JPH02303073A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPH02303073A
JPH02303073A JP1121519A JP12151989A JPH02303073A JP H02303073 A JPH02303073 A JP H02303073A JP 1121519 A JP1121519 A JP 1121519A JP 12151989 A JP12151989 A JP 12151989A JP H02303073 A JPH02303073 A JP H02303073A
Authority
JP
Japan
Prior art keywords
layer
light
layers
multiplication
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1121519A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ito
和弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1121519A priority Critical patent/JPH02303073A/en
Publication of JPH02303073A publication Critical patent/JPH02303073A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photodetector of low noise, high sensitivity, and high speed, by forming, in order, a layer whose forbidden bandwidth is smaller than that of a multiplying layer and a layer whose forbidden bandwidth is larger than that of the multiplying layer, on the light incidence side, and making the width of a depletion layer be the whole region of the small forbidden bandwidth layer and a region reaching a part of the multiplying layer. CONSTITUTION:From the surface of a layer 36 to a substrate 31, a conical stand is etched, and an SiNx film 37 is stuck on the surface; a P-type electrode 38 is formed on the whole surface of the rear of the substrate 31; a ring-shaped N-type electrode 39 is formed on the upper surface of the layer 36. While projecting light from a light receiving window inside the electrode 39, a backward voltage is applied between the electrodes 38, 39. Layers 32-35 turn to depletion layers, and the greater part of light absorption is executed by the layer 35. The layers 32, 33 act as multiplying layers. The layer 36 turns to a window layer for transmitting light, and the layer 31 turns to a transmitting layer for the component which has not been subjected to light absorption. The layer 34 acts as a relaxation layer for adjusting electric field intensity distribution.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は光通信等に使用される半導体受光装置IVtに
係り、特に高感度・高速に好適な構造を持つ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor light receiving device IVt used in optical communications, and particularly to a device having a structure suitable for high sensitivity and high speed.

C従来の技術〕 AjlGaSbアバランシェ ホトダイオードの一例が
アイ・イー・イー・イー、インターナショナル・エレク
トロニクス・デバイシズ・ミーティング88.(198
8年)第487頁〜490頁(IEEE、  IEDM
88  (1988)  円」487−490)におい
て論じられている。この従来例の装置は、n型0aSb
基板上にn3!:lGa5b%、低キヤリア濃度のn型
およびp型のiっGat−8sb(x40.05)層を
積層した構造を持つ1本構造において、信号光はp型A
 fi G a S b層側から照射され、pおよびn
型AQGasb層、または、n型GaSbMで吸収され
、電子・正孔対を発生する。電子、正孔は電極間に印加
された電界により、各々、基板側とPA Q GaSb
側方向へ移動し、n型A n GaSb層内で増倍作用
を起こす事が可能である。この結果、IIJIIIな信
号を増幅でき、長距離の伝送に使用しようとするもので
ある。
C. Prior Art] An example of the AjlGaSb avalanche photodiode is published by IEE, International Electronics Devices Meeting 88. (198
8th year) pp. 487-490 (IEEE, IEDM
88 (1988) Yen, 487-490). This conventional device is an n-type 0aSb
n3 on the board! :1Ga5b%, low carrier concentration, n-type and p-type iGat-8sb (x40.05) layer stacked in a single structure, the signal light is p-type A.
irradiated from the fi G a S b layer side, p and n
It is absorbed by the AQGaSb layer or the n-type GaSbM layer and generates electron-hole pairs. Electrons and holes are caused by the electric field applied between the electrodes, respectively, to the substrate side and the PA Q GaSb
It is possible to move laterally and cause a multiplication effect within the n-type A n GaSb layer. As a result, it is possible to amplify high-speed signals, and it is intended to be used for long-distance transmission.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の装置において、空乏層と呼ばれる電界が印加
される領域は、増倍作用を持つn型AΩGaSb層のみ
であり、光信号が入射する表面の層および基板側の層は
禁止帯幅が空乏層の禁止帯幅と同じであるか、または非
常に近い値を持っている。この結果、光通信で使用され
る1〜1.6μmの波長範囲では、空乏層はもちろん、
そb以外のキャリア濃度の高い領域であるp型A Q 
xGaz−xsb (x 40−05 )層でも光吸収
が生じ、電子・正孔対を発生させる。また、pおよびn
型のA Q GaSb層が薄い場合にはGaSb層でも
光吸収と電子・正孔対の発生をする。
In the conventional device described above, the region to which an electric field is applied, called the depletion layer, is only the n-type AΩGaSb layer that has a multiplication effect, and the layer on the surface where the optical signal is incident and the layer on the substrate side have a depleted bandgap. It has a value that is the same as or very close to the forbidden band width of the layer. As a result, in the wavelength range of 1 to 1.6 μm used in optical communications, not only the depletion layer but also the
p-type A Q, which is a region with high carrier concentration other than region b
Light absorption also occurs in the xGaz-xsb (x 40-05 ) layer, generating electron-hole pairs. Also, p and n
When the A Q GaSb layer of the mold is thin, the GaSb layer also absorbs light and generates electron-hole pairs.

この結果、従来の装置では以下のような問題があった。As a result, the conventional device has the following problems.

■増倍層内での光吸収による電子と正孔の混合発生が起
きる事、さらに、Garbとp型A Q GaSb層の
増倍層の近接する領域から各々正孔と電子が同時に増倍
層へ注入される(混合注入)ため。
■Mixing of electrons and holes occurs due to light absorption in the multiplication layer, and holes and electrons are simultaneously generated in the multiplication layer from adjacent regions of the GaB and p-type AQ GaSb multiplication layers. (mixed injection).

イオン化率比が低下し、雑音が大きくなる。The ionization rate ratio decreases and noise increases.

■増倍層に極く近接した領域を除く、電界の印加されな
い領域、すなわち、p型A n GaSb層とGaSb
層の大部分で吸収された光は電気信号に変換されないた
め、効率が低い。
■A region to which no electric field is applied, excluding the region very close to the multiplication layer, i.e., the p-type A n GaSb layer and the GaSb layer.
Efficiency is low because light absorbed by most of the layer is not converted into an electrical signal.

■電界が印加されていないp型^Q GaSbとGaS
bで発生する電子・正孔のうち、増倍層の近傍領域のも
のは空乏層内に入り、電気信号に変換されるが、空乏層
に達するまでに時間を要して応答速度を低下させる。
■p-type ^Q GaSb and GaS with no electric field applied
Among the electrons and holes generated in b, those in the vicinity of the multiplication layer enter the depletion layer and are converted into electrical signals, but it takes time to reach the depletion layer, reducing the response speed. .

本発明は、上記の問題点を解決し、低雑音で高感度、高
速の受光装置を提供する事にある。
The present invention solves the above problems and provides a low-noise, high-sensitivity, high-speed light receiving device.

〔課題を解決するための手段] 上記目的を達成するため、本発明においては以下に述べ
る構成を有する。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

■増倍作用を持つA Q GaSb層(増倍層)から見
て、光入射が行なわれる方向の側に、増倍層よりも禁止
帯幅の小さい層と大きい層を少なくとも2層を順に形成
し、空乏層は上記禁止帯幅の小さい層の全域と増倍層の
少なくとも一部に至る領域を幅とする構造。
■At least two layers are formed in order on the side of the light incident direction when viewed from the A Q GaSb layer (multiplier layer) that has a multiplication effect, one with a smaller band gap and the other with a larger band gap than the multiplier layer. However, the depletion layer has a structure whose width is the entire region of the layer with a small forbidden band width and a region extending to at least a part of the multiplication layer.

■上記■に加えて、増倍層から見て光入射の反対の方向
の側に、少なくとも1層の■における禁止帯幅の小さい
層よりも禁止帯幅の大きい層を形成し、空乏層は禁止帯
幅の小さい層増倍層の少なくとも一部に至る領域を幅と
する構造。
■In addition to the above (■), at least one layer with a wider forbidden band width than the layer with a smaller forbidden band width in (2) is formed on the side opposite to the direction of light incidence when viewed from the multiplication layer, and the depletion layer is A structure whose width is a region extending to at least a part of a layer multiplication layer with a small forbidden band width.

以上の構成を第1図および第2図を用いて説明する。第
1図において、lは基板、2は増倍層、3は2よりも禁
止帯幅の小さい層、4は禁止帯幅の大きい層である。
The above configuration will be explained using FIG. 1 and FIG. 2. In FIG. 1, l is a substrate, 2 is a multiplication layer, 3 is a layer with a smaller forbidden band width than 2, and 4 is a layer with a larger forbidden band width.

また1図において光入射は表面5から行なわれる。Furthermore, in FIG. 1, the light is incident from the surface 5.

ここで、空乏層は少なくとも禁止帯の小さい層3の全厚
さ、および増倍層2の層3近傍である。
Here, the depletion layer is at least the entire thickness of the layer 3 with a small forbidden band and the vicinity of the layer 3 of the multiplication layer 2.

なお、基板1は任意の組成で良く、光入射が基板側から
行なわれろ場合1層2〜4は逆転する様に形成される。
Note that the substrate 1 may have any composition, and if light is to be incident from the substrate side, the first layers 2 to 4 are formed so as to be reversed.

上記において、層2と3,3と4の間に、各々の禁止帯
幅の中間の大きさ以上の層があっても良い。
In the above, there may be a layer between layers 2 and 3, and between layers 3 and 4, the size of which is equal to or larger than the middle of the respective prohibited band widths.

第2図において21は基板、23は増倍層。In FIG. 2, 21 is a substrate, and 23 is a multiplication layer.

24は増倍層23よりも禁止帯幅の小さい層。24 is a layer whose forbidden band width is smaller than that of the multiplication layer 23;

25は禁止帯幅の大きい層、22は層24よりも大きい
禁止帯幅を持つ層である1図においては、光の入射は層
25の表面26から行なう、なお。
25 is a layer with a large forbidden band width, and 22 is a layer with a larger forbidden band width than the layer 24. In FIG. 1, light is incident from the surface 26 of the layer 25.

光の入射が基板21の側から行なわれる場合は。When the light is incident from the substrate 21 side.

層22〜25は逆順に形成される。ここで空乏層は、禁
止帯幅の小さい層24の上面〜増倍層23の下面までの
間を少なくとも含む。
Layers 22-25 are formed in reverse order. Here, the depletion layer includes at least a region from the upper surface of the layer 24 with a small forbidden band width to the lower surface of the multiplication layer 23.

上記において、各層の間には各々の禁止帯幅の中間の大
きさ以上の層があっても良く、連続的に禁止帯幅が変化
していても良い。
In the above, there may be a layer between each layer having a size equal to or larger than the middle of each forbidden band width, or the forbidden band width may change continuously.

〔作用〕[Effect]

本発明の構造において、光の入射する側に位置する禁止
帯幅の大きい層は信号光に対してほぼ透明であり1M止
帯幅の小さい層へ信号光を伝達す窓層として作用する。
In the structure of the present invention, the layer with a large forbidden band width located on the light incident side is almost transparent to the signal light and acts as a window layer that transmits the signal light to the layer with a small 1M bandgap width.

禁+t、f−幅の小さい層は信号を吸収し、ta子と正
孔を発生する光吸収層として作用する。光吸収層は空乏
層内に含まれている事から、発生した電子・正孔の各々
は直ちに移vJを開始する。
A layer with a small width (+t, f-) absorbs signals and acts as a light absorption layer that generates ta atoms and holes. Since the light absorption layer is included in the depletion layer, each of the generated electrons and holes immediately starts to move vJ.

以上の構成において前記従来例と異なる点は以下の点で
ある。
The above configuration differs from the conventional example in the following points.

■空乏層以外の層では光吸収が生じないので、応答速度
の遅い拡散成分が存在しない。
■Since light absorption does not occur in layers other than the depletion layer, there is no diffusion component with slow response speed.

■光吸収層の存在で、増倍層への光の侵入は少量となる
ので、増倍層内での光吸収による電子・正孔の発生が少
なく、イオン化率比の低下を防止できる。
(2) Due to the presence of the light absorption layer, a small amount of light enters the multiplication layer, so fewer electrons and holes are generated due to light absorption within the multiplication layer, and a decrease in the ionization rate ratio can be prevented.

■光吸収層の禁止帯幅が小さい事から、光吸収係数を大
きくできるので、従来に比較して光吸収効率が高い。
■Since the forbidden band width of the light absorption layer is small, the light absorption coefficient can be increased, so the light absorption efficiency is higher than conventional ones.

■上記■の効果により、層の厚さを従来に比較して薄く
できるので、応答速度を大きくする事ができる。
(2) Due to the effect (2) above, the layer thickness can be made thinner than in the past, so the response speed can be increased.

また、禁止4’rF幅の大きい別個の層を光の入射する
側とは反対側に設ける事により、次の利点がある。すな
わち、信号光は光吸収層によって大部分が吸収されるが
、かならずしも100%吸収には達し得ない、信号光の
波長が増倍層の禁止恰幅で決まる波長よりも長い場合、
光は増倍層を透過し、ついには空乏層の外に達してしま
う、同左、空乏層の外部領域が増倍層よりも禁止帯幅の
小さい物質で構成されていると光吸収が生じる。空乏層
に近接した部位で発生する電子・正孔は応答速度の劣化
原因となる。しかし1本発明の構造では、禁止帯iJの
大きい層が空乏層に近接、または、自身に含む様に存在
するため、空乏層に近接した部位での光吸収と電子・正
孔対の発生は起きず、応答速度の劣化を無くする事がで
きる。
Further, by providing a separate layer with a large forbidden 4'rF width on the side opposite to the light incident side, the following advantages can be obtained. In other words, most of the signal light is absorbed by the light absorption layer, but 100% absorption cannot necessarily be achieved.If the wavelength of the signal light is longer than the wavelength determined by the forbidden width of the multiplication layer,
Light passes through the multiplication layer and eventually reaches the outside of the depletion layer.Similar to the left, if the outer region of the depletion layer is composed of a material with a smaller forbidden band width than the multiplication layer, light absorption occurs. Electrons and holes generated near the depletion layer cause a decrease in response speed. However, in the structure of the present invention, a layer with a large forbidden band iJ exists in the vicinity of the depletion layer or is included in the depletion layer, so light absorption and generation of electron-hole pairs in the vicinity of the depletion layer are prevented. This can eliminate deterioration in response speed.

〔実施例〕〔Example〕

〈実施例1〉 第3図を用いて説明する。まず、同図(a)の結晶構造
を作った0図において、30はGaSb基板(p型、1
 ’X I O”cm−”) 、 31は^Q o、a
Gao、5sbo、*aAso、on (p型、lX1
0”・am″″6゜3μm)、32はA Q o、oa
Gao、5ysbCP型lXl0”Ql−’、 0.5
 p m) 、33はA m o、oaGao、ey 
S b(n型2X10”Ql−’、1.5μm) 、3
4はA Q o、1Gao、oaSbo、e7Aso、
oa (n型、lXl0”e1m″″g、0.4層m)
、35はIn5bo、t^so、s(n型IXIO16
Gm−”、 2μm) 、 36はA Q o、aGa
o、esbo、eIIAso、os(n型、I X I
 O”am−一2μm)であり、層31〜36は全て溶
液成長法にて形成した。なお、禁止帯幅は、層31と3
6は1.2eV、層32と33は0.7eV、層36は
1.OeV、1ej35は0.3eVである。
<Example 1> This will be explained using FIG. 3. First, in Figure 0 where the crystal structure of Figure (a) was created, 30 is a GaSb substrate (p type, 1
'X I O"cm-"), 31 is ^Q o, a
Gao, 5sbo, *aAso, on (p type, lX1
0"・am""6゜3μm), 32 is A Q o, oa
Gao, 5ysbCP type lXl0"Ql-', 0.5
p m), 33 is A m o, oaGao, ey
S b (n-type 2X10"Ql-', 1.5 μm), 3
4 is A Q o, 1Gao, oaSbo, e7Aso,
oa (n type, lXl0"e1m""g, 0.4 layer m)
, 35 is In5bo, t^so, s (n-type IXIO16
Gm-", 2μm), 36 is AQo, aGa
o, esbo, eIIAso, os (n type, I
0" am - 2 μm), and layers 31 to 36 were all formed by a solution growth method. Note that the forbidden band width is
6 is 1.2 eV, layers 32 and 33 are 0.7 eV, and layer 36 is 1.2 eV. OeV, 1ej35 is 0.3eV.

上記結晶を第3図(b)に示す様に加工し、受光装置と
した。すなわち1層36の表面より基板31に至るまで
上部の直径約80μmの円錐台に被着、さらに、基板3
1の裏面にT i A u層によるp型電極38を全面
に形成1層36の上面にAuGeNiAuのリング状n
型電極召9(外径60pm。
The above crystal was processed as shown in FIG. 3(b) to form a light receiving device. That is, from the surface of the first layer 36 to the substrate 31, a truncated cone having a diameter of approximately 80 μm is coated, and then the substrate 3
A p-type electrode 38 made of a TiAu layer is formed on the entire surface of the back surface of the layer 1. A ring-shaped n layer of AuGeNiAu is formed on the top surface of the layer 1 36.
Type electrode size 9 (outer diameter 60pm.

幅lOμm)を形成した。A width of 10 μm) was formed.

n型電極39の内径部は受光窓であり、内窓より、波長
1.55 μmの光を2μW入射しながら電極38.3
9間に逆方向電圧を印加したところ、電圧8■において
光電流1.5 μA、電圧30 Vにて増倍率40、帯
域・増倍重積80 G Hzを得た。また、過剰雑音か
ら算出したイオン化率比は6.0であった。
The inner diameter part of the n-type electrode 39 is a light receiving window, and the electrode 38.3 receives 2 μW of light with a wavelength of 1.55 μm from the inner window.
When a reverse voltage was applied between 9 and 9, a photocurrent of 1.5 μA was obtained at a voltage of 8, a multiplication factor of 40 was obtained at a voltage of 30 V, and a band/multiplying stack of 80 GHz was obtained. Further, the ionization rate ratio calculated from excess noise was 6.0.

本受光装置では、空乏層は層32〜35の範囲であり、
光の吸収の大部分は層35において行なわれ、同層は光
吸収層として作用し、層32゜33は増倍層として作用
する1層36は光を透過する窓層、層31は光吸収を受
けなかった成分の透過層である。なお、 kII34は
、1界強度分布を調節するための緩和層として作用して
いる。
In this light receiving device, the depletion layer is in the range of layers 32 to 35,
Most of the absorption of light takes place in layer 35, which acts as a light absorption layer, layers 32 and 33 act as multiplication layers, layer 36 is a window layer that transmits light, and layer 31 is a light absorption layer. This is a permeable layer for components that have not been exposed to heat. Note that kII34 acts as a relaxation layer for adjusting the 1-field intensity distribution.

本発明によらない装置、すなわち、光吸収層域・増倍率
は65 G Hz、イオン化率比は5.0にとどまった
In the device not according to the present invention, the light absorption layer area/multiplication factor was 65 GHz, and the ionization rate ratio was only 5.0.

〈実施例2〉 実施例1で示した装置において、層31の光の透過層が
無いものを作製した0作製方法等は前述のものと同様で
あり、省略する0本装置では、帯域増倍車積は75(3
Hzであり、透過層36の有るものに比較して悪いが、
従来の装置itよりも良好な結果を得た。
<Example 2> In the device shown in Example 1, the manufacturing method for the device without the light transmission layer of layer 31 is the same as that described above, and in the device shown in Example 1, the band multiplication The vehicle capacity is 75 (3
Hz, which is worse than that with a transmission layer 36,
Better results were obtained than with the conventional device IT.

〈実施例3〉 本実施例を第4図を用いて説明する。<Example 3> This embodiment will be explained using FIG. 4.

図において、40はGaSb基板(n型、1×10”c
m−リ、41はA n o、aGao、esba、es
Aso、os(n型、lX10”cm″″ae 2μm
) 、42はIn5bo、1Aso、e (n型lXl
0”ell″″”、2μm)、43は^Q o、zGa
o、asbo、5yAso、oi(n型、3XlO”l
−8,0,4pm)、44はA Q o、oaGao、
*tsb(n型。
In the figure, 40 is a GaSb substrate (n type, 1×10”c
m-ri, 41 is A no, aGao, esba, es
Aso, os (n type, lX10"cm""ae 2μm
), 42 is In5bo, 1Aso, e (n-type lXl
0"ell""", 2μm), 43 is ^Q o, zGa
o, asbo, 5yAso, oi (n type, 3XlO"l
-8,0,4pm), 44 is A Q o, oaGao,
*tsb (n type.

3.5μm)、45はA Q o、aGao、asbo
、asAso、oa(n型、2μm)であり1層41〜
45は溶液成長法により成長した0次に1層45の表面
から、Znを熱拡散し、層44の上部より0.5μmの
深さに至る範囲をp型とした。これを、同図(b)に示
す形状に加工した。ここで;44′はp型化したA Q
 o、oaGao、 e7Sb層、45′はp型化した
A Q oaaGao、esbo*esAso*oaで
ある。基板40裏面より1層41に至るまでエツチング
によって穴46(直径40μm)を形成後、層45′の
表面から基板40に至るまで、直径80μmの円柱状の
メサエッチングを行ない、その表面にSiNx膜47を
被着した。また、基板40の裏面にAuGeNiAuに
よるn型電極48、層45′ の表面にAuZuによる
p型電極49を形成した。穴46より波長1.55μm
のレーザ光を2μWの光電で入射しながら、両電極から
逆方向電圧を印加したところ、電圧30Vにおいて増倍
率40、帯域、増倍重積80GHz、イオン化率比6の
良好な特性を得た。
3.5 μm), 45 is A Q o, aGao, asbo
, asAso, oa (n type, 2 μm) and one layer 41~
45, Zn was thermally diffused from the surface of the zero-order first layer 45 grown by the solution growth method, and the range from the top of the layer 44 to a depth of 0.5 μm was made p-type. This was processed into the shape shown in the same figure (b). Here; 44' is p-type A Q
o, oaGao, e7Sb layer, 45' is p-type A Q oaaGao, esbo*esAso*oa. After forming a hole 46 (40 μm in diameter) by etching from the back surface of the substrate 40 to the first layer 41, a cylindrical mesa etching with a diameter of 80 μm is performed from the surface of the layer 45' to the substrate 40, and a SiNx film is formed on the surface. 47 was applied. Furthermore, an n-type electrode 48 made of AuGeNiAu was formed on the back surface of the substrate 40, and a p-type electrode 49 made of AuZu was formed on the surface of the layer 45'. Wavelength 1.55μm from hole 46
When a reverse voltage was applied from both electrodes while injecting a laser beam with a photoelectric power of 2 μW, good characteristics such as a multiplication factor of 40, a band, a multiplication stack of 80 GHz, and an ionization rate ratio of 6 were obtained at a voltage of 30 V.

〈実施例4〉 実施例1で示した構造の装置および従来の装F′tにお
いて、信号光の波長による動作特性の依存性を調べた。
<Example 4> In the device having the structure shown in Example 1 and the conventional device F't, the dependence of the operating characteristics on the wavelength of the signal light was investigated.

この結果、本発明の装置では波長1.2μm〜2.5μ
m以上の範囲において、増倍率1における光電流は1.
5〜1.4μAを得た。また、帯域・増倍重積は78〜
82 G Hzイオン化率も6〜5.3 と極めて一定
していた。一方、従来の装置での光電流は、波長1.2
μmにおいて0.3μA、1.55pmにおいて1.0
μA、波長2.5・μmでは光電流を発生しなかった。
As a result, the device of the present invention has a wavelength of 1.2 μm to 2.5 μm.
In the range of 1.m or more, the photocurrent at a multiplication factor of 1 is 1.
5-1.4 μA was obtained. Also, the band/intussusception is 78~
The 82 GHz ionization rate was also very constant, ranging from 6 to 5.3. On the other hand, the photocurrent in the conventional device has a wavelength of 1.2
0.3μA at μm, 1.0 at 1.55pm
No photocurrent was generated at μA and wavelength of 2.5 μm.

また、帯域・増倍重積は45〜65GHzであって、イ
オン化率比も4〜5であった。この結果1本発明の構造
は、波長範囲が広く、特性も一定している事がわかった
Moreover, the band/intussusception was 45 to 65 GHz, and the ionization rate ratio was also 4 to 5. As a result, it was found that the structure of the present invention has a wide wavelength range and constant characteristics.

(発明の効果) 本発明によれば、広い波長範囲で応答速度が大きく、高
感度で低ノイズの良好な特性を有する受光素子が得られ
る。
(Effects of the Invention) According to the present invention, a light-receiving element having good characteristics such as high response speed, high sensitivity, and low noise in a wide wavelength range can be obtained.

この結果1本装置を用いる事により、各種の波長の信号
に対して長距離、大容量の通イ8に利用できる効果があ
る。
As a result, by using one device, it can be used for long-distance, large-capacity communication 8 for signals of various wavelengths.

なお1本発明の構造は、実施例に示した以外にその禁止
帯幅の組合せを満足すれば、I n =G a−A n
 −A s −P −S b等の自由な組成で組み合せ
る事で構成できる。また、pn接合は増倍層であるA 
Q o、osGao、5ysb層内になくとも良い、さ
らに、装置の形状も平面状であっても良い事は言うまで
もない。
Note that if the structure of the present invention satisfies the combination of bandgap widths other than those shown in the embodiments, I n =G a - A n
-A s -P -S b, etc. can be freely combined. In addition, the pn junction is a multiplication layer A
It goes without saying that it does not need to be in the Qo, osGao, and 5ysb layers, and furthermore, the device may have a planar shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の詳細な説明するための結晶の
縦断面図、第3図は本発明の一実施例の結晶および装置
の縦断面図、第4図は本発明の他の実施例の結晶および
装置の縦断面図である。 3.24,34,42・・・禁止帯巾の小さい層、2゜
23.32,33.44・・・増倍層、4,22゜26
.31,36,41.45・・・禁止帯巾の大きい層、
34.43・・・電界強度を調節する層。 第 1 図 第3 区 (a、ン (b) 第2 図 A 晃40 (α) (b) q
1 and 2 are vertical cross-sectional views of a crystal for explaining the present invention in detail, FIG. 3 is a vertical cross-sectional view of a crystal and a device according to an embodiment of the present invention, and FIG. 4 is a vertical cross-sectional view of a crystal and a device according to an embodiment of the present invention. FIG. 3.24, 34, 42...layer with small forbidden width, 2°23.32,33.44...multiplying layer, 4,22°26
.. 31, 36, 41.45...layer with large prohibited band width,
34.43... Layer that adjusts electric field strength. Figure 1 Figure 3 Ward (a, n (b) Figure 2 A Akira 40 (α) (b) q

Claims (1)

【特許請求の範囲】 1、AlGaSbを主成分とする増倍層に対して、光入
射する側に増倍層よりも禁止帯幅の小さい層と禁止帯幅
の大きい層の少なくとも2層が順に形成されている事を
特徴とする半導体受光装置。 2、増倍層に対して、光入射する側とは反対の側に増倍
層よりも禁止帯幅の大きい層を形成した事を特徴とする
請求項第1項記載の半導体受光装置。 3、請求項第1項または第2項記載の受光装置を有する
通信システム装置。 4、光信号を電気信号に変換する半導体受光装置におい
て、上記光信号を吸収して電子と正孔を発生する光吸収
層と、該光吸収層を含む空乏層とを有し、上記空乏層の
外部では光信号の吸収をおこなわないように構成したこ
とを特徴とする半導体受光装置。 5、前記空乏層の光入射側に前記吸収層へ光信号を伝達
する窓層を有し、前記吸収層の光入射側と反対側に電子
、正孔の増倍作用を生じる増倍層を有することを特徴と
する請求項4記載の半導体受光装置。
[Claims] 1. At least two layers, a layer with a smaller forbidden band width and a layer with a larger forbidden band width than the multiplication layer, are arranged in order on the light incident side of the multiplication layer mainly composed of AlGaSb. A semiconductor light receiving device characterized in that: 2. The semiconductor light-receiving device according to claim 1, characterized in that a layer having a wider forbidden band width than the multiplication layer is formed on the side opposite to the light incident side of the multiplication layer. 3. A communication system device comprising the light receiving device according to claim 1 or 2. 4. A semiconductor light-receiving device that converts an optical signal into an electrical signal, comprising a light absorption layer that absorbs the optical signal and generates electrons and holes, and a depletion layer including the light absorption layer, and the depletion layer A semiconductor light-receiving device characterized in that it is configured so that optical signals are not absorbed outside the semiconductor light-receiving device. 5. A window layer for transmitting optical signals to the absorption layer on the light incidence side of the depletion layer, and a multiplication layer for multiplying electrons and holes on the side opposite to the light incidence side of the absorption layer. 5. The semiconductor light receiving device according to claim 4, further comprising a semiconductor light receiving device.
JP1121519A 1989-05-17 1989-05-17 Semiconductor photodetector Pending JPH02303073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1121519A JPH02303073A (en) 1989-05-17 1989-05-17 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1121519A JPH02303073A (en) 1989-05-17 1989-05-17 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH02303073A true JPH02303073A (en) 1990-12-17

Family

ID=14813230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1121519A Pending JPH02303073A (en) 1989-05-17 1989-05-17 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH02303073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508700A (en) * 2004-07-30 2008-03-21 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Semiconductor device provided with passivation layer and method for manufacturing the semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508700A (en) * 2004-07-30 2008-03-21 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Semiconductor device provided with passivation layer and method for manufacturing the semiconductor device

Similar Documents

Publication Publication Date Title
JP3221402B2 (en) Light receiving element and light receiving device
US7557387B2 (en) Avalanche photodiode
JP2003168818A (en) Order mesa type avalanche photodiode and its fabricating method
JPH0338887A (en) Semiconductor photodetector
JPH06224463A (en) Semiconductor light-receiving device
US6909161B2 (en) Photodiode
JP2004031707A (en) Avalanche photodiode
JPH09275224A (en) Photodiode
JPH02303073A (en) Semiconductor photodetector
CN115295646A (en) High-performance light detector chip epitaxial wafer
JPS6285477A (en) Photosemiconductor device
JPH0513798A (en) Semiconductor photodetection device
JPS61170079A (en) Semiconductor light-receiving element
JPH0473310B2 (en)
JPH05121777A (en) Photodetector
JP2730471B2 (en) Superlattice avalanche photodiode
Wang et al. A front-side-illuminated InP/GaInAs/InP pin photodiode with a—3-dB bandwidth in excess of 18GHz
JPS6244827B2 (en)
JPH0437591B2 (en)
JPS59151475A (en) Hetero-structure avalanche-photodiode with buffer layer
Hu et al. Excess noise in GaAs avalanche photodiodes with thin multiplication regions
JPS59232470A (en) Semiconductor light receiving element
JPH11354827A (en) Photodetector and manufacture thereof
JP3078903B2 (en) Electron multiplying semiconductor device and composite device using the same
JPS6157716B2 (en)