JPH0230434A - Method for discharge process - Google Patents

Method for discharge process

Info

Publication number
JPH0230434A
JPH0230434A JP18020388A JP18020388A JPH0230434A JP H0230434 A JPH0230434 A JP H0230434A JP 18020388 A JP18020388 A JP 18020388A JP 18020388 A JP18020388 A JP 18020388A JP H0230434 A JPH0230434 A JP H0230434A
Authority
JP
Japan
Prior art keywords
blade
machining
electrode
electrodes
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18020388A
Other languages
Japanese (ja)
Inventor
Shiro Sasaki
史朗 佐々木
Yozo Sakai
酒井 洋三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18020388A priority Critical patent/JPH0230434A/en
Publication of JPH0230434A publication Critical patent/JPH0230434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To get rid of a blockage due to a processing chip, in order to execute a stable discharge process, by minimizing the size of the processing chip on its second circuit, using an electrode part composed of a pair of electrodes having a stage part of a certain shape. CONSTITUTION:Being held by a dividing device, a material 4 is divided at a pitch of 2xn (n is an integer) of a turn blade for its processing position, 2 circulated. At the processing position, the material 4 is discharge-processed by an electrode part that is composed of a pair of electrodes 1 which have a stage in a shape determined based on a wing bottom interval, wing point width, length and thickness of the material 4, and blades are formed in the order of 11a, 11c, 11b,...11n-1, 11n. By using the electrode 1 with a stage such as this, the material 4 can be discharge-procesed with a good stability, through minimization of the size of a processing chip generated from a blank 4a during the process in a second circuit.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、例えば軸を中心として放射状に翼を形成す
るタービンブレードの如き被加工物の放電加工方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for electrical discharge machining of a workpiece such as a turbine blade in which blades are formed radially around an axis.

[従来の技術] 第3図は通常のタービンブレードを放電加工する装置の
全体構成を示す模式図である。図において、(」)は電
極、(2)は電極(1)を固定するホルダ、(3)は電
極(1)を上下動させる主軸、(4)はタービンブレー
ドの素材、(5)はこの素材(4)を支持して加工位置
を割出す割出装置、(6)は加工槽、(7)は加工液、
(8)は電極(1)と素材(4)間にパルス電圧を印加
する電源である。
[Prior Art] FIG. 3 is a schematic diagram showing the overall configuration of an apparatus for electrical discharge machining of a normal turbine blade. In the figure, ('') is the electrode, (2) is the holder that fixes the electrode (1), (3) is the main shaft that moves the electrode (1) up and down, (4) is the material of the turbine blade, and (5) is this An indexing device that supports the material (4) and determines the processing position, (6) is a processing tank, (7) is a processing liquid,
(8) is a power source that applies a pulse voltage between the electrode (1) and the material (4).

第4図は所定の形状に加工されたブレードの各部の名称
を示す説明図であり、(a) 、 (b)図において、
(11)はブレード、(12)は翼間部である。(c)
図は(a)図のA矢視図であり、(13)は翼底間幅、
(14)は翼先端間部、(15)はブレード厚さ、(1
6)は翼底間部、(17)は翼先端間部を示す。
FIG. 4 is an explanatory diagram showing the names of each part of the blade processed into a predetermined shape, and in figures (a) and (b),
(11) is a blade, and (12) is an interwing part. (c)
The figure is a view in the direction of arrow A in figure (a), and (13) is the width between the bases of the wings;
(14) is the area between the blade tips, (15) is the blade thickness, (1
6) shows the part between the blade bottoms, and (17) shows the part between the blade tips.

第5図はホルダ(2)に固定された一対の電極(1)の
形状を示す正面図及び側面図であり、(21)はブレー
ド(11)の厚さ(15)に加工時における放電ギャッ
プgを見込んで厚さを定めたスペーサである。
Fig. 5 is a front view and a side view showing the shape of a pair of electrodes (1) fixed to a holder (2), and (21) is a discharge gap when machining the thickness (15) of the blade (11). This is a spacer whose thickness is determined taking g into consideration.

上記のような形状の電極部を第3図の主軸(3)に取付
け、割出装置(4)に支持されている素材(4)をブレ
ード(11)の2ピツチごとに割出して2周回動させ、
主軸(3)の上下動にともなう電極(1)によって放電
加工か行なわれる。この加工において、第4図に示す翼
先端量線(14)か翼底間幅(13)の2倍以上となる
翼間部(12)のプレー)’ (11)の場合には、割
出装置(5)の2周目の加工時に、第6図の斜線部で示
すような未加工部のチップ(22)か生し、電極〈1)
の加工送りとともに図のB点に電極(])が達する直前
に、電極(1)側に喰い込むことがあると不安定な加工
となり、加工を中断しなければならないことがある。
The electrode part having the above shape is attached to the main shaft (3) in Fig. 3, and the material (4) supported by the indexing device (4) is indexed every two pitches of the blade (11) and rotated twice. move it,
Electrical discharge machining is performed by the electrode (1) as the main shaft (3) moves up and down. In this process, if the play of the blade part (12) is more than twice the blade tip amount line (14) shown in Fig. 4 or the blade base width (13), the index During the second round of machining with the device (5), the unprocessed chip (22) as shown by the shaded area in Fig. 6 is left unprocessed, and the electrode <1
If the electrode (]) digs into the electrode (1) side just before it reaches point B in the figure with the machining feed, the machining will become unstable and the machining may have to be interrupted.

以上の不安定な加工を防止するため、第7図(a)〜(
C)に示すように、翼間部(12)の中心と前加工用の
電極(24)の中心とを一致させ、割出装置(5)をブ
レード(11)の2ピツチごとに素材(4)を回動させ
て前加工溝(25)を形成し、しかる後にホルダ(2)
で支持された一対の電極(1)によって、第7図(d)
〜(f)に示すようにブレード(11)の2ピツチごと
に素材(4)を回動させながら加工を行い、全周にわた
ってブレード(11)を形成するようにしている。
In order to prevent the above-mentioned unstable machining, Fig. 7(a) to (
As shown in C), align the center of the interwing part (12) with the center of the pre-processing electrode (24), and insert the indexing device (5) into the material (4) every two pitches of the blade (11). ) to form the pre-processed groove (25), and then the holder (2)
7(d) by a pair of electrodes (1) supported by
As shown in ~(f), processing is performed while rotating the material (4) every two pitches of the blade (11), so that the blade (11) is formed over the entire circumference.

[発明か解決しようとする課題] 上記のような従来のタービンプレートの放電加工方法で
は、未加工部のチップ(22)の電極(1)への喰い込
みによる不安定な加工になることを防止するために、一
対の電極(1)による加工前に、前加工用の電極(24
)によって加工することになるので、加工時間が長くな
り、また電極の自動交換装置のない放電加工機では加工
の中断によって自動運転ができないなどの問題がある。
[Problem to be solved by the invention] In the conventional electric discharge machining method for a turbine plate as described above, it is possible to prevent unstable machining due to biting of the unmachined tip (22) into the electrode (1). In order to
), the machining time becomes long, and electric discharge machines without an automatic electrode exchange device have problems such as interruption of machining and inability to operate automatically.

この発明は上記のような課題を解消するためになされた
もので、1種類の電極によって安定な加工ができ、この
ために加工時間の短縮化が可能となり、かつ確実な自動
運転を行なうことのできる放電加工方法を得ることを目
的とする。
This invention was made to solve the above-mentioned problems. Stable machining can be performed using one type of electrode, thereby making it possible to shorten machining time and ensuring reliable automatic operation. The purpose is to obtain an electric discharge machining method that can be used.

[課題を解決するための手段] この発明に係る放電加工方法は、ホルダによって支持さ
れた左右対称に対向する一対の電極の形状を、タービン
ブレード等の翼底間幅と翼先端幅長さ及び厚さに基づい
て段部を形成するように定め、割出装置により累月をタ
ービンブレード等の2ピッチごとに割出して2周させ、
電極部により加工するようにしたものである。
[Means for Solving the Problems] The electric discharge machining method according to the present invention changes the shape of a pair of symmetrically opposed electrodes supported by a holder by adjusting the width between the bases of a turbine blade or the like, the width of the blade tip, and the like. It is determined to form a stepped portion based on the thickness, and an indexing device is used to index the cumulative moon every two pitches of a turbine blade or the like and rotate it twice,
It is designed to be processed using an electrode section.

[作用] この発明においては、段部を形成する電極の厚さを翼底
間幅と翼先端幅とに基づいて、2周目の加工時に生じる
加工チップの大きさを最小限にしたので、加工チップに
よる阻害がなく安定した加工を行うことかできる。
[Function] In this invention, the thickness of the electrode forming the stepped portion is based on the width between the blade bases and the blade tip width to minimize the size of the machining chips generated during the second round of machining. Stable machining can be performed without interference from machining chips.

[実施例コ 第1図はこの発明による放電加工方法を実施するために
使用する電極構造を示す正面図および側面図である。図
において、(1)はホルダ(2)に左右対称の形状で固
定された一対の電極、(21)は第4図に示したブレー
ド(11)の厚さ(15)に加工時の放電ギャップgを
見込んで厚さtを定めたスペーサである。電極(1)の
先端部の厚さtlは第4図で示した翼底間幅(13)の
1/2強、固定部側の厚さt2も翼先端量線(14)の
172強に定められ、長さΩと厚さ1 .1  とて段
部を形成し、この段部の0点で後述する加工時に隣り合
うブレード(II)の面に干渉しないように定められて
いる。
[Example 1] FIG. 1 is a front view and a side view showing an electrode structure used to carry out the electrical discharge machining method according to the present invention. In the figure, (1) is a pair of electrodes fixed to the holder (2) in a symmetrical shape, and (21) is the discharge gap during machining, which corresponds to the thickness (15) of the blade (11) shown in Figure 4. This is a spacer whose thickness t is determined taking g into account. The thickness tl of the tip of the electrode (1) is a little more than 1/2 of the width between the blade bases (13) shown in Fig. 4, and the thickness t2 of the fixed part side is also a little more than 172 of the blade tip amount line (14). defined, length Ω and thickness 1. 1 to form a stepped portion, and the 0 point of this stepped portion is determined so as not to interfere with the surface of the adjacent blade (II) during processing to be described later.

上記のような形状の電極部を第3図の主軸(3)に取付
け、従来例と同様に、割出装置(4)に支持されている
素材(4)をブレード(]1)の2ピツチごとに割出し
て2周回動させ、割出しごとに主軸(3)の上下動にと
もなう電極(1)による放電加工が行なわれる。
Attach the electrode part shaped as above to the main shaft (3) in Fig. 3, and as in the conventional example, insert the material (4) supported by the indexing device (4) into two pitches of the blade (]1). Each index is rotated twice, and electric discharge machining is performed using the electrode (1) as the main shaft (3) moves up and down each time it is indexed.

第2図はこの放電加工によってブレード(11)が形成
される過程を示す説明図である。先ず、(a)図に示す
ように第1番目の割出しで、電極(1)と素材(4)と
の間に生じる放電によって所定深さまで加工して第1の
ブレード(lla)を形成し、次いで(b)図に示すよ
うに割出装置(5)により素材(4)を図より見て時計
方向に2ピツチ回動させて、フレード(1,1a )よ
り3枚目の位置のブレード(lie)を加工すると、ブ
レード(1]、a)とブレード(He)との間のブレー
ド(llb)が加工されるブランク(4a)が形成され
る。同様に加工を続け、(e)図に示すように第2肩口
の最初にブランク(4a)を加工してブレード(llb
)を形成し、最後に(d)図にンJ<ずようにプレート
(lln)を形成する。
FIG. 2 is an explanatory diagram showing the process of forming the blade (11) by this electric discharge machining. First, as shown in Figure (a), at the first indexing, the first blade (lla) is formed by machining to a predetermined depth by the electric discharge generated between the electrode (1) and the material (4). Then, as shown in figure (b), the indexing device (5) rotates the material (4) two pitches clockwise as viewed from the figure, and the blade is at the third position from the blade (1, 1a). Machining (lie) forms a blank (4a) in which the blade (llb) between blade (1], a) and blade (He) is machined. Continue machining in the same way, and as shown in figure (e), machining the blank (4a) at the beginning of the second shoulder and cutting the blade (llb).
) is formed, and finally a plate (lln) is formed as shown in (d).

以」二の加工過程において、(C)図に示すように厚さ
t 、  t2て電極(」)の段部が形成されたことに
よって、ブランク(4a)からは微少な加工チップか生
じるたけて、またC点はブレード(lla)。
In the second processing process, as shown in Figure (C), a stepped part of the electrode ('') with a thickness of t and t2 was formed, so that very small processed chips were generated from the blank (4a). , and point C is the blade (lla).

(11,c )面に干渉せず、安定した放電加工を行い
なからブレード(1,ib)を形成し、以下も同様の加
工条件で2川口の加工を行い、(d)図に示すブレード
(+、In)の形成によって加工を終了する。
(11, c) A blade (1, ib) is formed by performing stable electrical discharge machining without interfering with the surface, and the following machining is performed at the mouth of 2 under the same machining conditions. (d) The blade shown in Fig. The processing ends with the formation of (+, In).

c光1す1の効果コ 以上説明したように、この発明によれば割出装置に支持
されたタービンブレード累月をブレードの2ピツチごと
に回動させて割出し、各側出し位置において段部を形成
した一対の電極により放電加工することによって、加工
時に生じる加工チップを最小限の大きさにすることが可
能となり、1種類の電極によって全プレートの加工を一
巡するたけでよく、加工時間の短縮化とともに確実な自
動運転ができる効果がある。
Effects of Light 1 and 1 As explained above, according to the present invention, the turbine blades supported by the indexing device are indexed by rotating every two pitches of the blade, and the stages are indexed at each side position. By performing electric discharge machining using a pair of electrodes that form a single part, it is possible to minimize the size of the machining chips generated during machining, and the machining time is reduced because it is only necessary to machining the entire plate once with one type of electrode. This has the effect of shortening the time and ensuring reliable automated driving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a> 、 (b)はこの発明による放電加工方
法を実施するために使用する電極部の形状を示す正面図
および側面図、第2図(a)〜(d)はこの発明による
タービンブレードの加工過程の説明図、第3図は通常の
タービンブレードの放電加工装置を示す模式図、第4図
(a)〜(C)はタービンブレードの各部の形状および
その名称を示す説明図、第5図(a) 、 (b)は従
来のタービンブレード加工用の電極部の形状を示す正面
図および側面図、第6図および第7図(a)〜(f)は
従来のタービンブレードの加工過程の説明図である。 図において、(1)は電極、(2)はホルダ、り4)は
累月、(5)は割出装置、(11)はブレード、(13
)は翼底量線、(14)は翼先端同幅である。 なお、図中同一符号は同一または相当部分を示す。
FIGS. 1(a) and 1(b) are front and side views showing the shape of the electrode part used to carry out the electrical discharge machining method according to the present invention, and FIGS. 2(a) to (d) are according to the present invention. An explanatory diagram of the machining process of a turbine blade, Fig. 3 is a schematic diagram showing a normal electric discharge machining device for turbine blades, and Figs. 4 (a) to (C) are explanatory diagrams showing the shapes and names of each part of the turbine blade. , FIGS. 5(a) and 5(b) are front and side views showing the shape of a conventional turbine blade machining electrode, and FIGS. 6 and 7(a) to 7(f) are conventional turbine blades. It is an explanatory diagram of the processing process. In the figure, (1) is an electrode, (2) is a holder, (4) is a holder, (5) is an indexing device, (11) is a blade, and (13) is an indexing device.
) is the wing bottom height line, and (14) is the same width as the wing tip. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] タービンブレード等の素材を支持しこの素材を等角度で
回動して加工位置を割出す割出装置と、上記タービンブ
レード等の翼底間幅、翼先端幅、長さおよび厚さに基づ
いて形状が定められた段部を有する一対の電極からなる
電極部とを具備し、上記割出装置で上記タービンブレー
ド等の2ピッチごとに割出し、上記電極部によって上記
素材を加工することを特徴とする放電加工方法。
An indexing device that supports a material such as a turbine blade and rotates the material at an equal angle to determine the processing position, and an indexing device that supports a material such as a turbine blade and rotates the material at an equal angle to determine the processing position, and an indexing device that supports a material such as a turbine blade, etc. and an electrode section consisting of a pair of electrodes having a stepped section with a defined shape, the indexing device indexes the turbine blade or the like every two pitches, and the material is processed by the electrode section. electrical discharge machining method.
JP18020388A 1988-07-21 1988-07-21 Method for discharge process Pending JPH0230434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18020388A JPH0230434A (en) 1988-07-21 1988-07-21 Method for discharge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18020388A JPH0230434A (en) 1988-07-21 1988-07-21 Method for discharge process

Publications (1)

Publication Number Publication Date
JPH0230434A true JPH0230434A (en) 1990-01-31

Family

ID=16079200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18020388A Pending JPH0230434A (en) 1988-07-21 1988-07-21 Method for discharge process

Country Status (1)

Country Link
JP (1) JPH0230434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213639A1 (en) * 2009-10-02 2012-08-23 Bladon Jets Holdings Limited Rotary structures
US9455609B2 (en) 2010-09-16 2016-09-27 Robert Bosch Gmbh Electric motor with a power output stage and with efficient heat transport and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213639A1 (en) * 2009-10-02 2012-08-23 Bladon Jets Holdings Limited Rotary structures
US9455609B2 (en) 2010-09-16 2016-09-27 Robert Bosch Gmbh Electric motor with a power output stage and with efficient heat transport and method

Similar Documents

Publication Publication Date Title
KR100673964B1 (en) Eletric discharge machining for turbine blade and eletric discharge machine adapted for the same
JP3215427B2 (en) Method and apparatus for joining metal parts
JP2685802B2 (en) Electrodes for electrolytic machining of airfoil blades
CN106876262A (en) One kind makes highly-efficient glass passivation chip technology
JPH0230434A (en) Method for discharge process
JPH1044141A (en) Multiple wire saw and manufacture of wafer for solar cell using therewith
JPS593980A (en) Manufacture of composite solar battery element
GB1218546A (en) Method of producing a plurality of articles by electrochemical machining
CN110238469A (en) A kind of electric discharge machining method of combination electrode and big aspect ratio multistage microstructural
JP2000164903A (en) Solar battery
CN213969385U (en) Integral impeller electrolytic forming processing device
SU1220909A1 (en) Method of electrochemical sharpening of end faces of parts
JPS5518362A (en) Manufacturing method of die by electric discharge processing
SU747679A1 (en) Method and electrode for electro-erosion working of grids
JP4431712B2 (en) Manufacturing method of solar cell
EP0151914A1 (en) Device for dressing a metal-bonded grinding wheel
SU1217592A1 (en) Flat broach for working slots and steps
JPH01271126A (en) Electric discharge machining method
JPH03245918A (en) Wire electric discharge machining
JPS591125A (en) Method for manufacturing turbine blade
JPH0351047Y2 (en)
JPH0976121A (en) Tapping tool
JPS5771727A (en) Electrical discharge machining method
SU982846A1 (en) Method of multipass cutting of thread
JPS63156617A (en) Manufacture of throwaway gear hob