JP4774140B2 - Method and apparatus for analyzing energy of high-speed neutral particles incident on high-frequency power application electrode - Google Patents

Method and apparatus for analyzing energy of high-speed neutral particles incident on high-frequency power application electrode Download PDF

Info

Publication number
JP4774140B2
JP4774140B2 JP2000015581A JP2000015581A JP4774140B2 JP 4774140 B2 JP4774140 B2 JP 4774140B2 JP 2000015581 A JP2000015581 A JP 2000015581A JP 2000015581 A JP2000015581 A JP 2000015581A JP 4774140 B2 JP4774140 B2 JP 4774140B2
Authority
JP
Japan
Prior art keywords
energy
electrode
neutral particles
speed neutral
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000015581A
Other languages
Japanese (ja)
Other versions
JP2001210270A (en
Inventor
直樹 水谷
俊雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000015581A priority Critical patent/JP4774140B2/en
Publication of JP2001210270A publication Critical patent/JP2001210270A/en
Application granted granted Critical
Publication of JP4774140B2 publication Critical patent/JP4774140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、エッチングプロセス装置等の高周波印加電極に入射する高速中性粒子のエネルギーを分析する方法及び装置に関するものである。
【0002】
【従来の技術】
従来、マイクロ波や高周波放電によってプラズマを形成するとともに真空チャンバー内に高周波印加電極を設け、高周波印加電極上に基板を載置し、基板上の物質に加工を施すエッチングプロセス装置において、プラズマから基板に入射する負イオンのエネルギー及び質量を分析する方法及び装置については本出願人は先に提案してきた(特開平10−199473号公報参照)。すなわち、高周波印加電極に入射する負の荷電粒子を、高周波印加電極に設けた開口を通して引出し、引出した負の荷電粒子の流入方向に対して垂直方向に閉じた磁気回路を用いて垂直磁場を掛けることにより負の荷電粒子のうちの電子を除去し、負イオンのみを取出して分析するように構成されている。
【0003】
また、この種のエッチングプロセス装置において、プラズマから基板に入射する正負イオン、中性粒子のエネルギー及び質量を分析する方法及び装置についても本出願人は先に提案してきた(特開平11−250854号公報参照)。すなわち、高周波印加電極に入射するイオンを、高周波印加電極の電位を基準電位とする偏向型イオンエネルギー分析器及び質量分析器へ通し、又中性粒子の場合には高周波印加電極に入射する中性粒子をイオン化した後、偏向型イオンエネルギー分析器及び質量分析器へ通して分析するように構成されている。
【0004】
中性粒子の測定に関しては、特開平11−250854号公報に開示している先に提案の方法により、質量分析器で中性粒子種を特定、分離できるが、高速(数100eV)の中性粒子についてはそれのイオン化効率が相当に低く、そのため質量分析器に通すと、信号がかなり小さくなり、検出できなくなる恐れがあった。すなわち、高速中性粒子のフラックス量は圧力に依存するが、通常のエッチング条件(圧力20mTorr、プラズマ密度1×1011cm-3)におけるイオン電流密度とほぼ同程度の、〜1016cm2s-1程度である。0.05cmのオリフィス径を通過するフラックス量は更に三桁低くなり、電子によるイオン化効率が低いので、最終的に検出される電流値はnA(10-9A)の領域になるため、接地電位を基準とする通常の測定では高周波ノイズの中に埋もれて検出できない。
【0005】
また、従来のエネルギー分析器では検出部の基準電位が、粒子のエネルギーに依存せず、固定されている。検出部の量子効率は、エネルギーに依存する。従って、検出部の量子効率を常に一定にして測定しないと、エネルギーによって感度が異なる結果になる。
【0006】
さらに、特開平11−250854号公報に開示しているように偏向型エネルギー分析器及び質量分析器を用いる場合にはそれらの入口までイオン化された中性粒子を導くためにレンズ系の制御等が必要であり、構造上の観点から複雑となる。
【0007】
【発明が解決しようとする課題】
本発明は、上記のような従来のものの持つ問題点を解決するもので、高周波ノイズがなく、エネルギー依存性のない基板入射高速中性粒子分析方法及び分析装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明の第1の発明によれば、マイクロ波や高周波放電によってプラズマを形成するとともに真空チャンバー内に高周波基板電極を設け、前記高周波基板電極上に基板を載置して前記基板上の物質に加工を施すプロセス装置において、
前記高周波基板電極に設けたオリフィスを通して入射する粒子から荷電粒子を偏向板により除去し、
荷電粒子を除去した粒子をイオン化室へ通して電子衝撃により高速中性粒子のみをイオン化し、
イオン化した高速中性粒子のエネルギーを、制御可能な電源に接続したエネルギー分析部で分析し、
前記エネルギー分析部で分析したイオンのうち分析電位より大きなエネルギーをもつ、イオンのみを、制御可能な別の電源に接続した第1電極と二次電子増倍管から成るイオン検出部に導き、前記エネルギー分析部の阻止電位型エネルギー分析用電極と前記イオン検出部の前記第1電極における電位差が常に一定になるように、前記エネルギー分析部に接続した前記制御可能な電源及び前記イオン検出部に接続した前記制御可能な別の電源を、外部の分析制御手段により制御することを特徴としている。
【0009】
ましくは検出部で検出された検出信号は光ファイバー又は赤外線伝送手段を介して外部の分析制御手段へ伝送され、エネルギー分布が算出され得る。
また、本発明の方法においては検出部には二次電子増倍管が用いられる。
【0010】
また、本発明の第2の発明によれば、マイクロ波や高周波放電によってプラズマを形成するとともに真空チャンバー内に高周波基板電極を設け、前記高周波基板電極上に基板を載置して前記基板上の物質に加工を施すプロセス装置において、
前記高周波基板電極に設けたオリフィスを通して入射する粒子から荷電粒子を除去する偏向手段と、
高速中性粒子のみをイオン化するイオン化手段と、
制御可能な電源に接続され、イオン化した高速中性粒子のエネルギーを分析する阻止電位型エネルギー分析部と、
制御可能な別の電源に接続した第1電極と二次電子増倍管から成り、分析したイオンを検出するイオン検出部と、
前記エネルギー分析部で分析したイオンのうち分析電位より大きなエネルギーをもつ、イオンのみを、前記制御可能な別の電源に接続した前記第1電極と二次電子増倍管から成る前記イオン検出部に導き、前記阻止電位型エネルギー分析部の阻止電位型エネルギー分析用電極と前記イオン検出部の前記第1電極における電位差が常に一定になるように、前記阻止電位型エネルギー分析部に接続した前記制御可能な電源及び前記イオン検出部に接続した前記制御可能な別の電源を制御する制御信号を発生する外部の分析制御手段と
を有すること特徴としている。
【0011】
らに、外部の分析制御手段は光ファイバーから成る伝送手段又は赤外線伝送手段及び周波数−電圧変換器を介してイオン検出部から検出信号を受けるように構成され得る。
【0012】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について説明する。
図1には、本発明の実施の形態による高速中性粒子エネルギー分析装置を概略的に示している。図面において1は図示していないプラズマ室に配置され、高周波電力が印加されている基板電極で、プラズマ中で発生した粒子を通すオリフィス1aを備えている。このオリフィス1aと同軸に二枚の偏向電極2が配置され、二枚の偏向電極2のうちオリフィス1aに隣接した方の偏向電極2aは図示実施の形態では500Vと−500Vの電源3、4に接続されている。偏向電極2は基板電極1におけるオリフィス1aを通過して入ってきた荷電粒子を取り除く働きをする。
【0013】
二枚の偏向電極2の後段には、高速中性粒子のみを電子衝撃でイオン化するイオン化室5が配置され、イオン化室5は図示実施の形態では8Vの電源6に接続されている。またこのイオン化室5はフィラメント7を備え、フィラメント7は電源8に接続されている。
【0014】
イオン化室5の後段には、イオン化された高速中性粒子のエネルギーを分析する阻止電位型エネルギー分析用電極9が設けられ、この阻止電位型エネルギー分析用電極9は後で説明するように制御可能な電源10に接続されている。阻止電位型エネルギー分析用電極9に隣接してイオン検出部11の第1電極12が配置され、この第1電極12は制御可能な電源13に接続されている。イオン検出部11の第1電極12の制御可能な電源13は、阻止電位型エネルギー分析用電極9とイオン検出部11の第1電極12との間の電位差を制御するために設けられている。またイオン検出部11は二次電子増倍管14を備え、この二次電子増倍管14はカバー15で覆われ、そして電流検出手段16に接続されている。
【0015】
電流検出手段16で得られた検出信号は周波数−電圧変換器17及び光ファイバー18を介して例えば適当なコンピューターシステムから成り得る外部の分析制御手段19に伝送され、検出された電流値をエネルギーで微分することによりエネルギー分布が得られる。また、外部の分析制御手段19は、阻止電位型エネルギー分析用電極9の制御可能な電源10及びイオン検出部11の第1電極12の制御可能な電源13に対する制御信号を発生し、この制御信号は、二次電子増倍管14に入射するイオンのエネルギーを一定にするため、阻止電位型エネルギー分析用電極9とイオン検出部11の第1電極12における電位差が常に一定となるように両電源を制御する。
なお、本実施の形態においては、光ファイバー18に代えて、適当な赤外線伝送手段を使用することも可能である。
【0016】
図2には、分析時に各電極に印加される電位を示している。プラズマシース中で荷電交換により発生した高速中性粒子は、数百eVのエネルギーを持ち、イオンや電子と共に基板電極1のオリフィス1aを通過して分析装置内に入射する。高速中性粒子と共に入射してきたイオンと電子は偏向電極2において除かれ、高速中性粒子のみがイオン化室5に入射し、電子衝撃によりイオン化される。この時、イオン化された高速中性粒子のエネルギーは、初期エネルギー+イオン化室5の電位(図示実施の形態では8V)となって、阻止電位型エネルギー分析用電極9に入射する。阻止電位型エネルギー分析用電極9では、分析電位よりも大きなエネルギーを持つイオンのみが通過できる。通過したイオンは二次電子増倍管14で増幅され、そして電流検出手段16で検出される。こうして検出された電流値は、周波数−電圧変換器17及び光ファイバー18を介して外部の分析制御手段19に伝送され、この電流値をエネルギーで微分することによりエネルギー分布を得るように処理される。
【0017】
二次電子増倍管14に入射するイオンのエネルギーが変わると、二次電子増倍管14の量子効率が変わるので、一定のエネルギーで入射させることが必要になる。そのため、上記で説明したように、外部の分析制御手段19からの制御信号により、阻止電位型エネルギー分析用電極9とイオン検出部11の第1電極12における電位差が常に一定となるようにこれらの電源を制御している。
【0018】
図3及び図4には、図1に示す分析装置を用いて測定した高速中性子のエネルギー分布を示し、エッチング条件はAr25sccm、O23.5sccmの混合ガス、圧力28mTorr、約1×1010cm-3のプラズマ密度である。
図3の測定例は高周波バイアス電力が140Wである場合であり、また図4の測定例は高周波バイアス電力が310Wの場合である。
【0019】
【発明の効果】
以上説明してきたように、本発明の分析方法によれば、高周波基板電極に設けたオリフィスを通して入射する粒子から荷電粒子を偏向板により除去し、高速中性粒子のみをイオン化して、イオン化した高速中性粒子のエネルギーをエネルギー分析部で分析し、分析したイオンのエネルギーを常に一定にして検出部に入射するようにエネルギー分析部の電位と検出部の電位を制御するように構成しているので、検出部のエネルギー依存性がなく、高速中性粒子エネルギー分析が可能になる。
また、本発明の分析方法において、検出部で検出された検出信号を光ファイバー又は赤外線伝送手段を介して外部の分析制御手段へ伝送し、エネルギー分布を算出するように構成することにより、高周波ノイズの影響をなくすることができ、それにより高速中性粒子のエネルギー分析を正確かつ容易に実施することができるようになる。
【0020】
本発明の分析装置によれば、高周波基板電極に設けたオリフィスを通して入射する粒子から荷電粒子を除去する偏向手段と、高速中性粒子のみをイオン化するイオン化手段と、イオン化した高速中性粒子のエネルギーを分析する阻止電位型エネルギー分析部と、分析したイオンの検出部と、阻止電位型エネルギー分析部とイオンの検出部との電位差を制御して阻止電位型エネルギー分析部で分析したイオンのエネルギーを常に一定にして検出部に入射させる電位差制御手段とを備えて構成しているので、検出部のエネルギー依存性がなく、高速中性粒子エネルギー分析が可能になるだけでなく、従来の装置構成に比べて、レンズ系やその制御系が不要であり、分析装置を比較的簡単に構成することができるようになる。
また、測定器を高周波電力が印加されている基板電極の下部に配置するため、接地電位基準の場合、測定器との間に高周波電場が存在し、ノイズ源になるが、光ファイバーから成る伝送手段又は赤外線伝送手段を介して接続される外部の分析制御手段を設け、この分析制御手段が光ファイバーから成る伝送手段又は赤外線伝送手段及び周波数−電圧変換器を介してイオン検出部から検出信号を受けるように構成した場合には、エネルギー分析器の電源及び信号ラインを高周波電源に重畳し、外部との信号の授受は、光ファイバー又は赤外線伝送手段を通して行うことにより、電極電位を基準電位とすることができ、電極とエネルギー分析器との間に高周波電場が発生せず、ノイズ源をつくらずに測定することができる。
【図面の簡単な説明】
【図1】 本発明の一つの実施の形態を示す概略線図。
【図2】 図1に示す分析装置の各部の電位を示す図。
【図3】 図1の分析装置を用いて測定した高速中性粒子のエネルギー分布を示すグラフ。
【図4】 図1の分析装置を用いて図3の場合と異なる高周波バイアス電力を印加した時の高速中性粒子のエネルギー分布を示すグラフ。
【符号の説明】
1 :基板電極
1a:オリフィス
2 :偏向電極
5 :イオン化室
7 :フィラメント
9 :阻止電位型エネルギー分析用電極
10:制御可能な電源
11:イオン検出部
12:イオン検出部11の第1電極
13:第1電極12の制御可能な電源
14:二次電子増倍管
16:電流検出手段
17:周波数−電圧変換器
18:光ファイバー
19:外部の分析制御手段
[0001]
[Technical field to which the invention belongs]
The present invention relates to a method and apparatus for analyzing the energy of high-speed neutral particles incident on a high-frequency application electrode such as an etching process apparatus.
[0002]
[Prior art]
Conventionally, in an etching process apparatus in which plasma is formed by microwaves or high frequency discharge, a high frequency application electrode is provided in a vacuum chamber, a substrate is placed on the high frequency application electrode, and a material on the substrate is processed, the plasma to the substrate The present applicant has previously proposed a method and apparatus for analyzing the energy and mass of negative ions incident on the light source (see Japanese Patent Laid-Open No. 10-199473). That is, negative charged particles incident on the high frequency application electrode are extracted through an opening provided in the high frequency application electrode, and a vertical magnetic field is applied using a magnetic circuit closed in a direction perpendicular to the inflow direction of the extracted negative charged particles. Thus, electrons are removed from the negatively charged particles, and only negative ions are extracted and analyzed.
[0003]
Further, in this type of etching process apparatus, the present applicant has also proposed a method and apparatus for analyzing the energy and mass of positive and negative ions and neutral particles incident on the substrate from plasma (Japanese Patent Laid-Open No. 11-250854). See the official gazette). That is, the ions incident on the high-frequency application electrode are passed through a deflection ion energy analyzer and a mass analyzer with the potential of the high-frequency application electrode as a reference potential. After the particles have been ionized, they are configured to be analyzed through a deflected ion energy analyzer and a mass analyzer.
[0004]
Regarding the measurement of neutral particles, neutral particle species can be identified and separated by a mass analyzer by the previously proposed method disclosed in JP-A-11-250854, but neutral (several hundred eV) is neutral. The ionization efficiency of the particles was considerably low, so when passed through a mass analyzer, the signal was quite small and could not be detected. That is, the flux amount of high-speed neutral particles depends on the pressure, but it is about 10 16 cm 2 s, which is almost the same as the ion current density under normal etching conditions (pressure 20 mTorr, plasma density 1 × 10 11 cm -3 ). About -1 . The amount of flux that passes through the orifice diameter of 0.05 cm is further reduced by three orders of magnitude, and the ionization efficiency by electrons is low, so the final detected current value is in the region of nA (10 -9 A). In normal measurement as a reference, it cannot be detected because it is buried in high-frequency noise.
[0005]
Further, in the conventional energy analyzer, the reference potential of the detection unit is fixed independently of the particle energy. The quantum efficiency of the detector depends on energy. Therefore, unless the quantum efficiency of the detection unit is always kept constant, the sensitivity varies depending on the energy.
[0006]
Furthermore, when using a deflection type energy analyzer and a mass analyzer as disclosed in Japanese Patent Application Laid-Open No. 11-250854, the lens system is controlled to guide ionized neutral particles to their inlets. Necessary and complicated from a structural point of view.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-described problems of the prior art, and to provide a substrate incident high-speed neutral particle analysis method and analysis apparatus that do not have high-frequency noise and have no energy dependency.
[0008]
[Means for Solving the Problems]
To achieve the above object, according to the first aspect of the present invention, a high-frequency substrate electrode provided in a vacuum chamber to form a plasma by microwaves or high frequency discharge, placing the substrate on the high frequency substrate electrode in the process apparatus for performing processing on the material on the substrate and location,
The charged particles are removed from the particles incident through the orifice provided in the high-frequency substrate electrode by a deflecting plate,
The charged particles are removed from the ionization chamber, and only high-speed neutral particles are ionized by electron impact.
Analyzing the energy of ionized high-speed neutral particles with an energy analyzer connected to a controllable power source,
Wherein with greater energy than analyzing the potential of the ions was analyzed by energy analysis portion guides only ions, the first electrode and the ion detector comprising a secondary electron multiplier tube connected to a controllable separate power source, the as the potential difference in the first electrode of the the blocking potential energy analysis electrodes of the energy analyzer ion detector is always constant, connected to said controllable power source and the ion detector is connected to the energy analysis portion another supply possible the control and is characterized in that controlled by an external analysis control unit.
[0009]
Good Mashiku the detection signal detected by the detection unit is transmitted through an optical fiber or infrared transmission means to the outside of the analysis control unit, the energy distribution can be calculated.
In the method of the present invention, a secondary electron multiplier is used for the detection unit.
[0010]
Further, according to the second aspect of the present invention, a high-frequency substrate electrode provided in a vacuum chamber to form a plasma by microwaves or high frequency discharge, on the substrate by placing the substrate on the high frequency substrate electrode In process equipment that processes materials,
And deflecting means for removing charged particles from particles incident through an orifice provided in the high frequency substrate electrode,
Ionization means for ionizing only high-speed neutral particles;
A blocking potential type energy analyzer that is connected to a controllable power source and analyzes the energy of ionized fast neutral particles;
An ion detector comprising a first electrode connected to another controllable power source and a secondary electron multiplier, and detecting the analyzed ions;
With greater energy than analyzing the potential of the ions was analyzed by the energy analysis portion, ions alone, in the ion detection unit consisting of the first electrode and the secondary electron multiplier tube connected to another power source capable of the controlled guided, such that a potential difference is always constant in the first electrode of the blocking potential energy analytical electrode of the blocking voltage-gated energy analysis portion wherein the ion detecting unit, the controllable connected to the blocking potential energy analyzer It is characterized by having a power supply and an external analysis control means for generating a control signal for controlling the different power possible the control connected to the ion detector.
[0011]
Et al of an external analysis control means transmission means or infrared transmission means and frequency comprised from the optical fiber - can be configured to via a voltage converter receiving a detection signal from the ion detector.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 schematically shows a high-speed neutral particle energy analyzer according to an embodiment of the present invention. In the drawing, reference numeral 1 denotes a substrate electrode which is disposed in a plasma chamber (not shown) and to which high frequency power is applied, and has an orifice 1a through which particles generated in the plasma pass. Two deflection electrodes 2 are arranged coaxially with the orifice 1a, and the deflection electrode 2a adjacent to the orifice 1a of the two deflection electrodes 2 is connected to the power sources 3 and 4 of 500V and -500V in the illustrated embodiment. It is connected. The deflection electrode 2 serves to remove charged particles that have entered through the orifice 1a in the substrate electrode 1.
[0013]
An ionization chamber 5 that ionizes only high-speed neutral particles by electron bombardment is disposed behind the two deflection electrodes 2, and the ionization chamber 5 is connected to an 8 V power source 6 in the illustrated embodiment. The ionization chamber 5 includes a filament 7, and the filament 7 is connected to a power source 8.
[0014]
A blocking potential type energy analysis electrode 9 for analyzing the energy of the ionized high-speed neutral particles is provided at the subsequent stage of the ionization chamber 5, and this blocking potential type energy analysis electrode 9 can be controlled as will be described later. Connected to a power source 10. A first electrode 12 of the ion detector 11 is disposed adjacent to the blocking potential type energy analysis electrode 9, and the first electrode 12 is connected to a controllable power source 13. A controllable power source 13 for the first electrode 12 of the ion detector 11 is provided to control a potential difference between the blocking potential type energy analysis electrode 9 and the first electrode 12 of the ion detector 11. The ion detector 11 includes a secondary electron multiplier 14, which is covered with a cover 15 and connected to the current detection means 16.
[0015]
The detection signal obtained by the current detection means 16 is transmitted to an external analysis control means 19 which can be constituted by, for example, a suitable computer system via a frequency-voltage converter 17 and an optical fiber 18, and the detected current value is differentiated by energy. By doing so, an energy distribution is obtained. The external analysis control means 19 generates control signals for the controllable power supply 10 of the blocking potential type energy analysis electrode 9 and the controllable power supply 13 of the first electrode 12 of the ion detector 11, and this control signal In order to make the energy of ions incident on the secondary electron multiplier 14 constant, both power sources are used so that the potential difference between the blocking potential energy analysis electrode 9 and the first electrode 12 of the ion detector 11 is always constant. To control.
In this embodiment, an appropriate infrared transmission means can be used instead of the optical fiber 18.
[0016]
FIG. 2 shows the potential applied to each electrode during analysis. High-speed neutral particles generated by charge exchange in the plasma sheath have energy of several hundred eV and pass through the orifice 1a of the substrate electrode 1 together with ions and electrons and enter the analyzer. Ions and electrons that have entered along with the high-speed neutral particles are removed at the deflection electrode 2, and only the high-speed neutral particles enter the ionization chamber 5 and are ionized by electron impact. At this time, the energy of the ionized high-speed neutral particles becomes the initial energy + the potential of the ionization chamber 5 (8 V in the illustrated embodiment) and enters the blocking potential type energy analysis electrode 9. In the blocking potential type energy analysis electrode 9, only ions having energy larger than the analysis potential can pass. Passed ions are amplified by the secondary electron multiplier 14 and detected by the current detection means 16. The detected current value is transmitted to the external analysis control means 19 via the frequency-voltage converter 17 and the optical fiber 18, and is processed so as to obtain an energy distribution by differentiating the current value with energy.
[0017]
When the energy of ions incident on the secondary electron multiplier 14 changes, the quantum efficiency of the secondary electron multiplier 14 changes, so that it is necessary to make it incident with a constant energy. Therefore, as described above, the control signal from the external analysis control means 19 makes these potential differences between the blocking potential type energy analysis electrode 9 and the first electrode 12 of the ion detector 11 always constant. The power supply is controlled.
[0018]
3 and 4 show the energy distribution of fast neutrons measured using the analyzer shown in FIG. 1. The etching conditions are Ar 25 sccm, O 2 3.5 sccm mixed gas, pressure 28 mTorr, about 1 × 10 10 cm −. 3 plasma density.
The measurement example of FIG. 3 is a case where the high frequency bias power is 140 W, and the measurement example of FIG. 4 is a case where the high frequency bias power is 310 W.
[0019]
【The invention's effect】
As described above, according to the analysis method of the present invention, the charged particles are removed from the particles incident through the orifice provided in the high-frequency substrate electrode by the deflecting plate, and only the high-speed neutral particles are ionized. Since the energy of the neutral particle is analyzed by the energy analyzer, the energy of the analyzed ion and the potential of the detector are controlled so that the energy of the analyzed ions is always kept constant and incident on the detector. In addition, there is no energy dependency of the detection unit, and high-speed neutral particle energy analysis becomes possible.
Further, in the analysis method of the present invention, the detection signal detected by the detection unit is transmitted to an external analysis control unit via an optical fiber or an infrared transmission unit, and the energy distribution is calculated. The influence can be eliminated, so that the energy analysis of high-speed neutral particles can be performed accurately and easily.
[0020]
According to the analysis apparatus of the present invention, the deflection means for removing charged particles from the particles incident through the orifice provided in the high-frequency substrate electrode, the ionization means for ionizing only the high-speed neutral particles, and the energy of the ionized high-speed neutral particles The energy of the ions analyzed by the blocking potential energy analyzer is controlled by controlling the potential difference between the blocking potential energy analyzer, the detected ion detector, and the blocking potential energy analyzer and the ion detector. Because it is configured with a potential difference control means that always makes it constant and incident on the detection unit, it does not depend on the energy of the detection unit and enables high-speed neutral particle energy analysis. In comparison, the lens system and its control system are not required, and the analyzer can be configured relatively easily.
In addition, since the measuring device is arranged below the substrate electrode to which high-frequency power is applied, in the case of ground potential reference, a high-frequency electric field exists between the measuring device and becomes a noise source. Alternatively, an external analysis control unit connected via an infrared transmission unit is provided, and the analysis control unit receives a detection signal from the ion detection unit via a transmission unit comprising an optical fiber or an infrared transmission unit and a frequency-voltage converter. In this case, the power supply of the energy analyzer and the signal line are superimposed on the high frequency power supply, and exchange of signals with the outside can be performed through an optical fiber or infrared transmission means, so that the electrode potential can be set as the reference potential. The high frequency electric field is not generated between the electrode and the energy analyzer, and measurement can be performed without creating a noise source.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing one embodiment of the present invention.
FIG. 2 is a diagram showing the potential of each part of the analyzer shown in FIG.
FIG. 3 is a graph showing the energy distribution of high-speed neutral particles measured using the analyzer of FIG.
4 is a graph showing the energy distribution of high-speed neutral particles when a high-frequency bias power different from that in FIG. 3 is applied using the analyzer of FIG.
[Explanation of symbols]
1: substrate electrode 1a: orifice 2: deflection electrode 5: ionization chamber 7: filament 9: blocking potential type energy analysis electrode 10: controllable power source 11: ion detector 12: first electrode 13 of the ion detector 11: Controllable power supply 14 of the first electrode 12: secondary electron multiplier 16: current detection means 17: frequency-voltage converter 18: optical fiber 19: external analysis control means

Claims (5)

マイクロ波や高周波放電によってプラズマを形成するとともに真空チャンバー内に高周波基板電極を設け、前記高周波基板電極上に基板を載置して前記基板上の物質に加工を施すプロセス装置において、
前記高周波基板電極に設けたオリフィスを通して入射する粒子から荷電粒子を偏向板により除去し、
荷電粒子を除去した粒子をイオン化室へ通して電子衝撃により高速中性粒子のみをイオン化し、
イオン化した高速中性粒子のエネルギーを、制御可能な電源に接続したエネルギー分析部で分析し、
前記エネルギー分析部で分析したイオンのうち分析電位より大きなエネルギーをもつ、イオンのみを、制御可能な別の電源に接続した第1電極と二次電子増倍管から成るイオン検出部に導き、前記エネルギー分析部の阻止電位型エネルギー分析用電極と前記イオン検出部の前記第1電極における電位差が常に一定になるように、前記エネルギー分析部に接続した前記制御可能な電源及び前記イオン検出部に接続した前記制御可能な別の電源を、外部の分析制御手段により制御することを特徴とする高速中性粒子のエネルギーの分析方法。
In the process apparatus where the high-frequency substrate electrode is provided and the substrate is placed on the high frequency substrate electrode subjected to processing in the material on the substrate in a vacuum chamber to form a plasma by microwaves or high-frequency discharge,
The charged particles are removed from the particles incident through the orifice provided in the high-frequency substrate electrode by a deflecting plate,
The charged particles are removed from the ionization chamber, and only high-speed neutral particles are ionized by electron impact.
Analyzing the energy of ionized high-speed neutral particles with an energy analyzer connected to a controllable power source,
Wherein with greater energy than analyzing the potential of the ions was analyzed by energy analysis portion guides only ions, the first electrode and the ion detector comprising a secondary electron multiplier tube connected to a controllable separate power source, the as the potential difference in the first electrode of the the blocking potential energy analysis electrodes of the energy analyzer ion detector is always constant, connected to said controllable power source and the ion detector is connected to the energy analysis portion The method for analyzing energy of high-speed neutral particles, wherein the controllable power source is controlled by an external analysis control means.
前記イオン検出部で検出された検出信号を光ファイバーを介して前記外部の分析制御手段へ伝送し、エネルギー分布を算出することを特徴とする請求項1に記載の高速中性粒子のエネルギーの分析方法。 2. The energy analysis method for high-speed neutral particles according to claim 1, wherein a detection signal detected by the ion detector is transmitted to the external analysis control means via an optical fiber to calculate an energy distribution. . 前記イオン検出部で検出された検出信号を赤外線伝送手段を介して前記外部の分析制御手段へ伝送し、エネルギー分布を算出することを特徴とする請求項1に記載の高速中性粒子のエネルギーの分析方法。The detection signal detected by the ion detecting unit transmits to the outside of the analysis control unit via an infrared transmission unit, the high-speed neutral particles according to claim 1, characterized in that to calculate the energy distribution energy Analysis method. マイクロ波や高周波放電によってプラズマを形成するとともに真空チャンバー内に高周波基板電極を設け、前記高周波基板電極上に基板を載置して前記基板上の物質に加工を施すプロセス装置において、
前記高周波基板電極に設けたオリフィスを通して入射する粒子から荷電粒子を除去する偏向手段と、
高速中性粒子のみをイオン化するイオン化手段と、
制御可能な電源に接続され、イオン化した高速中性粒子のエネルギーを分析する阻止電位型エネルギー分析部と、
制御可能な別の電源に接続した第1電極と二次電子増倍管から成り、分析したイオンを検出するイオン検出部と、
前記エネルギー分析部で分析したイオンのうち分析電位より大きなエネルギーをもつ、イオンのみを、前記制御可能な別の電源に接続した前記第1電極と二次電子増倍管から成る前記イオン検出部に導き、前記阻止電位型エネルギー分析部の阻止電位型エネルギー分析用電極と前記イオン検出部の前記第1電極における電位差が常に一定になるように、前記阻止電位型エネルギー分析部に接続した前記制御可能な電源及び前記イオン検出部に接続した前記制御可能な別の電源を制御する制御信号を発生する外部の分析制御手段と
を有すること特徴とする高速中性粒子のエネルギーの分析装置。
In the process apparatus where the high-frequency substrate electrode is provided and the substrate is placed on the high frequency substrate electrode subjected to processing in the material on the substrate in a vacuum chamber to form a plasma by microwaves or high-frequency discharge,
And deflecting means for removing charged particles from particles incident through an orifice provided in the high frequency substrate electrode,
Ionization means for ionizing only high-speed neutral particles;
A blocking potential type energy analyzer that is connected to a controllable power source and analyzes the energy of ionized fast neutral particles;
An ion detector comprising a first electrode connected to another controllable power source and a secondary electron multiplier, and detecting the analyzed ions;
With greater energy than analyzing the potential of the ions was analyzed by the energy analysis portion, ions alone, in the ion detection unit consisting of the first electrode and the secondary electron multiplier tube connected to another power source capable of the controlled guided, such that a potential difference is always constant in the first electrode of the blocking potential energy analytical electrode of the blocking voltage-gated energy analysis portion wherein the ion detecting unit, the controllable connected to the blocking potential energy analyzer energy analyzer of the high-speed neutral particles characterized by having a power supply and an external analysis control means for generating a control signal for controlling the different power possible the control connected to the ion detector.
前記外部の分析制御手段が光ファイバーから成る伝送手段又は赤外線伝送手段及び周波数−電圧変換器を介して前記イオン検出部から検出信号を受けるように構成されていることを特徴とする請求項4に記載の高速中性粒子のエネルギーの分析装置。According to claim 4, characterized in that it is configured via the voltage converter receiving the detected signal from the ion detector - the external analysis control unit transmitting means or infrared transmission means and frequency comprised from the optical fiber High-speed neutral particle energy analyzer.
JP2000015581A 2000-01-25 2000-01-25 Method and apparatus for analyzing energy of high-speed neutral particles incident on high-frequency power application electrode Expired - Lifetime JP4774140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000015581A JP4774140B2 (en) 2000-01-25 2000-01-25 Method and apparatus for analyzing energy of high-speed neutral particles incident on high-frequency power application electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000015581A JP4774140B2 (en) 2000-01-25 2000-01-25 Method and apparatus for analyzing energy of high-speed neutral particles incident on high-frequency power application electrode

Publications (2)

Publication Number Publication Date
JP2001210270A JP2001210270A (en) 2001-08-03
JP4774140B2 true JP4774140B2 (en) 2011-09-14

Family

ID=18542855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000015581A Expired - Lifetime JP4774140B2 (en) 2000-01-25 2000-01-25 Method and apparatus for analyzing energy of high-speed neutral particles incident on high-frequency power application electrode

Country Status (1)

Country Link
JP (1) JP4774140B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549119B1 (en) * 2013-10-30 2015-09-02 한국과학기술원 APPARATUS AND THE METHOD FOR ANALYZING ION CHARACTERISTICS HAVING ExB FILTER AND RETARDING POTENTIAL ANALYZER

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2486248A1 (en) * 1980-07-01 1982-01-08 Merlin Gerin DIGITAL DOSIMETER FOR MEASURING AND CONTROLLING IONIZING RADIATION, EQUIPPED WITH AN OPTO-ELECTRONIC LINK TRANSMISSION DEVICE
JPS5875754A (en) * 1981-10-30 1983-05-07 Shimadzu Corp Charged-particle energy analyzer
JPH0621637B2 (en) * 1984-09-19 1994-03-23 トヨタ自動車株式会社 Belt type continuously variable transmission hydraulic system
JPH02154143A (en) * 1988-12-07 1990-06-13 Hitachi Ltd Apparatus for analyzing trace element by high-frequency plasma
JPH0388251A (en) * 1989-08-30 1991-04-12 Hitachi Ltd Ultra-trace element mass analyzing device
JPH04353786A (en) * 1991-05-31 1992-12-08 Matsushita Electric Ind Co Ltd Survey meter and survey meter system
JP3239427B2 (en) * 1992-03-27 2001-12-17 株式会社島津製作所 Ion scattering spectrometer
JP3769341B2 (en) * 1997-01-06 2006-04-26 株式会社アルバック Method and apparatus for analyzing negative ions incident on substrate in etching plasma
JP3774525B2 (en) * 1997-01-06 2006-05-17 株式会社アルバック Method and apparatus for measuring negative ions in plasma
JPH11250854A (en) * 1998-03-02 1999-09-17 Ulvac Corp Analyzing method and device for incident ion on substrate in etching plasma
JPH10255716A (en) * 1998-03-30 1998-09-25 Hitachi Ltd Plasma ion source microelement mass spectrometer

Also Published As

Publication number Publication date
JP2001210270A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
US6972412B2 (en) Particle-optical device and detection means
JP4176159B2 (en) Environmentally controlled SEM using magnetic field for improved secondary electron detection
JP4416949B2 (en) Particle beam current monitoring technology
EP0559202B1 (en) Secondary ion mass spectrometer for analyzing positive and negative ions
US6091068A (en) Ion collector assembly
JPH0466862A (en) Method and apparatus for highly sensitive element analysis
JP4774140B2 (en) Method and apparatus for analyzing energy of high-speed neutral particles incident on high-frequency power application electrode
US5204530A (en) Noise reduction in negative-ion quadrupole mass spectrometry
US20090114813A1 (en) Measuring energy contamination using time-of-flight techniques
US5034605A (en) Secondary ion mass spectrometer with independently variable extraction field
JP2990321B2 (en) Induction plasma mass spectrometer
EP0932184B1 (en) Ion collector assembly
US20240145223A1 (en) Mass spectrometer and method for setting analysis condition
JP2804913B2 (en) Plasma ion source trace element mass spectrometer
JPH11154485A (en) Mass spectrograph and ion implantation device equipped with it
JPH11250854A (en) Analyzing method and device for incident ion on substrate in etching plasma
Takagi et al. Characteristics of a channel electron multiplier for detection of positive ion
JP2610035B2 (en) Surface analyzer
Mizutani et al. Mass analysis of negative ions in etching plasma
JPH10199473A (en) Analytical method and device of substrate incident negative ion in etching plasma
JPH09304539A (en) Electron detector
JPH059899B2 (en)
JPH04233149A (en) Analyzing device for surface of sample
JPH05242856A (en) Inductive plasma mass-spectrographic device
JPH0233848A (en) Secondary ion mass analyser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4774140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term