーブル6と、光検出器7と
から構成している。
FIG. 1 is a diagram showing an example of the configuration of a particle detector according to the present invention. As shown in the figure, the particle detector of this embodiment includes a secondary electron emission plate 1, an accelerating electrode 2, and an accelerating electrode. It consists of a tS source 3, a fluorescent screen 4, a condenser lens 5, an optical cable 6, and a photodetector 7.

ここで、2次電子放出板1は、例えばBeCu等からな
り、入射口0を通して入射粒子が照射されると、2次電
子を放出するものである。また、加速電極2は、磁場B
の方向と一致する方向に電場を印加可能な構成を有し、
2次電子放出板1から放出される電子を加速するもので
ある。さらに、加速7に源3は、2次電子放出板1と加
速電l!1II2との間に、図示極性で電圧を印加する
ものである。
Here, the secondary electron emitting plate 1 is made of, for example, BeCu or the like, and emits secondary electrons when incident particles are irradiated through the entrance 0. In addition, the accelerating electrode 2 has a magnetic field B
It has a configuration that can apply an electric field in a direction that coincides with the direction of
It accelerates the electrons emitted from the secondary electron emission plate 1. Further, in the acceleration 7, the source 3 is connected to the secondary electron emission plate 1 and the accelerating electric current l! 1II2, a voltage is applied with the polarity shown.

一方、蛍光板4は、加速電極2で加速された電子を光に
変換するものである。また、集光レンズ5は、蛍光板4
からの光を集光するものである。さらに、光ケーブル6
は、集光レンズ5で集光された光を伝送するものである
。さらにまた、光検出器7は、例えばオトマルあるいは
半導体検出器等からなり、磁場のない場所に設置され、
光ケーブル6を通して伝送される光を検出するものであ
る。
On the other hand, the fluorescent screen 4 converts electrons accelerated by the accelerating electrode 2 into light. Further, the condenser lens 5 is connected to the fluorescent screen 4.
It focuses the light from the Furthermore, optical cable 6
is for transmitting the light focused by the condenser lens 5. Furthermore, the photodetector 7 is made of, for example, an otomaru or semiconductor detector, and is installed in a place without a magnetic field.
It detects light transmitted through the optical cable 6.

次に、以上のように構成した粒子検出器の作用について
説明する。
Next, the operation of the particle detector configured as above will be explained.

第1図において、中性粒子2荷電粒子等の入射粒子は、
入射口0を通して2次電子放出板1に照射され、これに
より2次電子が発生する。この2次電子は、磁力線に巻
き付いた形で磁場Bに沿った方向に放出される(2次電
子のエネルギーは高々100eVであり、電子の広がり
はラーマ−半径程度であるので、磁場BがIKガウス以
上なら十分1■以下となる)。一方、2次電子放出板1
と加速電極2との間に、加速電源3から電圧を印加する
ことにより、磁力線方向に2次電子が加速され、蛍光板
4に照射されて光が発生し、この光が集光レンズ5で集
光される。そして、この光は先ケーブル6を通して、磁
場のない場所に設置された光検出器7に伝送され、光検
出器7で検出される。この場合、加速電極2においては
、磁場Bの方向と一致する方向に電場が印加されること
により、磁力線に巻き付いた形で電子が加速されるため
、磁場による感度の低下が生じることはない。
In Figure 1, incident particles such as neutral particles 2 charged particles are
The secondary electron emission plate 1 is irradiated through the entrance aperture 0, thereby generating secondary electrons. These secondary electrons are emitted in the direction along the magnetic field B while being wrapped around the magnetic field lines (the energy of the secondary electrons is at most 100 eV, and the spread of the electrons is about the Larmor radius, so the magnetic field B is If it is more than Gauss, it will be less than 1■). On the other hand, secondary electron emission plate 1
By applying a voltage from the accelerating power source 3 between the accelerating electrode 2 and the accelerating electrode 2, secondary electrons are accelerated in the direction of the magnetic field lines, and the fluorescent screen 4 is irradiated to generate light, which is focused by the condensing lens 5. be illuminated. This light is then transmitted through the tip cable 6 to a photodetector 7 installed in a place where there is no magnetic field, and detected by the photodetector 7. In this case, in the accelerating electrode 2, an electric field is applied in a direction that coincides with the direction of the magnetic field B, so that electrons are accelerated while being wrapped around the magnetic lines of force, so there is no reduction in sensitivity due to the magnetic field.

なお、本粒子検出器の場合、入射粒子の入射方向と磁場
Bの方向とが、直角もしくは異なることが条件となる。
In the case of this particle detector, the condition is that the direction of incidence of the incident particle and the direction of the magnetic field B are at right angles or different.

これは、現在の中性粒子分析器は鉄心を利用した電磁石
を使用しているが、核融合反応領域のプラズマを計測す
る場合、数M e V程度の粒子を計測する必要があり
、この場合超電導線の空芯コイルを用いる必要がある。
This is because current neutral particle analyzers use electromagnets with iron cores, but when measuring plasma in the fusion reaction region, it is necessary to measure particles of several M e V. It is necessary to use an air-core coil of superconducting wire.

そして、結果として磁場の分布がシャープにとれなくな
り、磁場中に粒子検出器を配置する必要が生じる。この
時、磁場と粒子の方向は直角となる。
As a result, the magnetic field cannot have a sharp distribution, and a particle detector must be placed in the magnetic field. At this time, the magnetic field and the direction of the particles are at right angles.

上述したように、本実施例の粒子検出器は、入射口0を
通して入射粒子が照射されると2次電子を放出する2次
電子放出板1と、磁場Bの方向と一致する方向に電場を
印加可能な構成を有し、2次電子放出板1から放出され
る電子を加速する加速電極2と、2次電子放出板1と加
速電極2との間に電圧を印加する加速電源3と、加速電
極2て加速された電子を光に変換する蛍光板4と、蛍光
板4からの光を集光する集光レンズ5と、集光レンズら
で集光された光を伝送する光ケーブル6と、磁場のない
場所に設置され、光ケーブル6を通して伝送される光を
検出する光検出器7とから構成したものである。
As described above, the particle detector of this embodiment includes a secondary electron emission plate 1 that emits secondary electrons when an incident particle is irradiated through the entrance port 0, and an electric field that applies an electric field in a direction that coincides with the direction of the magnetic field B. an accelerating electrode 2 that has a configuration that allows voltage to be applied and accelerates electrons emitted from the secondary electron emission plate 1; an acceleration power source 3 that applies a voltage between the secondary electron emission plate 1 and the acceleration electrode 2; A fluorescent screen 4 that converts electrons accelerated by the accelerating electrode 2 into light, a condensing lens 5 that condenses the light from the fluorescent screen 4, an optical cable 6 that transmits the light condensed by the condensing lenses, and a magnetic field. The optical detector 7 is installed in a place where there is no traffic light, and a photodetector 7 detects the light transmitted through the optical cable 6.

従って、磁場Bの方向と電場の方向とを一致させている
ため、磁力線に巻き付いた形で電子を加速することがで
き、磁場Bによる感度の低下が生じることはない。よっ
て、IKガウス以上の強磁場中においても粒子検出器が
確実に動作し、入射粒子を極めて感度良く検出すること
が可能となる。
Therefore, since the direction of the magnetic field B and the direction of the electric field are made to match, the electrons can be accelerated while being wrapped around the lines of magnetic force, and sensitivity does not decrease due to the magnetic field B. Therefore, the particle detector operates reliably even in a strong magnetic field of IK Gauss or higher, making it possible to detect incident particles with extremely high sensitivity.

また、集光レンズ5で集光した光を、光ケーブル6を通
して磁場のない場所に設置された光検出器7に伝送して
いるため、耐ノイズ自動列車制御装置を向上させつつ粒
子検出を行なうことが可能となる。
In addition, since the light focused by the condenser lens 5 is transmitted through the optical cable 6 to the photodetector 7 installed in a place without a magnetic field, particle detection can be performed while improving the anti-noise automatic train control device. becomes possible.

次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第2図は、本発明による粒子検出器の他の構成例を示す
図である。本実施例の粒子検出器は図示のように、2次
71iT放出板11と、加速電極12と、加速電源13
と、N個の蛍光板14と、遮光板15と、先ケーブル1
6と、N個の光検出器17と、データ処理装置18とか
ら(14成し、粒子検出器をマルチチャンネル化したも
のである。ここで、Nは2以上の整数であり、チャンネ
ル数に相当する。
FIG. 2 is a diagram showing another example of the structure of the particle detector according to the present invention. As shown in the figure, the particle detector of this embodiment includes a secondary 71iT emission plate 11, an accelerating electrode 12, and an accelerating power source 13.
, N fluorescent screens 14 , light shielding plate 15 , and end cable 1
6, N photodetectors 17, and a data processing device 18 (14), which is a multi-channel particle detector. Here, N is an integer of 2 or more, and the number of channels is Equivalent to.

ここで、2次電子放出板11は、N個の入射口10を通
して入射粒子が照射されると、2次電子を放出するもの
である。また、加速電極12は、磁場の方向と一致する
方向に電場を印加可能な構成を有し、2次電子放出板1
1から放出される電子を加速するものである。さらに、
加速電源13は、2次電子放出板11と加速電融12と
の間に、図示極性で76圧を印加するものである。一方
、蛍光板14は、加速電極12で加速された各電子をそ
れぞれ個別に光に変換するものである。また、遮光板1
5は、各蛍光板14からの個々の光が混じり合イ)ない
ように遮光するものである。さらに、光ケーブル16は
、バンドルタイプの光ケーブル(多数の光ケーブルを束
ねて図示の1〜Nのように四角い部分にまとめて入力側
とし、出力側は各チャンネル毎に1本とした光ケーブル
)であり、蛍光板14でそれぞれ変換された光を伝送す
るものである。また、光検出器17は、磁場のない場所
にそれぞれ設置され、光ケーブル16を通して伝送され
る光をそれぞれ個別に検出するものである。さらに、デ
ータ処理装置18は、各光検出器17からの出力信号を
人力とし、これらに基づいて粒子の空間分布を求め、か
つそれを表示するものである。
Here, the secondary electron emission plate 11 emits secondary electrons when incident particles are irradiated through the N entrance ports 10. Further, the accelerating electrode 12 has a configuration capable of applying an electric field in a direction that coincides with the direction of the magnetic field, and
It accelerates the electrons emitted from 1. moreover,
The accelerating power source 13 applies 76 voltage between the secondary electron emission plate 11 and the accelerating electrolyte 12 with the illustrated polarity. On the other hand, the fluorescent screen 14 individually converts each electron accelerated by the accelerating electrode 12 into light. In addition, light shielding plate 1
Numeral 5 is for blocking light so that the individual lights from each fluorescent screen 14 are not mixed together. Furthermore, the optical cable 16 is a bundle type optical cable (a large number of optical cables are bundled into square parts as shown in 1 to N in the figure for the input side, and the output side is one optical cable for each channel), The light converted by the fluorescent screen 14 is transmitted. Further, the photodetectors 17 are installed in places where there is no magnetic field, and individually detect the light transmitted through the optical cable 16. Furthermore, the data processing device 18 uses the output signals from each photodetector 17 as human power, determines the spatial distribution of particles based on these signals, and displays it.

次に、以上のように構成した粒子検出器の作用について
説明する。
Next, the operation of the particle detector configured as above will be explained.

第1図において、中性粒子、荷電粒子等の入射粒子は、
N個の入射口10を通して2次電子放出板11に照射さ
れ、これにより2次電子が発生する。この2次電子は、
磁力線に巻き付いた形で磁場Bに沿った方向に放出され
る。一方、2次電子放出板11と加速電極2との間に、
加速電源3から電圧を印加することにより、磁力線方向
に各2次電子が共通に加速され、蛍光板14に照射され
てそれぞれ光が発生する。そして、遮光板15により光
が混じり合わないようにして、各蛍光板14からの個々
の光が先ケーブル16を通して、磁場のない場所に設置
された各光検出器17にそれぞれ伝送され、光検出器1
7で検出される。さらに、各光検出器17からの個々の
出力信号はデータ処理装置18に入力され、これらに基
づいて粒子の空間分布が求められ、それがCRT装置等
に表示される。この場合、加速電極12においては、磁
場Bの方向と一致する方向に電場が印加されることによ
り、磁力線に巻き付いた形で電子が加速されるため、前
述同様磁場による感度の低下が生じることはない。
In Figure 1, incident particles such as neutral particles and charged particles are
The secondary electron emission plate 11 is irradiated through the N incident ports 10, thereby generating secondary electrons. This secondary electron is
It is emitted in the direction along the magnetic field B in the form of being wrapped around magnetic lines of force. On the other hand, between the secondary electron emission plate 11 and the accelerating electrode 2,
By applying a voltage from the accelerating power source 3, the secondary electrons are commonly accelerated in the direction of the lines of magnetic force, and are irradiated onto the fluorescent screen 14 to generate light. Then, the light from each fluorescent screen 14 is transmitted through the end cable 16 to each photodetector 17 installed in a place without a magnetic field, with the light shielding plate 15 preventing the lights from mixing. 1
Detected at 7. Furthermore, the individual output signals from each photodetector 17 are input to a data processing device 18, based on which the spatial distribution of particles is determined, and the result is displayed on a CRT device or the like. In this case, in the accelerating electrode 12, an electric field is applied in a direction that matches the direction of the magnetic field B, and the electrons are accelerated while being wrapped around the magnetic lines of force, so the decrease in sensitivity due to the magnetic field will not occur as described above. do not have.

本粒子検出器は、外部磁場を2次電子の収束用に利用し
ており、電子のボケが1市以下と小さくなるため、空間
分解能をとることが容易であることから実現可能である
。すなわち、電子のボケが小さいと、各チャンネルを小
さくしてもチャンネル間のクロストークを小さくするこ
とかでき、多チャンネル化による空間分解能の向上か実
現できる。よって、本実施例の粒子検出器では、前述し
た作用効果に加えて、粒子の空間分布を把握することが
可能となる。
This particle detector uses an external magnetic field to focus secondary electrons, and since the blur of electrons is reduced to less than 1 city, it is possible to achieve spatial resolution easily. That is, if the electron blur is small, crosstalk between channels can be reduced even if each channel is made smaller, and spatial resolution can be improved by increasing the number of channels. Therefore, with the particle detector of this embodiment, in addition to the above-mentioned effects, it is possible to grasp the spatial distribution of particles.

尚、上記実施例においては、蛍光板からの光を磁場のな
い場所に設置された光検出器に伝送するために、集光レ
ンズ、光ケーブルを用いたが、伝送の必要がない場合に
は、蛍光板からの光を光検出器で直接検出する構成とす
るようにしてもよい。
In the above embodiment, a condenser lens and an optical cable were used to transmit the light from the fluorescent screen to a photodetector installed in a place without a magnetic field, but if transmission is not necessary, the fluorescent screen A configuration may also be adopted in which the light from the source is directly detected by a photodetector.

[発明の効果] 以上説明したように本発明によれば、強磁場中において
も確実に動作し入射粒子を極めて感度良く検出すること
が可能な信頼性の高い粒子検出器が提供できる。
[Effects of the Invention] As described above, according to the present invention, a highly reliable particle detector that operates reliably even in a strong magnetic field and can detect incident particles with extremely high sensitivity can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による粒子検出器の一実施例を示す構成
図、第2図は本発明による粒子検出器の他の実施例を示
す構成図である。 0.10・・・入射口、1,11・・・2次電子放出板
、2.12・・・加速電極、3,13・・・加速電源、
4゜14・・・蛍光板、5・・・集光レンズ、6,16
・・・光ケーブル、7.17・・・光検出器、15・・
・遮光板、18・データ処理装置。
FIG. 1 is a block diagram showing one embodiment of a particle detector according to the present invention, and FIG. 2 is a block diagram showing another embodiment of the particle detector according to the present invention. 0.10...Incidence aperture, 1,11...Secondary electron emission plate, 2.12...Acceleration electrode, 3,13...Acceleration power source,
4゜14... Fluorescent screen, 5... Condensing lens, 6,16
...Optical cable, 7.17...Photodetector, 15...
- Light shielding plate, 18 - Data processing device.

Claims (2)

【特許請求の範囲】[Claims] (1)中性粒子、荷電粒子等の入射粒子を、当該入射粒
子の方向と異なる方向の磁場中で検出する粒子検出器に
おいて、 1個の入射口を通して前記入射粒子が照射されると2次
電子を放出する2次電子放出板と、前記磁場の方向と一
致する方向に電場を印加可能な構成を有し、前記2次電
子放出板から放出される電子を加速する加速電極と、 前記加速電極で加速された電子を光に変換する蛍光板と
、 前記蛍光板からの光を検出する光検出器と、を備えてな
ることを特徴とする粒子検出器。
(1) In a particle detector that detects incident particles, such as neutral particles and charged particles, in a magnetic field in a direction different from the direction of the incident particles, when the incident particles are irradiated through one entrance, secondary particles are generated. a secondary electron emission plate that emits electrons; an accelerating electrode that has a configuration capable of applying an electric field in a direction that matches the direction of the magnetic field and accelerates the electrons emitted from the secondary electron emission plate; A particle detector comprising: a fluorescent screen that converts electrons accelerated by an electrode into light; and a photodetector that detects light from the fluorescent screen.
(2)中性粒子、荷電粒子等の入射粒子を、当該入射粒
子の方向と異なる方向の磁場中で検出する粒子検出器に
おいて、 N個(Nは2以上の整数)の入射口を通して前記入射粒
子が照射されると2次電子を放出する2次電子放出板と
、 前記磁場の方向と一致する方向に電場を印加可能な構成
を有し、前記2次電子放出板から放出される各電子を共
通に加速する加速電極と、 前記加速電極で加速された各電子をそれぞれ個別に光に
変換するN個の蛍光板と、 前記各蛍光板からの光をそれぞれ個別に検出するN個の
光検出器と、 前記各光検出器からの出力信号を入力とし、これらに基
づいて前記粒子の空間分布を求めるデータ処理手段と、 を備えてなることを特徴とする粒子検出器。
(2) In a particle detector that detects incident particles such as neutral particles and charged particles in a magnetic field in a direction different from the direction of the incident particles, the incident particles are detected through N (N is an integer of 2 or more) entrance ports. A secondary electron emitting plate that emits secondary electrons when particles are irradiated; and a configuration capable of applying an electric field in a direction that matches the direction of the magnetic field, each electron emitted from the secondary electron emitting plate. an accelerating electrode that commonly accelerates the electrons, N fluorescent screens that individually convert each electron accelerated by the accelerating electrode into light, and N photodetectors that individually detect the light from each of the fluorescent screens. A particle detector comprising: a data processing means that receives output signals from each of the photodetectors and calculates the spatial distribution of the particles based on these signals.
JP12530589A 1989-05-18 1989-05-18 Particle detector Pending JPH02304390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12530589A JPH02304390A (en) 1989-05-18 1989-05-18 Particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12530589A JPH02304390A (en) 1989-05-18 1989-05-18 Particle detector

Publications (1)

Publication Number Publication Date
JPH02304390A true JPH02304390A (en) 1990-12-18

Family

ID=14906804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12530589A Pending JPH02304390A (en) 1989-05-18 1989-05-18 Particle detector

Country Status (1)

Country Link
JP (1) JPH02304390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199679A (en) * 2016-08-24 2016-12-07 中国工程物理研究院核物理与化学研究所 A kind of neutron detector collecting principle based on fission electronics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199679A (en) * 2016-08-24 2016-12-07 中国工程物理研究院核物理与化学研究所 A kind of neutron detector collecting principle based on fission electronics
CN106199679B (en) * 2016-08-24 2022-10-28 中国工程物理研究院核物理与化学研究所 Neutron detector based on fission-electron collection principle

Similar Documents

Publication Publication Date Title
Forck Lecture notes on beam instrumentation and diagnostics
US5990483A (en) Particle detection and particle detector devices
US3626184A (en) Detector system for a scanning electron microscope
US4814615A (en) Method and apparatus for detecting defect in circuit pattern of a mask for X-ray exposure
WO2010024105A1 (en) Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus
EP0488067A2 (en) Ion-scattering spectrometer
Forck Beam instrumentation and diagnostics
JPH02304390A (en) Particle detector
EP0511823B1 (en) Femtosecond streak camera
JPH03173054A (en) Particle radiation device
USH755H (en) Optical remote diagnostics of atmospheric propagating beams of ionizing radiation
EP0567139A1 (en) Electron beam diffraction measuring apparatus
JPH0712949A (en) Particle locus detector
JP2647102B2 (en) Particle beam measurement device
JPH01217288A (en) Spin degree-of-polarization detector
Haouat et al. Experimental study of the ELSA electron‐beam halo
JPH04233149A (en) Analyzing device for surface of sample
JPH0554997A (en) Tandem accelerator
JPS6335481Y2 (en)
JPH0573587U (en) Synchrotron radiation measurement system
JPH0636730A (en) Charged beam device
JP4774140B2 (en) Method and apparatus for analyzing energy of high-speed neutral particles incident on high-frequency power application electrode
JPH0383000A (en) X-ray microscope
JP2001148231A (en) Multiple charged particle detector, and scanning type transmission electron microscope
JPH0145176B2 (en)