JPH0230342B2 - - Google Patents

Info

Publication number
JPH0230342B2
JPH0230342B2 JP56188145A JP18814581A JPH0230342B2 JP H0230342 B2 JPH0230342 B2 JP H0230342B2 JP 56188145 A JP56188145 A JP 56188145A JP 18814581 A JP18814581 A JP 18814581A JP H0230342 B2 JPH0230342 B2 JP H0230342B2
Authority
JP
Japan
Prior art keywords
weight
resin composition
parts
vinyl chloride
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56188145A
Other languages
Japanese (ja)
Other versions
JPS5889623A (en
Inventor
Kichiji Eikuchi
Osamu Matsumoto
Kyoshi Imada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP56188145A priority Critical patent/JPS5889623A/en
Publication of JPS5889623A publication Critical patent/JPS5889623A/en
Publication of JPH0230342B2 publication Critical patent/JPH0230342B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塩化ビニル系樹脂発泡成形体の製造方
法、特に均一微細なセル構造を有する高発泡倍率
の塩化ビニル系樹脂発泡成形体に連続的に低コス
トで製造する方法を提供するものである。 従来、塩化ビニル系樹脂発泡成形体の製造方法
としては、(1)塩化ビニル系樹脂に、分解によりガ
ス体となるいわゆる分解型発泡剤を添加混合し、
これを押出成形機あるいは射出成形機などを使用
して加熱成形発泡させる方法、(2)塩化ビニル系樹
脂と可塑剤とを混合してペースト状とし(プラス
チゾル)、これを機械的に発泡させるか、または
該プラスチゾルに分解型発泡剤を添加混合したの
ち、加熱してゲル化と共に発泡させ目的の製品と
する方法、(3)分解型発泡剤を含有する混合物を、
該発泡剤の分解温度以下で予めロール成形したの
ち、加熱して発泡体とする方法、(4)金型中に、塩
化ビニル系樹脂と分解型発泡剤(必要に応じてさ
らに揮発性有機発泡剤、膨潤性を有する有機溶剤
および軟化剤を使用)を充てんし、これを加圧加
熱して溶融ゲル化させたのち冷却し、ついで再び
加熱して発泡させる方法などが知られている。 しかし、上記(1)〜(3)の方法には硬質ないし半硬
質の高発泡体を得ることができない、(4)の方法に
はこの方法がバツチ式であり、また製造工程が複
雑で発泡体を得るのに多大の時間を要するため、
最終的に得られる製品がコスト高なものになる、
というそれぞれの欠点がある。 本発明者らはこのような不利をともなわずに塩
化ビニル系樹脂発泡成形体を得る方法について研
究を重ね、先に、塩化ビニル系樹脂に熱安定剤と
共にタルクなどの核形成剤、アクリル系樹脂(ま
たはスチレン系樹脂)、アゾジカーボンアミド系
化合物などの分解型発泡剤等を配合した樹脂組成
物を押出機に供給し、この押出機内で加熱ゲル化
された該樹脂組成物中に沸点90℃以下の有機溶剤
系発泡剤例えばプロパン、ブタン、ペンタン、塩
化メチル、トリクロロフルオロメタン、ジクロロ
テトラフルオロエタンなどの脂肪族炭化水素もし
くは脂肪族ハロゲン化炭化水素を圧入し、押出発
泡成形させる方法を提案した(特開昭55−149328
号および同55−152725号公報参照)。 しかしながら、これらの方法には、(i)圧入の際
極めて高に注入圧が必要であり、しかも樹脂組成
物中への分散を向上させるには、この樹脂組成物
に機械的に強いせん断を与え、かつ有機発泡剤の
樹脂中への溶解を促進させるために高温にして樹
脂の溶融粘度を下げる必要がある、(ii)また有機発
泡剤の樹脂組成物中への分散をよくするために
は、分散混合ゾーンを長くする必要がある、(iii)該
分散混合ゾーンでの樹脂温度が高くされるため、
これを発泡成形に適した温度にまで均一に冷却後
押出発泡させる必要がある、(iv)したがつて、押出
機が大型化、複雑化する、などの問題点があるた
め、結果として均一微細なセル構造を有する発泡
成形体を安定して製造することが困難であつた。 本発明者らはかかる問題点を解決するため鋭意
研究した結果、揮発性有機発泡剤として前記した
脂肪族炭化水素および脂肪族ハロゲン化炭化水素
の少なくとも1種100重量部と、塩化ビニル系樹
脂と相溶性を有する沸点200℃以下のアルコール
化合物の少なくとも1種1〜50重量部とを併用す
ると、この混合有機発泡剤は押出機内の樹脂組成
物に対して容易に効率よく圧入させることがで
き、樹脂成分中に溶解分散されるので、前記した
(i)〜(iv)の問題点が解決されることを確認し本発明
を完成した。 すなわち、本発明は塩化ビニル系樹脂組成物を
押出機に供給し、ついでこの押出機内で加熱され
た該樹脂組成物中に、(イ)沸点90℃以下(好ましく
は70℃以下)の脂肪族炭化水素および脂肪族ハロ
ゲン化炭化水素から選ばれる少なくとも1種100
重量部と、(ロ)沸点200℃以下のアルコール化合物
の少なくとも1種1〜50重量部とからなる有機発
泡剤を、前記樹脂組成物100重量部当り1〜30重
量部の割合で圧入し、溶融混練を経て押出発泡成
形させることを特徴とする塩化ビニル系樹脂発泡
成形体の製造方法に関するものである。 この本発明の方法によれば押出機内の加熱され
た樹脂組成物中に上記混合有機発泡剤の必要量を
容易に均一分散(溶解分散)させることができ、
結果として均一微細なセル構造を有する高発泡倍
率の塩化ビニル系樹脂発泡成形体を連続的に低コ
ストで製造することができるという効果が与えら
れる。 以下本発明を詳細に説明する。 本発明の方法に使用される有機発泡剤は、前記
した(イ)および(ロ)成分のそれぞれ少なくとも1種か
ら構成されるが、この(イ)成分としての沸点90℃以
下の脂肪族炭化水素および脂肪族ハロゲン化炭化
水素にはプロパン、ブタン、イソブタン、ペンタ
ン、ネオペンタン、n―ヘキサン、イソヘキサ
ン、n―ヘプタン、塩化メチル、塩化メチレン、
クロロホルム、四塩化炭素、塩化エチル、塩化エ
チリデン、トリクロロエチレン、1,2―ジクロ
ロエタン、トリクロロフルオロメタン、ジクロロ
ジフルオロメタン、ブロモトリフルオロメタン、
テトラフルオロメタン、ジクロロフルオロメタ
ン、クロロトリフルオロメタン、トリフルオロメ
タン、トリクロロトリフルオロエタン、ジクロロ
テトラフルオロエタン、ジブロモテトラフルオロ
エタン、クロロペンタフルオロエタン、ヘキサフ
ルオロエタン、クロロジフルオロエタン、ジフル
オロエタンなどが例示される。なお、これらは2
種以上を併用してもよい。 脂肪族炭化水素もしくは脂肪族ハロゲン化炭化
水素として沸点が90℃よりも高いものを使用する
と、発泡成形時発泡体の収縮が著しく、セル構造
の均一な発泡体は得られないので、本発明におい
てはこの(イ)成分として沸点90℃以下のものを使用
することが必要とされ、特には沸点70℃以下のも
のを使用することが望ましい。 他方上記(イ)成分と共に使用される(ロ)成分は、塩
化ビニル系樹脂と相溶性を有するアルコール化合
物であることが必要とされるが、このものは特に
200℃以下好ましくは150℃以下の沸点を有するも
ので、具体的にはメタノール、エタノール、n―
プロパノール、イソプロパノール、n―ブタノー
ル、イソブタノール、sec―ブタノール、tert―
ブタノール、n―アミルアルコール、sec―アミ
ルアルコール、tert―アミルアルコール、3―ペ
ンタノール、メチルアミルアルコール、2―エチ
ルブタノール、n―ヘキシルアルコールなどが例
示される。これらはその使用に当つて1種類に限
定されるものではなく、2種以上を同時に使用し
てもよい。 上記した(イ)成分は、主に、押出機内で溶融混練
された混合物が大気圧下に吐出されたときの気化
による主たる発泡と発泡により成形されるセルの
均一化、蒸発潜熱による発泡体の樹脂温低下等の
働きをし、(ロ)成分は、主に、押出機内の樹脂組成
物中に有機発泡剤を圧入する際の注入圧の低下お
よび安定化、押出機内樹脂溶融粘度を下げること
による有機発泡剤分散効率の上昇などの働きをす
るものであるので、(イ)成分と(ロ)成分との混合割合
は(イ)成分の100重量部に対し(ロ)成分を1〜50重量
部好ましくは5〜30重量部とし、またこの(イ)成分
と(ロ)成分とからなる有機発泡剤を塩化ビニル系樹
脂組成物100重量部当り1〜30重量部使用する必
要がある。 本発明の方法は、一般にはまずスーパーミキサ
ーなどの混合機を用いて、あらかじめ原料塩化ビ
ニル系樹脂組成物を調合し、これを押出機に供給
し、ついでこの押出機内で加熱された樹脂組成物
中に前記した(イ)成分と(ロ)成分とからなる有機発泡
剤の所定量をシリンダー途中より圧入し、この圧
入された有機発泡剤をシリンダー内の溶融混練ゾ
ーンで樹脂組成物中に均一分散(溶解分散)さ
せ、その後発泡に適した温度にまで樹脂組成物を
均一冷却し、大気中または減圧部へ押出すことに
より発泡成形させるという方法により実施され
る。 有機発泡剤の圧入時期は、有機発泡剤の樹脂組
成物供給口へのバツクおよびそれによる樹脂組成
物への喰い込みの悪化を起こさせない時期であれ
ばいつでもよいが、特には押出機内における加熱
された樹脂組成物が半ゲル化状態ないしは完全ゲ
ル化状態のときとすることがよく、このいずれの
状態のときにも樹脂組成物中に有機発泡剤が容易
に均一分散され、結果として均一なセル構造を有
する高発泡倍率の成形体が得られる。 本発明の方法に使用される原料塩化ビニル系樹
脂組成物としては、塩化ビニル系樹脂を主体とし
これに必要とされる各種配合成分ないし添加剤を
混合したものが使用されるが、その望ましい配合
例としてはよりすぐれた発泡成形体を得るという
見地から、塩化ビニル系樹脂100重量部に対して
発泡成形にともなうセル構造を均一微細に調整す
るための熱分解型発泡剤および高融点微粉状物質
から選ばれる気泡均一化助剤0.01重量部以上、お
よび塩化ビニル系樹脂のゲル化を促進しあるいは
調整し、樹脂の溶融粘度を上昇ないしは適度の粘
度に調整し、高温時におけるセルの合一ないし収
縮を防ぐためのアクリル系樹脂および/またはス
チレン系樹脂0.5〜30重量部、さらに必要に応じ
て本発明の目的ないし効果を損わない量の従来塩
化ビニル系樹脂に添加される各種添加剤(安定
剤、滑剤、充てん剤等)を配合したものが望まし
い。 塩化ビニル系樹脂としてはポリ塩化ビニルに限
られず、塩化ビニルを主体とする各種共重合体、
グラフト共重合体、さらにはポリマープレンドな
どが包含され、この場合の塩化ビニルと共重合可
能なコモノマーとしては、酢酸ビニル、塩化ビニ
リデン、アクリル酸およびそのエステル、メタク
リル酸およびそのエステル、アクリロニトリル、
メタクリロニトリル、マレイン酸およびそのエス
テルもしくは無水物、フマル酸およびそのエステ
ル、エチレン、プロピレンなどのオレフイン、ビ
ニルエーテルなどの1種もしくは2種以上があげ
られ、また、ポリマープレンドに使用される樹脂
としては、塩化ビニル樹脂と混和性のよい重合体
例えばポリ塩化ビニリデン、エチレン―酢酸ビニ
ル共重合体、ABS樹脂、MBS樹脂、塩素化ポリ
エチレン、あるいはNBR、SBRなどの合成ゴム
があげられる。 アクリル系樹脂としては塩化ビニル系樹脂のゲ
ル化を均一に促進し、適度に樹脂粘度を上げ、ゴ
ム弾性を与えかつ塩化ビニル系樹脂の高温時の引
張り強さあるいは伸び率などを向上し得るもの、
すなわち0.1g/100mlクロロホルム溶液として20
℃で測定した還元粘度が3.0dl/g以上であり、
使用する原料塩化ビニル系重合体の重合度より大
きくかつ相溶性の良好な高重合度のアクリル系樹
脂を選択使用することが望ましく、これにはメタ
クリル酸メチル重合体またはメタクリル酸メチル
を主体とする共重合体例えばメタクリル酸メチル
とアクリル酸エステルからなる共重合体およびこ
れらと共重合可能な単量体との共重合体が例示さ
れる。 また、スチレン系樹脂としては前述のアクリル
系樹脂と同様に、塩化ビニル系樹脂との相溶性が
良好で樹脂組成物の加熱溶融時に樹脂の溶融粘度
を上げ、ゴム弾性を与え、かつ塩化ビニル系樹脂
の高温時の引張り強さあるいは伸び率を向上さ
せ、発泡時におけるセルの合一ないし収縮を防ぎ
目的とする良好な高発泡成形体を得ることができ
るもの、すなわち0.1g/100mlクロロホルム溶液
として20℃で測定した還元粘度が3.0dl/g以上
であり、使用する塩化ビニル系樹脂と相溶性の良
好な高重合度のものを選択使用することが望まし
く、これにはスチレンを主成分とするこれとアク
リロニトリルおよび/またはこれらと共重合可能
な単量体(アクリル酸エステル、メタクリル酸エ
ステル、マレイン酸エステル、フマル酸エステ
ル)との共重合体が好適とされる。なお、このス
チレン系樹脂は使用される主剤としての塩化ビニ
ル系樹脂の重合度が高ければそれに応じ高重合度
のものを使用することが望ましい。 さらに、熱分解型発泡剤としては、アゾジカル
ボンアミド、アゾビスイソブチロニトリル、ジア
ゾアミノベンゼン、ジエチルアゾジカルボキシレ
ート、ジイソプロピルアゾジカルボキシレート、
ジアゾアミノベンゼンなどのアゾ系発泡剤、N,
N′―ジニトロソペンタメチレンテトラミン、N,
N′―ジメチル―N,N′―ジニトロソテレフタル
アミドなどのニトロソ系発泡剤、ベンゼンスルホ
ニルヒドラジド、トルエンスルホニルヒドラジ
ド、3,3′―ジスルホンヒドラジドフエニルスル
ホン、トルエンジスルホニルヒドラゾン、チオビ
ス(ベンゼンスルホニルヒドラジド)、トルエン
スルホニルアジド、トルエンスルホニルセミカル
バジド、4,4′―オキシビス(ベンゼンスルホニ
ルヒドラジド)などのスルホニルヒドラジド系発
泡剤あるいは重炭酸ナトリウムなどがあげられ
る。 また、高融点微粉状物質としては、炭酸カルシ
ウム、タルク、硫酸バリウム、煙霧質シリカ、酸
化チタン、クレー、酸化アルミニウム、ベントナ
イト、けいそう土などの無機物質、あるいはくえ
ん酸、酒石酸、しゆう酸などの有機酸もしくはほ
う酸などの酸と、ナトリウム、カリウム、アンモ
ニウムの重炭酸塩もしくは炭酸塩との組合せから
なるものなどをあげることができる。 以上述べた本発明の方法にしたがつて押出発泡
成形することにより、板状、シート状、棒状、チ
ユーブ状等各種形状の均一微細なセル構造を有す
る高発泡倍率の塩化ビニル系樹脂発泡成形体を連
続的に低コストで製造することができる。 つぎに、具体的実施例をあげる。 実施例 (実験No.1〜11) 各種重合体(表に示すとおり)の塩化ビニル樹
脂100重量部、鉛系安定剤2重量部、ステアリン
酸カルシウム1重量部、タルク3重量部、セルマ
イク133(三協化成製、アゾジカーボンアミド系化
合物、分解温度130〜180℃)0.5重量部、および
アクリル系ポリマー(メタクリル酸メチル80重量
%とアクリル酸n―ブチル20重量%からなる共重
合体、還元粘度11.5dl/g)10重量部をスーパー
ミキサーで混合した。 こうして得た各樹脂組成物を下記の二台連結さ
れた押出機を用いて板状に押出発泡成形した。た
だし有機発泡剤の種類および注入量は表に示すと
おりとした。 〔押出機〕 第一の押出機は口径50mm、L/D=30であり、
この押出機のシリンダーには発泡剤注入孔が設け
てあり、ここから二連式プランジヤーポンプで有
機発泡剤を注入できるよう設計されている。第二
の押出機は口径65mmL/D=28であり、これは第
一の押出機の先端に連結されている。そしてこの
第二の押出機の先端には4mmT×450mmLのダイ
スが取付けられている。 〔第一押出機温度条件等〕 シリンダー温度:1C 90〜120℃ 2C 120〜180℃ 3C 150〜170℃ 4C 150〜170℃ 連結管の温度:150〜170℃ 有機発泡剤注入圧:表中に記載 回転数:50回転 〔第二押出機温度条件等〕 シリンダー温度:1C 145〜160℃ 2C 135〜150℃ 3C 125〜140℃ ダイス温度:120〜135℃ 回転数:15〜18回転 ダイスの圧力:表中に記載 以上の条件で押出発泡成形(押出量約35〜40
Kg/hr)して得た板状発泡体について、密度
(g/cm3)、セル状態を調べたところ、表に示すと
おりの結果であつた。 なお、表中、実験No.1〜5が本発明であり、実
験No.6〜12が比較例である。また、表中の有機発
泡剤において、TCFE、CH、ジペンテンおよび
nDOLは本発明の(イ)、(ロ)成分以外の化合物であ
る。 〔セル状態判定基準〕 A:セル直径が1000μm以下の微細均一セル構
造からなり、外観すぐれている。 B:セル直径が1000μm以上であり、セルが粗
く不均一である。 〔表中で用いた略記号〕 TCFM:トリクロロモノフルオロメタン DCFM:ジクロロジフルオロメタン CDFE:クロロジフルオロエタン TCE:トリクロロエチレン TCM:四塩化炭素 MLC:メチルクロライド MNC:メチレンクロライド TFM:テトラフルオロメタン iPOL:イソプロパノール nPOL:n―プロパノール nDOL:n―デカノール CH:シクロヘキサン TCFE:テトラクロロジフルオロエタン
The present invention provides a method for producing a polyvinyl chloride resin foam molded article, particularly a method for continuously producing a polyvinyl chloride resin foam molded article having a uniform fine cell structure and a high expansion ratio at a low cost. Conventionally, the method for manufacturing polyvinyl chloride resin foam moldings has been as follows: (1) Adding and mixing a so-called decomposable foaming agent, which becomes a gaseous substance upon decomposition, to vinyl chloride resin;
(2) Mix vinyl chloride resin and plasticizer to form a paste (plastisol) and then mechanically foam it. , or a method of adding and mixing a decomposable blowing agent to the plastisol and then heating it to gel and foam the desired product; (3) a mixture containing a decomposable blowing agent;
(4) In the mold, a vinyl chloride resin and a decomposable blowing agent (if necessary, a volatile organic foam is added). A known method is to fill the foam with a foaming agent, a swelling organic solvent, and a softening agent, pressurize and heat it to melt it into a gel, cool it, and then heat it again to foam it. However, methods (1) to (3) above cannot produce a hard or semi-hard foam, and method (4) requires a batch method, and the manufacturing process is complicated, resulting in foaming. Because it takes a lot of time to get in shape,
The final product will be expensive,
Each has their own drawbacks. The present inventors have conducted repeated research on a method for obtaining a vinyl chloride resin foam molded product without such disadvantages, and have first added a heat stabilizer to a vinyl chloride resin, a nucleating agent such as talc, and an acrylic resin. (or styrene-based resin), a decomposable blowing agent such as azodicarbonamide-based compound, etc. is supplied to an extruder, and the resin composition is heated and gelled in this extruder. We propose a method in which an organic solvent-based blowing agent such as propane, butane, pentane, methyl chloride, trichlorofluoromethane, dichlorotetrafluoroethane, or aliphatic halogenated hydrocarbon or aliphatic halogenated hydrocarbon is injected under pressure at temperatures below ℃ and extrusion foam molding is performed. (Unexamined Japanese Patent Publication No. 55-149328
No. 55-152725). However, these methods require (i) extremely high injection pressure during press-fitting, and in order to improve dispersion into the resin composition, it is necessary to apply strong mechanical shear to the resin composition; , and in order to promote the dissolution of the organic blowing agent into the resin, it is necessary to raise the temperature to lower the melt viscosity of the resin. (ii) Also, in order to improve the dispersion of the organic blowing agent into the resin composition, , it is necessary to lengthen the dispersion mixing zone; (iii) the resin temperature in the dispersion mixing zone is increased;
It is necessary to uniformly cool this to a temperature suitable for foam molding and then extrude it into foam. It has been difficult to stably produce a foam molded product having a cell structure. As a result of intensive research to solve this problem, the present inventors found that 100 parts by weight of at least one of the aliphatic hydrocarbons and aliphatic halogenated hydrocarbons mentioned above as a volatile organic blowing agent, and a vinyl chloride resin. When used in combination with 1 to 50 parts by weight of at least one compatible alcohol compound with a boiling point of 200°C or less, this mixed organic blowing agent can be easily and efficiently press-fitted into the resin composition in the extruder. Since it is dissolved and dispersed in the resin component, the above-mentioned
The present invention was completed after confirming that the problems (i) to (iv) were solved. That is, the present invention supplies a vinyl chloride resin composition to an extruder, and then adds (a) an aliphatic compound having a boiling point of 90°C or lower (preferably 70°C or lower) to the resin composition heated in the extruder. At least one selected from hydrocarbons and aliphatic halogenated hydrocarbons100
and (b) 1 to 50 parts by weight of at least one alcohol compound with a boiling point of 200° C. or lower, press-injected at a rate of 1 to 30 parts by weight per 100 parts by weight of the resin composition, The present invention relates to a method for producing a vinyl chloride resin foam molded article, which is characterized by melt-kneading and then extrusion foam molding. According to the method of the present invention, the required amount of the mixed organic blowing agent can be easily uniformly dispersed (dissolved and dispersed) in the heated resin composition in the extruder,
As a result, a polyvinyl chloride resin foam molded article having a uniform fine cell structure and a high expansion ratio can be produced continuously at low cost. The present invention will be explained in detail below. The organic blowing agent used in the method of the present invention is composed of at least one of the above-mentioned components (a) and (b), including an aliphatic hydrocarbon having a boiling point of 90°C or less and aliphatic halogenated hydrocarbons such as propane, butane, isobutane, pentane, neopentane, n-hexane, isohexane, n-heptane, methyl chloride, methylene chloride,
Chloroform, carbon tetrachloride, ethyl chloride, ethylidene chloride, trichloroethylene, 1,2-dichloroethane, trichlorofluoromethane, dichlorodifluoromethane, bromotrifluoromethane,
Examples include tetrafluoromethane, dichlorofluoromethane, chlorotrifluoromethane, trifluoromethane, trichlorotrifluoroethane, dichlorotetrafluoroethane, dibromotetrafluoroethane, chloropentafluoroethane, hexafluoroethane, chlorodifluoroethane, and difluoroethane. In addition, these are 2
You may use more than one species in combination. If an aliphatic hydrocarbon or aliphatic halogenated hydrocarbon with a boiling point higher than 90°C is used, the foam will shrink significantly during foam molding, and a foam with a uniform cell structure will not be obtained. It is necessary to use a component (a) with a boiling point of 90°C or lower, and it is particularly desirable to use a boiling point of 70°C or lower. On the other hand, the component (B) used together with the component (A) above must be an alcohol compound that is compatible with the vinyl chloride resin, but this compound is particularly
It has a boiling point of 200°C or lower, preferably 150°C or lower, specifically methanol, ethanol, n-
Propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-
Examples include butanol, n-amyl alcohol, sec-amyl alcohol, tert-amyl alcohol, 3-pentanol, methylamyl alcohol, 2-ethylbutanol, n-hexyl alcohol, and the like. The use of these is not limited to one type, and two or more types may be used simultaneously. The above-mentioned component (a) is mainly used for the main foaming caused by vaporization when the mixture melt-kneaded in the extruder is discharged under atmospheric pressure, the homogenization of cells formed by foaming, and the formation of foamed products due to the latent heat of vaporization. Component (B) mainly serves to lower and stabilize the injection pressure when injecting the organic blowing agent into the resin composition in the extruder, and to lower the resin melt viscosity in the extruder. The mixing ratio of component (a) and component (b) is 1 to 50 parts by weight of component (b) to 100 parts by weight of component (a). Parts by weight are preferably 5 to 30 parts by weight, and the organic blowing agent consisting of components (a) and (b) must be used in an amount of 1 to 30 parts by weight per 100 parts by weight of the vinyl chloride resin composition. In the method of the present invention, generally, a raw vinyl chloride resin composition is first prepared in advance using a mixer such as a super mixer, and this is fed to an extruder, and then the resin composition is heated in the extruder. A predetermined amount of an organic blowing agent consisting of components (a) and (b) described above is press-fitted from the middle of the cylinder, and the press-fitted organic blowing agent is uniformly mixed into the resin composition in a melt-kneading zone inside the cylinder. This is carried out by a method of dispersing (dissolving and dispersing) the resin composition, then uniformly cooling the resin composition to a temperature suitable for foaming, and extruding it into the atmosphere or into a reduced pressure section to perform foam molding. The organic blowing agent may be press-fitted at any time as long as it does not cause the organic blowing agent to back into the resin composition supply port and cause the resin composition to be bitten into the resin composition. The resin composition is often in a semi-gelled state or completely gelled, and in either of these states, the organic blowing agent is easily and uniformly dispersed in the resin composition, resulting in uniform cells. A molded article having a structure and a high expansion ratio can be obtained. The raw material vinyl chloride resin composition used in the method of the present invention is a mixture of vinyl chloride resin as a main ingredient and various necessary ingredients or additives. For example, from the standpoint of obtaining a better foam molded product, a pyrolytic foaming agent and a high melting point fine powder substance are used to adjust the cell structure uniformly and finely during foam molding to 100 parts by weight of vinyl chloride resin. 0.01 part by weight or more of a cell homogenization aid selected from 0.5 to 30 parts by weight of acrylic resin and/or styrene resin to prevent shrinkage, and if necessary, various additives conventionally added to vinyl chloride resin in amounts that do not impair the purpose or effect of the present invention. It is preferable to use stabilizers, lubricants, fillers, etc.). Vinyl chloride resins are not limited to polyvinyl chloride, but include various copolymers mainly composed of vinyl chloride,
Graft copolymers, polymer blends, etc. are included, and comonomers copolymerizable with vinyl chloride in this case include vinyl acetate, vinylidene chloride, acrylic acid and its esters, methacrylic acid and its esters, acrylonitrile,
One or more of methacrylonitrile, maleic acid and its esters or anhydrides, fumaric acid and its esters, olefins such as ethylene and propylene, and vinyl ethers, and resins used in the polymer blend include Polymers having good miscibility with vinyl chloride resins, such as polyvinylidene chloride, ethylene-vinyl acetate copolymers, ABS resins, MBS resins, chlorinated polyethylenes, and synthetic rubbers such as NBR and SBR. Acrylic resins can uniformly promote gelation of vinyl chloride resins, appropriately increase resin viscosity, provide rubber elasticity, and improve the tensile strength or elongation rate of vinyl chloride resins at high temperatures. ,
i.e. 20 as 0.1g/100ml chloroform solution
The reduced viscosity measured at °C is 3.0 dl/g or more,
It is desirable to select and use an acrylic resin with a high polymerization degree that is higher than the polymerization degree of the raw material vinyl chloride polymer used and has good compatibility. Examples of copolymers include copolymers of methyl methacrylate and acrylic ester, and copolymers of monomers copolymerizable with these. In addition, similar to the aforementioned acrylic resins, styrene resins have good compatibility with vinyl chloride resins, increasing the melt viscosity of the resin when melting the resin composition and imparting rubber elasticity. A product that can improve the tensile strength or elongation rate of the resin at high temperatures and prevent cell coalescence or shrinkage during foaming to obtain the desired highly foamed molded product, i.e., as a 0.1 g/100 ml chloroform solution. It is desirable to select and use a high degree of polymerization that has a reduced viscosity of 3.0 dl/g or more when measured at 20°C and has good compatibility with the vinyl chloride resin used. Copolymers of this and acrylonitrile and/or monomers copolymerizable with these (acrylic esters, methacrylic esters, maleic esters, fumaric esters) are preferred. Note that, if the polymerization degree of the vinyl chloride resin used as the main resin is high, it is desirable to use a styrene resin having a high polymerization degree corresponding to the high polymerization degree of the vinyl chloride resin used as the main resin. Furthermore, examples of thermally decomposable blowing agents include azodicarbonamide, azobisisobutyronitrile, diazoaminobenzene, diethyl azodicarboxylate, diisopropylazodicarboxylate,
Azo blowing agents such as diazoaminobenzene, N,
N'-dinitrosopentamethylenetetramine, N,
Nitroso blowing agents such as N'-dimethyl-N,N'-dinitrosoterephthalamide, benzenesulfonyl hydrazide, toluenesulfonyl hydrazide, 3,3'-disulfone hydrazide phenyl sulfone, toluene disulfonyl hydrazone, thiobis(benzenesulfonyl hydrazide) ), toluenesulfonyl azide, toluenesulfonyl semicarbazide, 4,4'-oxybis(benzenesulfonylhydrazide) and other sulfonyl hydrazide foaming agents, or sodium bicarbonate. In addition, high melting point fine powder substances include inorganic substances such as calcium carbonate, talc, barium sulfate, fumed silica, titanium oxide, clay, aluminum oxide, bentonite, diatomaceous earth, and citric acid, tartaric acid, oxalic acid, etc. Examples include those consisting of a combination of an organic acid or an acid such as boric acid and a bicarbonate or carbonate of sodium, potassium, or ammonium. By extrusion foam molding according to the method of the present invention described above, a polyvinyl chloride resin foam molded product with a high expansion ratio and having a uniform fine cell structure in various shapes such as plate, sheet, rod, and tube shapes is produced. can be manufactured continuously at low cost. Next, specific examples will be given. Examples (Experiment Nos. 1 to 11) 100 parts by weight of vinyl chloride resin of various polymers (as shown in the table), 2 parts by weight of lead-based stabilizer, 1 part by weight of calcium stearate, 3 parts by weight of talc, Cellmic 133 (3 parts by weight) Kyokasei, azodicarbonamide-based compound, decomposition temperature 130-180°C) 0.5 parts by weight, and acrylic polymer (copolymer consisting of 80% by weight of methyl methacrylate and 20% by weight of n-butyl acrylate, reduced viscosity) 11.5 dl/g) were mixed in a super mixer. Each resin composition thus obtained was extruded and foam-molded into a plate shape using the following two extruders connected together. However, the type and injection amount of the organic blowing agent were as shown in the table. [Extruder] The first extruder has a diameter of 50 mm and L/D = 30,
The cylinder of this extruder is equipped with a blowing agent injection hole through which an organic blowing agent can be injected using a dual plunger pump. The second extruder has a diameter of 65 mm L/D=28 and is connected to the tip of the first extruder. A die of 4 mm T x 450 mm L is attached to the tip of this second extruder. [Temperature conditions of first extruder, etc.] Cylinder temperature: 1C 90-120℃ 2C 120-180℃ 3C 150-170℃ 4C 150-170℃ Connecting pipe temperature: 150-170℃ Organic blowing agent injection pressure: In the table Description Rotation speed: 50 rotations [second extruder temperature conditions, etc.] Cylinder temperature: 1C 145-160℃ 2C 135-150℃ 3C 125-140℃ Die temperature: 120-135℃ Rotation speed: 15-18 rotations Die pressure : Listed in the table Extrusion foam molding under the above conditions (extrusion amount approx. 35-40
When the density (g/cm 3 ) and cell state of the plate-like foam obtained using the same method were examined, the results were as shown in the table. In the table, Experiments Nos. 1 to 5 are of the present invention, and Experiments Nos. 6 to 12 are comparative examples. In addition, among the organic blowing agents in the table, TCFE, CH, dipentene and
nDOL is a compound other than components (a) and (b) of the present invention. [Cell Condition Judgment Criteria] A: Consists of a fine uniform cell structure with a cell diameter of 1000 μm or less, and has an excellent appearance. B: The cell diameter is 1000 μm or more, and the cells are rough and non-uniform. [Abbreviations used in the table] TCFM: Trichloromonofluoromethane DCFM: Dichlorodifluoromethane CDFE: Chlorodifluoroethane TCE: Trichloroethylene TCM: Carbon tetrachloride MLC: Methyl chloride MNC: Methylene chloride TFM: Tetrafluoromethane iPOL: Isopropanol nPOL: n-propanol nDOL: n-decanol CH: cyclohexane TCFE: tetrachlorodifluoroethane

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 塩化ビニル系樹脂組成物を押出機に供給し、
ついで、この押出機内で加熱された上記樹脂組成
物中に、 (イ) 沸点90℃以下の脂肪族炭化水素および脂肪族
ハロゲン化炭化水素から選ばれる少なくとも1
種100重量部と (ロ) 沸点200℃以下のアルコール化合物の少なく
とも1種1〜50重量部と からなる有機発泡剤を、前記樹脂組成物100重量
部当り1〜30重量部の割合で圧入し、溶融混練を
経て押出発泡成形させることを特徴とする塩化ビ
ニル系樹脂発泡成形体の製造方法。
[Claims] 1. Supplying a vinyl chloride resin composition to an extruder,
Then, in the resin composition heated in this extruder, (a) at least one selected from aliphatic hydrocarbons and aliphatic halogenated hydrocarbons having a boiling point of 90°C or less is added.
An organic blowing agent consisting of 100 parts by weight of seeds and (b) 1 to 50 parts by weight of at least one alcohol compound having a boiling point of 200°C or less is press-ined at a ratio of 1 to 30 parts by weight per 100 parts by weight of the resin composition. A method for producing a polyvinyl chloride resin foam molded article, which comprises melt-kneading and extrusion foam molding.
JP56188145A 1981-11-24 1981-11-24 Manufacture of vinyl chloride-based resin expanded formed product Granted JPS5889623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188145A JPS5889623A (en) 1981-11-24 1981-11-24 Manufacture of vinyl chloride-based resin expanded formed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188145A JPS5889623A (en) 1981-11-24 1981-11-24 Manufacture of vinyl chloride-based resin expanded formed product

Publications (2)

Publication Number Publication Date
JPS5889623A JPS5889623A (en) 1983-05-28
JPH0230342B2 true JPH0230342B2 (en) 1990-07-05

Family

ID=16218529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188145A Granted JPS5889623A (en) 1981-11-24 1981-11-24 Manufacture of vinyl chloride-based resin expanded formed product

Country Status (1)

Country Link
JP (1) JPS5889623A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314161B2 (en) 2005-08-22 2012-11-20 Owens Corning Intellectual Capital, Llc Deformable, rigid polystyrene foam board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366963A (en) * 1976-11-26 1978-06-14 Sekisui Chemical Co Ltd Production of chlorinated vinyl chloride resin foam
JPS55152725A (en) * 1979-05-16 1980-11-28 Shin Etsu Chem Co Ltd Preparation of moldedarticle of foamed vinyl chloride resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366963A (en) * 1976-11-26 1978-06-14 Sekisui Chemical Co Ltd Production of chlorinated vinyl chloride resin foam
JPS55152725A (en) * 1979-05-16 1980-11-28 Shin Etsu Chem Co Ltd Preparation of moldedarticle of foamed vinyl chloride resin

Also Published As

Publication number Publication date
JPS5889623A (en) 1983-05-28

Similar Documents

Publication Publication Date Title
US5348984A (en) Expandable composition and process for extruded thermoplastic foams
USRE38993E1 (en) Process for producing alkenyl aromatic foams using a combination of atmospheric and organic gases and foams produced thereby
JP3020632B2 (en) Crosslinked polypropylene composition suitable for the production of foamed materials
US4402893A (en) Method for the preparation of a cellular foamed body of a vinyl chloride-based resin
KR100350337B1 (en) Foam manufactured by injecting water into Harbustream
NZ520495A (en) Extruded foam product with reduced surface defects
JP2003515646A (en) Extruded foam products
JP2001079916A (en) Method for expansion molding of thermoplastic resin
JPS5840986B2 (en) Method for producing polyvinyl chloride resin foam moldings
JPH0230342B2 (en)
JPS6124974B2 (en)
JPH0329102B2 (en)
JPH0230341B2 (en)
JPS6217613B2 (en)
JPH0449863B2 (en)
JPS5840987B2 (en) Method for producing polyvinyl chloride resin foam moldings
KR830002456B1 (en) Method for manufacturing cell foam of vinyl chloride base resin
JPH09111030A (en) Polyethylene terephthalate resin foamed product and its production
JP3306189B2 (en) Olefin resin composition for foaming
JPS60179429A (en) Vinyl chloride resin foam
JP3110630B2 (en) Polyolefin resin foam
JPS5891730A (en) Production of expandable vinyl chloride polymer composition
JPS5949243A (en) Chlorinated vinylchloride-based resin expansion molded product and manufacture of the same
JP2001302830A (en) Injection expansion molding resin composition, method for producing injection expanded molding and the injection expanded molding
JPS6051415B2 (en) Method for manufacturing soft vinyl chloride resin foam molded product