JPH0230329B2 - - Google Patents

Info

Publication number
JPH0230329B2
JPH0230329B2 JP57131647A JP13164782A JPH0230329B2 JP H0230329 B2 JPH0230329 B2 JP H0230329B2 JP 57131647 A JP57131647 A JP 57131647A JP 13164782 A JP13164782 A JP 13164782A JP H0230329 B2 JPH0230329 B2 JP H0230329B2
Authority
JP
Japan
Prior art keywords
component
phenol
curing
compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57131647A
Other languages
Japanese (ja)
Other versions
JPS5920321A (en
Inventor
Kaoru Kanayama
Yoshinobu Oonuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP13164782A priority Critical patent/JPS5920321A/en
Publication of JPS5920321A publication Critical patent/JPS5920321A/en
Publication of JPH0230329B2 publication Critical patent/JPH0230329B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】 本発明は硬化性に優れるエポキシ樹脂組成物に
関するものである。本発明の組成物は粉体塗料、
接着剤、成形材料として有用である。 エポキシ樹脂は熱硬化性樹脂として被覆、積
層、塗装、接着及び成形等の種々の分野で広く利
用されている。近年、電気機器の軽量小型化にと
もない、耐熱性に優れた硬化物を与えるエポキシ
樹脂の研究が重点的に行われ、現在、かかる分野
においてフエノールノボラツクのエポキシ化物、
クレゾールノボラツクのエポキシ化物、メチレン
ジアニリンのテトラエポキシド、トリおよびテト
ラ(ヒドロキシフエニル)アルカンのエポキシ化
物等が使用されている。 これらエポキシ化合物は耐熱性に優れた硬化物
を与えるが、硬化に高温で長時間要する。 本発明はかかる硬化性の改良を目的としたもの
で耐熱性に優れる硬化物を与えるエポキシ樹脂組
成物、即ち、 (A)成分:一般式() 〔式中、R1,R2は水素原子またはメチル基を
示す〕 で表わされるパラ―〔α,α,α′,α′―テトラキ
ス(グリシジルオキシアリール)〕キシレン (B)成分: ポリフエノール 上記(A)成分と(B)成分よりなるエポキシ樹脂組成
物を提供するものである。 本発明において、上記(A)成分の()式で示さ
れる四官能のグリシジル化合物は、予め、前述し
たようにテレフタルアルデヒドと一価のフエノー
ル化合物、即ち、フエノールあるいはクレゾール
とを脱水反応させて、下記の一般式()で示さ
れる四価のフエノール化合物 〔式中、R2は水素原子またはメチル基を示す〕
を生成し、ついでこれにエピハロヒドリンまたは
β―メチルエピハロヒドリンを第4級アンモニウ
ム塩またはアルカリの存在下に反応させることに
より得られる(特開昭55−139373号)。 前段のテレフタルアルデヒドと一価フエノール
化合物との反応は、塩酸、硫酸、等の酸性触媒の
存在下にテレフタルアルデヒド1モルに対し、一
価フエノール化合物を4.0〜80モル、好ましくは
8〜40モルの割合で20〜150℃の温度で1〜10時
間反応させることにより行われ、反応終了後、過
剰のフエノール化合物を減圧留去し、得た固体の
生成物を粉砕後、テトラクロルエタン等の溶剤で
洗浄し、真空下で加熱乾燥することにより濃オレ
ンジ色の固体生成物の四価のフエノール化合物を
得ることができる。 次に、後段の反応について詳述する。使用する
エピハロヒドリン及びβ―メチルエピハロヒドリ
ンとしては、たとえばエピクロルヒドリン、エピ
ブロモヒドリン、β―メチルエピクロルヒドリン
及びβ―メチルエピブロモヒドリン等があげられ
る。そのエピハロヒドリン又はβ―メチルエピハ
ロヒドリンの使用量は原料の四価のフエノール化
合物1モルに対して4〜40モル、好ましくは6〜
20モルである。過剰に使用したエピハロヒドリン
又はβ―メチルエピハロヒドリンは蒸留回収して
再使用することができる。 この四官能のエポキシ化合物は単独で分離され
ることは稀で、一般にはグリシジル基や()式
のR2で示されるR2のメチル基が2,2′,3,3′,
4,4′,5,5′の位置にある種々の四官能エポキ
シ化合物の混合物、例えば、フエノールを原料と
したときは、パラ―〔α,α,α′,α′―テトラキ
ス(p―グリシジルオキシフエニル)〕―キシレ
ン又はパラ―〔α,α,α′,α′―テトラキス(o
―グリシジルオキシフエニル)〕―キシレン及び
極く少量成分と思われるが、パラ―〔α,α,
α′,α′―テトラキス(m―グリシジルオキシフエ
ニル)〕―キシレンが;m―クレゾールを原料と
したときは、パラ―〔α,α,α′,α′―テトラキ
ス(2―メチル―4―グリシジルオキシフエニ
ル)〕―キシレン又はパラ〔α,α,α′,α′―テ
トラキス(2―メチル―6―グリシジルオキシフ
エニル)〕―キシレン等の混合物である。 これら四官能のエポキシ化合物の他に、次式
()で示される七官能以上のエポキシ化合物が
60重量%以下の割合で含有される。 〔式中、R1,R2は水素原子またはメチル基
を;Xは、Hまたは を示す〕。 次に、(B)成分のポリフエノールとしては、ビス
フエノールA、ビスフエノールF、テトラブロム
ビスフエノールA、ノボラツクフエノール、クレ
ゾールノボラツクフエノール、ポリ―p―ビニル
フエノール、ポリ―p―イソプロペニルフエノー
ル、レゾルシノール、ピロカテコール、ビス―
(4―ヒドロキシフエニル)―スルホン、ヒドロ
キノン、ビス―(4―ヒドロキシフエニル)―メ
チル―フエニルメタン、一般式()で示される
ポリフエノール および前記一般式()で示されるポリフエノ
ール等があげられる。 これらの中でも一般式()および一般式
()で示されるポリフエノールは軟化点が110〜
130℃であり、かつ耐熱性に優れた硬化物を与え
るので本発明のエポキシ樹脂組成物を粉体塗料と
して用いるときは硬化剤として有用である。 (A)成分のポリエポキシ化合物と(B)成分のポリフ
エノールの配合比は、一般に(A)成分のエポキシ基
当量と(B)成分のフエノール性水酸基当量が等量と
なるのを目安にして配合される。具体的にはポリ
フエノールの種類、硬化温度、硬化時間にもよる
が(A)成分のポリエポキシ化合物100重量部に対し
て(B)成分は30〜100重量部の割合で用いる。 本発明の樹脂組成物には、必要に応じて硬化促
進剤、可塑剤、有機溶剤、反応性希釈剤、増量
剤、充てん剤、補強剤、顔料、難燃化剤、増粘剤
及び可撓性付与剤等の種々の添加剤を配合するこ
とができる。 (A)成分と(B)成分の混合は、ロール、ニーダー等
を用いて加熱混合されたり、溶剤に溶解して行わ
れ、硬化は組成物を50〜200℃で0.1〜10時間加熱
することにより達成される。 本発明のエポキシ樹脂組成物は硬化性に優れ、
かつ、得られる硬化物は耐熱性に富むものであ
る。 以下に実施例をあげてさらに具体的な説明をす
るが、これらの実施例は例示であり、本発明は実
施例によつて制限されるものでない。 ポリエポキシ化合物の製造例 例 1: 温度計、撹拌機、冷却器を備えた4口フラスコ
内に、20gのテレフタルアルデヒドと224.4gの
フエノールを仕込んだ。該混合物を50〜60℃に保
つて、濃塩酸を0.4ml添加し、撹拌を開始した。
反応初期に約80℃まで発熱による昇温が見られた
が、数分で発熱はおさまつた。これを加熱して系
の温度を100℃に保つて4時間撹拌し、脱水反応
を終了させた。 反応終了後、未反応のフエノールをエバポレー
ターで減圧(30mmHg)留去し、180℃、1mmHg
の条件下に真空ポンプで留去したのち、残留物を
アルミ皿へ流し出し、冷却して固形化し、これを
粉砕後、テトラクロルエタンで2〜3回洗浄し、
乾燥させて赤橙色の粉末、パラ―〔α,α,α′,
α′―テトラキス(ハイドロキシフエニル〕―キシ
レンを約70g得た。 上記で得た四価のフエノール化合物の粉末60
g、エピクロルヒドリン187.6g及びテトラエチ
ルアンモニウムクロリド0.6gを500mlの3口フラ
スコ内に入れ、エピクロルヒドリンの還流温度
(117℃)で約3時間付加反応させた。次いで、反
応液温度を約60℃に冷却し、これに苛性ソーダ粒
子21.2gを加え、60〜70℃の温度に制御しながら
激しく撹拌して脱塩化水素反応を行なつた(2時
間)。 その後、反応液を熱時過して生成した塩化ナ
トリウムを除去し、液を100℃及び30mmHgの減
圧下で処理して未反応のエピクロルヒドリンを留
去し、パラ―〔〔α,α,α′,α′―テトラキス
(グリシジルオキシフエニル)〕―キシレンを約87
g得た。 この化合物のエポキシ当量は190であり、軟化
点65〜69℃であつた。 例 2 フエノール222.4gの代りに、メタクレゾール
253.1gを用いる他は上記例1と同様にしてパラ
―〔α,α,α′,α′―テトラキス(グリシジルオ
キシトリール)〕―キシレンの橙色透明な固体79
gを得た。 この化合物のエポキシ当量は201、軟化点は64
℃であつた。 実施例 1 例1で得たポリエポキシ化合物100重量部に対
し、テレフタルアルデヒド1モルに対してフエノ
ールを塩酸触媒の存在下に16モルの割合で反応さ
せて得た水酸基当量121、軟化点115〜125℃)の
ポリフエノール63.7重量部および促進剤として2
―エチル―4―メチルイミダゾールアジン1重量
部をロールを用いて100℃の加熱ロールを用いて
5分間混練し、これを粉砕機で粉砕した。 キユラストメーターを用いて得た粉末の硬化時
間と硬化度を調べた。結果を第1図に示す。 また、粉末を金型内に入れ、プレス成形機を用
い、160℃、100Kg/cm2の条件で10分間圧縮成形を
行ない、縦12.7mm、横127mm、高さ6.4mmの表1に
示す物性の硬化物を得た。 実施例2〜4、比較例1〜4 表1に示すポリエポキシ化合物、硬化剤、促進
剤を用いる他は実施例1と同様にして硬化物を得
た。結果を第1図および表1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an epoxy resin composition with excellent curability. The composition of the present invention is a powder coating,
Useful as adhesive and molding material. Epoxy resins are widely used as thermosetting resins in various fields such as coating, lamination, painting, adhesion, and molding. In recent years, as electrical equipment has become lighter and more compact, research has focused on epoxy resins that produce cured products with excellent heat resistance.
Epoxidized products of cresol novolak, tetraepoxide of methylene dianiline, and epoxidized products of tri- and tetra(hydroxyphenyl) alkanes are used. Although these epoxy compounds give cured products with excellent heat resistance, curing takes a long time at high temperatures. The present invention aims to improve such curability, and provides an epoxy resin composition that provides a cured product with excellent heat resistance, that is, component (A): General formula () [In the formula, R 1 and R 2 represent a hydrogen atom or a methyl group] Para-[α, α, α′, α′-tetrakis(glycidyloxyaryl)]xylene (B) component: Polyphenol Above An epoxy resin composition comprising component (A) and component (B) is provided. In the present invention, the tetrafunctional glycidyl compound represented by the formula ( ) of the component (A) is prepared by dehydrating terephthalaldehyde and a monovalent phenol compound, that is, phenol or cresol, as described above. Tetravalent phenol compound represented by the following general formula () [In the formula, R 2 represents a hydrogen atom or a methyl group]
is produced and then reacted with epihalohydrin or β-methyl epihalohydrin in the presence of a quaternary ammonium salt or an alkali (Japanese Patent Application Laid-Open No. 139373/1983). The reaction between terephthalaldehyde and the monovalent phenol compound in the first step is performed by adding 4.0 to 80 mol, preferably 8 to 40 mol, of the monovalent phenol compound to 1 mol of terephthalaldehyde in the presence of an acidic catalyst such as hydrochloric acid or sulfuric acid. The reaction is carried out by reacting at a temperature of 20 to 150°C for 1 to 10 hours. After the reaction is complete, excess phenol compound is distilled off under reduced pressure, and the obtained solid product is crushed and then treated with a solvent such as tetrachloroethane. A deep orange solid product of a tetravalent phenol compound can be obtained by washing with water and heating and drying under vacuum. Next, the subsequent reaction will be explained in detail. Examples of the epihalohydrin and β-methylepihalohydrin used include epichlorohydrin, epibromohydrin, β-methylepichlorohydrin, and β-methylepibromohydrin. The amount of epihalohydrin or β-methyl epihalohydrin used is 4 to 40 mol, preferably 6 to 40 mol, per 1 mol of the raw material tetravalent phenol compound.
It is 20 moles. Epihalohydrin or β-methyl epihalohydrin used in excess can be recovered by distillation and reused. This tetrafunctional epoxy compound is rarely isolated alone, and generally the glycidyl group or the methyl group of R 2 shown in formula ( ) is 2,2', 3,3',
When a mixture of various tetrafunctional epoxy compounds at the 4, 4', 5, 5' positions, for example, phenol, is used as a raw material, para-[α, α, α', α'-tetrakis (p-glycidyl oxyphenyl)]-xylene or para-[α, α, α′, α′-tetrakis(o
-glycidyloxyphenyl)]-xylene and a very small amount of para-[α, α,
When α′,α′-tetrakis(m-glycidyloxyphenyl)]-xylene; -glycidyloxyphenyl)]-xylene or para[α, α, α', α'-tetrakis(2-methyl-6-glycidyloxyphenyl)]-xylene, etc. In addition to these tetrafunctional epoxy compounds, there are heptafunctional or higher functional epoxy compounds represented by the following formula ().
Contained in a proportion of 60% by weight or less. [In the formula, R 1 and R 2 are hydrogen atoms or methyl groups; X is H or ]. Next, the polyphenols of component (B) include bisphenol A, bisphenol F, tetrabromo bisphenol A, novolac phenol, cresol novolac phenol, poly-p-vinylphenol, poly-p-isopropenylphenol. , resorcinol, pyrocatechol, bis-
(4-hydroxyphenyl)-sulfone, hydroquinone, bis-(4-hydroxyphenyl)-methyl-phenylmethane, polyphenol represented by the general formula () and polyphenols represented by the general formula (). Among these, polyphenols represented by general formula () and general formula () have a softening point of 110~
The epoxy resin composition of the present invention is useful as a curing agent when used as a powder coating because it gives a cured product with a temperature of 130°C and excellent heat resistance. In general, the blending ratio of the polyepoxy compound (A) component and the polyphenol component (B) is determined so that the epoxy group equivalent of the (A) component and the phenolic hydroxyl group equivalent of the (B) component are equal. It is blended. Specifically, although it depends on the type of polyphenol, curing temperature, and curing time, component (B) is used in a ratio of 30 to 100 parts by weight per 100 parts by weight of the polyepoxy compound (A). The resin composition of the present invention may optionally contain a curing accelerator, a plasticizer, an organic solvent, a reactive diluent, an extender, a filler, a reinforcing agent, a pigment, a flame retardant, a thickener, and a flexibilizer. Various additives such as a sex imparting agent can be blended. Components (A) and (B) are mixed by heating using a roll, kneader, etc., or by dissolving them in a solvent. For curing, the composition is heated at 50 to 200°C for 0.1 to 10 hours. This is achieved by The epoxy resin composition of the present invention has excellent curability,
Moreover, the obtained cured product has high heat resistance. A more specific explanation will be given below with reference to Examples, but these Examples are merely illustrative and the present invention is not limited by the Examples. Production Examples of Polyepoxy Compounds Example 1: 20 g of terephthalaldehyde and 224.4 g of phenol were charged into a 4-necked flask equipped with a thermometer, a stirrer, and a condenser. The mixture was maintained at 50-60°C, 0.4 ml of concentrated hydrochloric acid was added, and stirring was started.
At the beginning of the reaction, an exothermic rise in temperature to approximately 80°C was observed, but the exotherm subsided within a few minutes. This was heated to maintain the system temperature at 100°C and stirred for 4 hours to complete the dehydration reaction. After the reaction, unreacted phenol was distilled off under reduced pressure (30 mmHg) using an evaporator, and the temperature was 180°C and 1 mmHg.
After distilling it off with a vacuum pump under the following conditions, the residue was poured into an aluminum dish, cooled and solidified, and after pulverizing it, it was washed 2 to 3 times with tetrachloroethane.
When dried, it becomes a reddish-orange powder, para-[α, α, α′,
Approximately 70 g of α′-tetrakis(hydroxyphenyl)-xylene was obtained. 60 g of the tetravalent phenol compound powder obtained above
g, 187.6 g of epichlorohydrin, and 0.6 g of tetraethylammonium chloride were placed in a 500 ml three-necked flask, and an addition reaction was carried out at the reflux temperature of epichlorohydrin (117° C.) for about 3 hours. Next, the temperature of the reaction solution was cooled to about 60°C, 21.2 g of caustic soda particles were added thereto, and the mixture was vigorously stirred while controlling the temperature at 60 to 70°C to conduct a dehydrochlorination reaction (2 hours). Thereafter, the reaction solution was heated to remove the generated sodium chloride, and the solution was treated at 100°C and under reduced pressure of 30 mmHg to distill off unreacted epichlorohydrin. , α′-tetrakis(glycidyloxyphenyl)]-xylene at about 87
I got g. This compound had an epoxy equivalent weight of 190 and a softening point of 65-69°C. Example 2 Instead of 222.4g of phenol, metacresol
An orange transparent solid of para-[α, α, α', α'-tetrakis (glycidyloxytril)]-xylene was prepared in the same manner as in Example 1 above, except that 253.1 g was used.
I got g. The epoxy equivalent of this compound is 201 and the softening point is 64
It was warm at ℃. Example 1 100 parts by weight of the polyepoxy compound obtained in Example 1 was reacted with 16 moles of phenol per mole of terephthalaldehyde in the presence of a hydrochloric acid catalyst, with a hydroxyl equivalent of 121 and a softening point of 115 to 1. 63.7 parts by weight of polyphenol (125°C) and 2 parts by weight as accelerator
1 part by weight of -ethyl-4-methylimidazoleazine was kneaded for 5 minutes using a heated roll at 100°C, and the mixture was ground using a grinder. The curing time and degree of curing of the obtained powder were investigated using a culastometer. The results are shown in Figure 1. In addition, the powder was placed in a mold and compression molded using a press molding machine for 10 minutes at 160°C and 100 kg/cm 2 , and the physical properties shown in Table 1 were obtained. A cured product was obtained. Examples 2 to 4, Comparative Examples 1 to 4 Cured products were obtained in the same manner as in Example 1, except that the polyepoxy compounds, curing agents, and accelerators shown in Table 1 were used. The results are shown in FIG. 1 and Table 1. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1〜4および比較例1
〜4の組成物を160℃で硬化させる際の硬化時間
と組成物の相関を示す図である。
Figure 1 shows Examples 1 to 4 of the present invention and Comparative Example 1.
It is a figure showing the correlation between the curing time and the composition when curing the composition of ~4 at 160°C.

Claims (1)

【特許請求の範囲】 1 (A) 成分: 一般式 〔式中、R1,R2は水素原子またはメチル基
を示す〕 で表わされるポリエポキシ化合物 (B) 成分: ポリフエノール 上記(A)成分と(B)成分よりなるエポキシ樹脂組成
物。
[Claims] 1 (A) Component: General formula [In the formula, R 1 and R 2 represent a hydrogen atom or a methyl group] Polyepoxy compound (B) represented by the following Component: Polyphenol An epoxy resin composition comprising the above component (A) and component (B).
JP13164782A 1982-07-28 1982-07-28 Epoxy resin composition Granted JPS5920321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13164782A JPS5920321A (en) 1982-07-28 1982-07-28 Epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13164782A JPS5920321A (en) 1982-07-28 1982-07-28 Epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS5920321A JPS5920321A (en) 1984-02-02
JPH0230329B2 true JPH0230329B2 (en) 1990-07-05

Family

ID=15062942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13164782A Granted JPS5920321A (en) 1982-07-28 1982-07-28 Epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS5920321A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166762A (en) * 1984-09-08 1986-04-05 Somar Corp Epoxy resin composition for powder coating
JPH0692570B2 (en) * 1986-12-12 1994-11-16 東芝ケミカル株式会社 Adhesive for copper clad laminates
US6156865A (en) * 1998-11-19 2000-12-05 Nec Corporation Flame retardant thermosetting resin composition
WO2015060306A1 (en) * 2013-10-23 2015-04-30 日本化薬株式会社 Epoxy resin mixture, epoxy resin composition, prepreg, and cured article thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139373A (en) * 1979-04-13 1980-10-31 Mitsubishi Petrochem Co Ltd Para-(alpha,alpha,alpha',alpha'-tetrakis(glycidyloxyaryl))xylene
JPS56135516A (en) * 1980-03-26 1981-10-23 Shin Kobe Electric Mach Co Ltd Epoxy resin composition for laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139373A (en) * 1979-04-13 1980-10-31 Mitsubishi Petrochem Co Ltd Para-(alpha,alpha,alpha',alpha'-tetrakis(glycidyloxyaryl))xylene
JPS56135516A (en) * 1980-03-26 1981-10-23 Shin Kobe Electric Mach Co Ltd Epoxy resin composition for laminate

Also Published As

Publication number Publication date
JPS5920321A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
JP3476027B2 (en) Manufacturing method of epoxy resin
JPS643217B2 (en)
EP0679165B1 (en) Substituted resorcinol-based epoxy resins
JPH0230329B2 (en)
JP3573530B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JP3021148B2 (en) Epoxy resin, resin composition and cured product
JPH09268220A (en) Production of epoxy resin, epoxy resin composition and its cured material
JPS6165876A (en) Trifunctional epoxy compound
JPH03229717A (en) Phenolic resin containing propenyl group
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JPH08239454A (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JPS6225116A (en) Resin obtained from novel polyglycidyl ether
JPH09278868A (en) Trifunctional epoxy resin
JPS6213351B2 (en)
JPS6343396B2 (en)
JP3886060B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2808034B2 (en) Polyepoxy compound and epoxy resin composition
JP2823056B2 (en) Epoxy resin composition and cured product thereof
US3483164A (en) Trisphenols and epoxide resins prepared therefrom
JP4186153B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board
JP4674884B2 (en) Production method of epoxy resin
JPS58196224A (en) Preparation of polyepoxy compound
JP3543282B2 (en) Method for producing epoxy resin, and cured product of epoxy resin composition
JP4158137B2 (en) Epoxy resin composition and cured product thereof.
JPS6256148B2 (en)