JPH02302019A - Solid electrolytic capacitor and its manufacture - Google Patents

Solid electrolytic capacitor and its manufacture

Info

Publication number
JPH02302019A
JPH02302019A JP12218589A JP12218589A JPH02302019A JP H02302019 A JPH02302019 A JP H02302019A JP 12218589 A JP12218589 A JP 12218589A JP 12218589 A JP12218589 A JP 12218589A JP H02302019 A JPH02302019 A JP H02302019A
Authority
JP
Japan
Prior art keywords
comb
anode body
polymerization
shaped electrode
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12218589A
Other languages
Japanese (ja)
Other versions
JP2870805B2 (en
Inventor
Junji Ozaki
尾崎 潤二
Yoichi Aoshima
青島 洋一
Kenji Kuranuki
健司 倉貫
Yasuhiro Obata
小畑 康弘
Masayuki Taniguchi
雅幸 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12218589A priority Critical patent/JP2870805B2/en
Publication of JPH02302019A publication Critical patent/JPH02302019A/en
Application granted granted Critical
Publication of JP2870805B2 publication Critical patent/JP2870805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a capacitor having good characteristics and reliability and suitable for mass production by a method wherein a metal oxide layer is formed on the surface of an anodic formation film, a voltage is applied by using the metal oxide layer as an electrode and an electrolytic polymerization operation is executed. CONSTITUTION:For example, an aluminum foil is used as an anode body 11 composed of a valve metal; its surface is roughened electro-chemically; an anodic formation film is formed at a formation voltage of 35V; after that, it is cut off to be a shape having a plurality of protrusions 12. The anode body 11 composed of the valve metal and a comb-shaped electrode 14 are used; tips of the comb-shaped electrode 14 are brought into contact with parts to which a manganese dioxide layer 13 has been applied at the protrusions 12 of the anode body 11; this assembly is immersed in a polymerization liquid 15. The comb-shaped electrode 14 as a polymerization electrode is used as a positive pole; a constant voltage of 5V is applied for 20min between the comb-shaped electrode and a polymerization cathode 16. This polymerization operation is started from a contact part with the comb-shaped electrode 14 on the surface of the protrusions 12; a conductive high-polymer film is formed on the whole surface of the manganese dioxide layer 10 in 10 to 15min.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、導電性高分子を固体電解質とした固体電解コ
ンデンサおよびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid electrolytic capacitor using a conductive polymer as a solid electrolyte and a method for manufacturing the same.

従来の技術 近年、電子機器の電源回路の高周波化にともない、そこ
に用い、られる電解コンデンサについても高周波特性の
優れたものが要求されている。これに対して、高周波領
域での低インピーダンスを実現するために、電解重合に
より得られる高電導度の導電性高分子を固体電解質とし
て用いた固体電解コンデンサが提案されている。
2. Description of the Related Art In recent years, as the power supply circuits of electronic devices have become increasingly high-frequency, electrolytic capacitors used therein are required to have excellent high-frequency characteristics. On the other hand, in order to achieve low impedance in a high frequency region, solid electrolytic capacitors have been proposed in which a highly conductive conductive polymer obtained by electrolytic polymerization is used as a solid electrolyte.

導電性高分子を固体電解質として用いた固体電解コンデ
ンサでは、絶縁体である陽極化成皮膜上に導電性高分子
層を形成する方法として、陽極化成皮膜上に化学酸化重
合導電性高分子膜を形成し、これを電極として電解重合
を行なう方法が提案されている。すなわち、 (1)弁金属よυなる陽極箔の表面に陽極化成皮膜を形
成し、かつこの陽唖酸化皮膜上には酸化剤を用いてビロ
ールなどの化学酸化重合導電性高分子膜を形成し、そし
てこの化学酸化重合導電性高分子膜に導電体を接触ある
いは1 mm以内の距離に配置して、前記導電体を陽極
として電解重合する方法(特開昭64−32619号公
報)。
In solid electrolytic capacitors that use a conductive polymer as a solid electrolyte, a method of forming a conductive polymer layer on the anode chemical coating, which is an insulator, is to form a chemically oxidized conductive polymer film on the anode chemical coating. However, a method has been proposed in which electrolytic polymerization is carried out using this as an electrode. That is, (1) An anode chemical conversion film is formed on the surface of an anode foil such as a valve metal, and a chemically oxidized and polymerized conductive polymer film such as virol is formed on this anodic oxide film using an oxidizing agent. and a method in which a conductor is placed in contact with or within a distance of 1 mm from this chemically oxidized polymerized conductive polymer film, and electrolytically polymerized using the conductor as an anode (Japanese Unexamined Patent Publication No. Sho 64-32619).

(巧 弁金属よシなる陽極箔の表面に1VAfffi化
成皮膜を形成し、かつ・この陽極化成皮膜上に酸化剤を
用いてピロールなどの化学酸化重合導電性高分子膜を形
成し、そして前記弁金属よりなる陽極箔の端部を切断し
て金属部を露出させ、この露出した金属部分から電解重
合を行う方法(特開昭84−32620号公報)がある
(Takumi) A 1VAffi chemical conversion film is formed on the surface of an anode foil made of valve metal, and a chemically oxidized conductive polymer film such as pyrrole is formed using an oxidizing agent on this anode chemical film, and then There is a method (Japanese Unexamined Patent Publication No. 84-32620) in which the end portion of an anode foil made of metal is cut to expose the metal portion, and the exposed metal portion is subjected to electrolytic polymerization.

以上の例では、複数個の素子に同時に電解重合高分子膜
を形成しようとする場合については特に言及されていな
いが、(1)の方法では、第8図に示すように、重合液
1中で、個4の弁金属よりなる陽極体2ごとに給電用の
電極(以下重合電甑と称す)3を接触させて、この重合
電極3を正極とし、かつ重合陰柩4との間に電FEを印
加して電解重合を行う構成、(2)の方法では、第9図
に示すように、弁金!寓よυなる陽極化2そのものを正
極とし、電圧を印加して重合を行う購1戎が必要である
In the above examples, there is no particular mention of the case where electrolytically polymerized polymer films are to be formed on multiple devices at the same time, but in method (1), as shown in FIG. Then, a power supply electrode (hereinafter referred to as a polymerization electric kettle) 3 is brought into contact with each of the four anode bodies 2 made of valve metal, and this polymerization electrode 3 is used as a positive electrode, and an electric current is connected between it and the polymerization anode 4. In method (2), a configuration in which electrolytic polymerization is performed by applying FE, as shown in FIG. It is necessary to use the anodization 2 itself, which is υ, as a positive electrode and to apply a voltage to polymerize.

発明が解決しようとする課題 しかしながら、第8図に示した上記従来の(1)の方法
では、コンデンサ素子1個1個に重合電極3を用意し、
それを個々の弁金属より々る陽序体2ごとに接触させる
という煩雑な工程が・必要で、量産化が困難である。
Problems to be Solved by the Invention However, in the conventional method (1) shown in FIG. 8, a polymerized electrode 3 is prepared for each capacitor element,
It requires a complicated process of bringing the valve metal into contact with each positive order body 2, which makes mass production difficult.

また、第9図に示した上記従来の方法は、比較的容易に
複数個の素子に電解重合高分子膜を形成できるという利
点1はあるものの、弁金属よりなる陽極体2の陽極化成
皮模欠陥部(金属露出部分)と、陰極となる導電性高分
子層が接触するため、製品の漏れ電流が大きい、耐圧が
低いなどの欠点があり、高信頼性の固体電解コンデンサ
を得ることは難しい。
Although the conventional method shown in FIG. 9 has the advantage of being able to form an electrolytically polymerized polymer film on a plurality of elements with relative ease, Because the defective part (exposed metal part) and the conductive polymer layer that serves as the cathode come into contact, the product has disadvantages such as large leakage current and low withstand voltage, making it difficult to obtain a highly reliable solid electrolytic capacitor. .

さらに上記従来の(1) 、 (2)の方法では、化学
酸化重合導電性高分子膜を形成する九めに、酸化剤とし
てハロゲン、金属ハロゲン化物、プロトン酸。
Furthermore, in the above conventional methods (1) and (2), a halogen, a metal halide, or a protonic acid is used as an oxidizing agent in forming a chemically oxidized and polymerized conductive polymer film.

過酸化物を用いるため、陽極化成皮膜に及ぼすダメージ
が大きく、その結果、低い漏れ電流、高耐圧の固体電解
コンデンサを得ることは困難である。
Since peroxide is used, there is great damage to the anodized chemical film, and as a result, it is difficult to obtain a solid electrolytic capacitor with low leakage current and high withstand voltage.

本発明はこのような課題を解決するもので、特性、信頼
性に優れ、かつ量産化に適した固体電解コンデンサおよ
びその製造方法を提供することを目的とするものである
The present invention solves these problems, and aims to provide a solid electrolytic capacitor that has excellent characteristics and reliability and is suitable for mass production, and a method for manufacturing the same.

課題を解決するための手段 上記課題を解決するために本発明は、弁金属よりなる櫛
型の陽極化の表面に陽極化成皮膜を形成し、かつ前記l
!lIi!1唖体の突起部に金属酸化物を島状または層
状に均一に付着させ、さらに前記金属酸化物層に接触す
るように配置された櫛型電極を用いて前記陽極化の突起
部突起部性導電子膜を電解重合により形成し、その後、
前記陽極体の突起部を個別に切断して1個のコンデンサ
素子を構成するようにしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention forms an anodic chemical conversion film on the surface of a comb-shaped anodization made of valve metal, and
! lIi! 1. A metal oxide is uniformly attached to the protrusions of the cylindrical body in the form of islands or layers, and a comb-shaped electrode is placed in contact with the metal oxide layer to reduce the protrusion properties of the anodized protrusions. A conductive film is formed by electrolytic polymerization, and then
The projections of the anode body are individually cut to form one capacitor element.

作用 上記し九本発明によれば、V4%化成皮膜の表面に金属
酸化物層を設け、この金属酸化物層を電極として電EE
を印加し、電解重合を行なうようにしているため、陽極
箔の欠陥部と陰極となる導電性高分子層が直接接触する
ということはなくなり、その結果、特性、信頼性に優れ
t固体電解コンデンサを得ることができる。また、弁金
1萬よりなる櫛型の陽極体に櫛型電極を接触させて導電
性高分子膜を電解重合するという工法により、容易に複
数個のコンデンサ素子を同時に電解重合できるため、量
産性が大幅に向上する。
Effects According to the present invention as described above, a metal oxide layer is provided on the surface of the V4% chemical conversion coating, and the metal oxide layer is used as an electrode to conduct electric EE.
is applied to perform electrolytic polymerization, so there is no direct contact between the defective part of the anode foil and the conductive polymer layer that becomes the cathode.As a result, the solid electrolytic capacitor has excellent characteristics and reliability. can be obtained. In addition, by electrolytically polymerizing a conductive polymer film by contacting a comb-shaped electrode with a comb-shaped anode body made of 10,000 yen of valve metal, it is easy to electrolytically polymerize multiple capacitor elements at the same time, which facilitates mass production. is significantly improved.

実施例 以下、本発明の一実施例を第1図〜第7図の添付図面に
もとづいて説明する。
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings of FIGS. 1 to 7.

第1図(′&)および第1図(b)は、本発明の固体電
解コンデンサを製造する念めの電解重合槽の構成を示し
た正面図および側面図である。第2図は弁金属よりなる
櫛型の陽極体の形状の一例を示したものである。弁金属
よりなる陽極体11としてはアルミニウム箔(厚さ90
μm)を用い、その表面を電気化学的に粗面化し、そし
て化成電圧35Vで陽極化成皮膜を形成し、その後、第
2図に示すような突起部12を複数個有する形状に切断
した。
FIG. 1('&) and FIG. 1(b) are a front view and a side view showing the construction of an electrolytic polymerization tank for producing the solid electrolytic capacitor of the present invention. FIG. 2 shows an example of the shape of a comb-shaped anode body made of valve metal. The anode body 11 made of valve metal is made of aluminum foil (thickness: 90 mm).
The surface thereof was electrochemically roughened using a 1000 μm), and an anodic chemical coating was formed at a chemical forming voltage of 35 V. Thereafter, the material was cut into a shape having a plurality of protrusions 12 as shown in FIG.

そして突起部12の寸法は5mm×IQmmとした。The dimensions of the protrusion 12 were 5 mm x IQ mm.

なお、切断面に陽極酸化皮膜を形成するため、打ち抜き
後に再変陽甑酸化処理を行った。弁金属よりなる櫛型の
陽極体11の形状としては矩形状の例を示したが、その
形状および寸法はこれに限定されるものではない。
In order to form an anodic oxide film on the cut surface, a re-conversion anodic oxidation treatment was performed after punching. Although a rectangular example is shown as the shape of the comb-shaped anode body 11 made of valve metal, its shape and dimensions are not limited to this.

第3図は、弁金属よりなる櫛型の陽極体11の突起部1
2に金属酸化物として二酸化マンガン層13を付着させ
た状態を示したものである。この二酸化マンガン層13
は、比重1.3の硝I駿マンガン水溶液中に突起部12
を所定部分まで浸漬した後、205Cの6分間の熱分解
により形成した。
FIG. 3 shows a protrusion 1 of a comb-shaped anode body 11 made of valve metal.
2 shows a state in which a manganese dioxide layer 13 as a metal oxide is attached to No. 2. This manganese dioxide layer 13
is a protrusion 12 in a nitrate I-manganese aqueous solution with a specific gravity of 1.3.
It was formed by immersing it up to a predetermined portion and then thermally decomposing it at 205C for 6 minutes.

第4図は櫛型電極14の詳細を示したもので、この実施
例においては、櫛型電極14の例として、矩形状のもの
を示したが、その形状はこれに限定されるものではない
。また、櫛型電極14の材料としてはステンレス鋼を用
いたが、池の金属でもよく、また導電性を有する金・萬
酸化物、あるいは導電性高分子でもよい。ま乏、ステン
レス鋼の表面にビロール重合膜で被覆した物を用いても
同様の結果が得られる。
FIG. 4 shows details of the comb-shaped electrode 14. In this embodiment, a rectangular one is shown as an example of the comb-shaped electrode 14, but the shape is not limited to this. . Further, although stainless steel is used as the material for the comb-shaped electrode 14, it may be made of metal, or may be made of conductive gold/mold oxide or a conductive polymer. Similar results can be obtained by using a stainless steel surface coated with a virol polymer film.

以上のようにして準備された弁金属よりなる陽極体11
と櫛型電極14を用いて、第1図に示すように、陽極体
11の突起部12の二酸化マンガン層13を付着させt
部分に、櫛型電極14の先端を接触させ、重合液16(
ピロールQ、9モア1//リットル、トリインデロビル
ナフタレンスルホネ−ト0,5モ/l/ / IJット
ル水溶液)中に浸漬した。
Anode body 11 made of valve metal prepared as described above
As shown in FIG.
The tip of the comb-shaped electrode 14 is brought into contact with the part, and the polymerization liquid 16 (
Pyrrole Q, 9 mol/l/l, triinderovir naphthalene sulfonate 0.5 mol/l//IJ liter aqueous solution).

そして電解重合は重合電極である櫛型電極14を正極と
して重合陰層1eとの間に6vの定電圧を20分間印加
して行なった。この重合は、突起部12の表面で、櫛型
電極14との接触部分から開始され、10〜16分で二
酸化マンガン層13の表面全体に導電性高分子膜が形成
された。
Electrolytic polymerization was carried out by applying a constant voltage of 6 V for 20 minutes between the polymerization negative layer 1e and the polymerization negative layer 1e using the comb-shaped electrode 14 as a polymerization electrode as a positive electrode. This polymerization started at the surface of the protrusion 12 where it came in contact with the comb-shaped electrode 14, and a conductive polymer film was formed on the entire surface of the manganese dioxide layer 13 in 10 to 16 minutes.

そしてこの導電性高分子膜を形成した後、第6図(a)
(b)に示すように、導電性重合膜1了の所定の部分に
カーボン塗料層18および銀塗料層19を形成し、突起
部12を図中に二点鎖線で示した切断箇所で個別に切断
して1個のコンデンサ素子とし、そして第6図に示すよ
うに陰極リード2oを半田付けにより接合した。また陽
極リード21は弁金属よりなる陽極体11の二酸化マン
ガン層13および導電性高分子膜17の付着していない
部分に溶接により接合し九。
After forming this conductive polymer film, FIG. 6(a)
As shown in (b), a carbon paint layer 18 and a silver paint layer 19 are formed on predetermined portions of the conductive polymer film 1, and the protrusions 12 are individually cut at the cut points indicated by two-dot chain lines in the figure. It was cut into one capacitor element, and the cathode lead 2o was joined by soldering as shown in FIG. The anode lead 21 is welded to the part of the anode body 11 made of valve metal to which the manganese dioxide layer 13 and the conductive polymer film 17 are not attached.

第7図は本発明の一実施例における固体電解コンデンサ
の外観斜視図を示し九もので、外装材18としてはエポ
キシ樹脂を用い、粉体塗装法により外装した。
FIG. 7 shows a perspective view of the appearance of a solid electrolytic capacitor according to an embodiment of the present invention.Epoxy resin was used as the exterior material 18, and the exterior was coated by powder coating.

第1表id本発明の一実施例における固体電解コンデン
サの静電容量、損失角の正接、漏れ電流(1ov印加、
2分備)、耐圧(10v/1分電圧上昇時の製品破壊電
圧)の初期特性を示したもので、比較のため、従来例1
として本実施例で示した二酸化マンガン層13の代わり
に、陽極酸化皮膜上にビロールの化学酸化重合導電性高
分子膜を形成したものの初期特性と、従来例2として本
実施例で示した二酸化マンガン層130代わりに、陽極
酸化皮膜上にビロールの化学酸化重合導電性高分子膜を
形成し、さらに弁金、属よりなる陽極体の突起部の先端
を切断して金属部を露出させ、この露出しt金属部分か
ら電解重合を行なったものの初期特性を示した。なお、
化学酸化重合の酸化剤としては過硫酸アンモニウムを用
いた。
Table 1 id Capacitance, tangent of loss angle, leakage current (1 ov applied,
This figure shows the initial characteristics of withstand voltage (product breakdown voltage when the voltage increases by 10 V/1 minute).For comparison, conventional example 1
Initial characteristics of a chemically oxidized conductive polymer film of virol formed on an anodic oxide film instead of the manganese dioxide layer 13 shown in this example, and the manganese dioxide layer 13 shown in this example as Conventional Example 2. Instead of the layer 130, a chemically oxidized conductive polymer film of virol is formed on the anodic oxide film, and the tip of the protruding part of the anode body made of metal is cut off to expose the metal part. The initial characteristics of the product obtained by electrolytic polymerization from the metal part are shown. In addition,
Ammonium persulfate was used as the oxidizing agent for chemical oxidative polymerization.

(以下余白) 第1表 上記第1表からも明らかなように、本発明による固体電
解コンデンサは、漏れ電流が小さく、かつ製品耐圧が高
いという特長を持っておシ、さらに、弁金属よシなる櫛
型の陽極体11と櫛型電極14を用いた工法により、同
時に複数個のコンデンサ素子を電解重合するという作業
が容易に行える。
(Leaving space below) Table 1 As is clear from Table 1 above, the solid electrolytic capacitor according to the present invention has the features of low leakage current and high product withstand voltage, and is also more durable than valve metal. By the construction method using the comb-shaped anode body 11 and the comb-shaped electrode 14, it is easy to electrolytically polymerize a plurality of capacitor elements at the same time.

なお、上記実施例では導電性高分子としてビロールを用
いたものについて説明したが、チオフェン、フランおよ
びそれらの誘導体でも同様に実施できる。また、支持電
解質としてはトリインプロピルナフタレンスルホネート
について説明したが、これに限定されるものではない。
In the above embodiments, virol was used as the conductive polymer, but thiophene, furan, and their derivatives can be used in the same manner. Furthermore, although triinpropylnaphthalene sulfonate has been described as a supporting electrolyte, the present invention is not limited thereto.

また、弁金属よりなる陽極体11としてアルミニウムを
用いた実施例ヲ示したが、タンタル、チタンなどでも適
用できるものである。
Further, although an embodiment has been shown in which aluminum is used as the anode body 11 made of valve metal, tantalum, titanium, etc. may also be used.

発明の効果 上記実施例の説明から明らかなように本発明によれば、
弁金属よυなる櫛型の陽極体に櫛型電瞳を接触させて導
電性高分子膜を電解重合するという工法を採用している
ため、複数個のコンデンサ素子の電解重合を同時に行な
うことができ、その結果、量産性を大幅に向上させるこ
とができる。
Effects of the Invention As is clear from the description of the above embodiments, according to the present invention,
Because we use a method of electrolytically polymerizing a conductive polymer film by bringing a comb-shaped electric pupil into contact with a comb-shaped anode body such as a valve metal, it is possible to electrolytically polymerize multiple capacitor elements at the same time. As a result, mass productivity can be greatly improved.

また、陽極化成皮膜の表面に金属酸化物層を設け、かつ
この金属酸化物層を電極として電圧を印加し電解重合を
行なうようにしているため、陽極箔欠陥部と陰極となる
導電性高分子層が接触することはなくなり、その結果、
漏れ電流が小さく、かつ高耐圧で信頼性の高いコンデン
サを得ることができるものである。
In addition, a metal oxide layer is provided on the surface of the anode chemical conversion film, and electrolytic polymerization is performed by applying a voltage using this metal oxide layer as an electrode. The layers are no longer in contact, resulting in
A highly reliable capacitor with low leakage current and high withstand voltage can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の固体電解コンテ°ンサを製
造するための電解重合槽の構成を示したもので、(a)
は正面図、(′b)は側面図、第2図は弁金属よりなる
櫛型陽極体の形状を示す正面図、第3図は同櫛型陽極体
上に二酸化マンガン層を付着させた状態を示す正面図、
第4図は櫛型電極の形状を示す正面図、第5図は同櫛型
陽極体に導電性高分子膜、カーボン塗料層、銀塗料層を
横1した状態を示し友もので、(IL)は縦断面図、(
b)は側断面図、第6図′はコンデンサ素子個体からリ
ードを引き出した状態を示す縦断面図、第7図は固体電
解コンデンサの外観斜視図、第8図および第9図は従来
における電解重合槽の構成を示す模式図である。 11・・・・・・櫛型陽極体、12・・・・・・突起部
、13・・・・・二酸化マンガン、14・・・・・・櫛
型電極、16・・・・・・重合液、16・・・・・・重
合陰嘩、17・・・・・・導電性高分子膜、18・・・
・・・カーボン塗料、19・・・・・・銀塗料、2o・
・・・・・陰極リード、21・・・・・・陽極リード。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名1f
−−−ネS  雪L7多ら1ゴにイ参12−突起部 f3− 二酸化マン大゛ン t4− 猜霞電曝 I5− 重合液 tZ     tZ    tZ 13・・・二駿化マン汝ン贋 第3図 第4図       /l“−m宣’@=′Fh−lγ
−導!、杭高分+饗 第5図         19−採11計層(α) π ・−1極ソート” 菓6図          2を−゛−揚≧′−′第7
FIG. 1 shows the configuration of an electrolytic polymerization tank for producing a solid electrolytic capacitor according to an embodiment of the present invention.
is a front view, ('b) is a side view, Fig. 2 is a front view showing the shape of a comb-shaped anode body made of valve metal, and Fig. 3 is a state in which a manganese dioxide layer is adhered on the comb-shaped anode body. A front view showing
Fig. 4 is a front view showing the shape of a comb-shaped electrode, and Fig. 5 is a diagram showing the same comb-shaped anode body with a conductive polymer film, a carbon paint layer, and a silver paint layer placed horizontally. ) is a longitudinal cross-sectional view, (
b) is a side sectional view, Fig. 6' is a vertical sectional view showing the lead pulled out from the individual capacitor element, Fig. 7 is an external perspective view of a solid electrolytic capacitor, and Figs. 8 and 9 are conventional electrolytic capacitors. FIG. 2 is a schematic diagram showing the configuration of a polymerization tank. 11... Comb-shaped anode body, 12... Protrusion, 13... Manganese dioxide, 14... Comb-shaped electrode, 16... Polymerization liquid, 16... polymerization reaction, 17... conductive polymer membrane, 18...
...Carbon paint, 19...Silver paint, 2o.
...Cathode lead, 21...Anode lead. Name of agent: Patent attorney Shigetaka Awano and 1 other person 1st floor
---NeS Yuki L7 and 1 Go 12-Protrusion f3-Man dioxide size t4-Sakasumi electric exposure I5-Polymerization solution tZ tZ tZ 13... Man dioxide you are fake Figure 3 Figure 4
-Guide! , pile height + gate Fig. 5 19-Collection 11 total layers (α) π ・-1 pole sort”
figure

Claims (4)

【特許請求の範囲】[Claims] (1)弁金属により構成され、かつ突起部を複数個有す
る櫛型の陽極体の表面に陽極化成皮膜を形成し、かつ前
記陽極体の突起部に金属酸化物を島状または層状に均一
に付着させ、さらに前記金属酸化物層に接触するように
配置された櫛型電極を用いて前記陽極体の突起部に導電
性高分子膜を電解重合により形成し、その後、前記陽極
体の突起部を個別に切断して1個のコンデンサ素子を構
成することを特徴とする固体電解コンデンサ。
(1) An anode chemical conversion film is formed on the surface of a comb-shaped anode body made of valve metal and has a plurality of protrusions, and a metal oxide is uniformly applied to the protrusions of the anode body in the form of islands or layers. A conductive polymer film is formed on the protrusion of the anode body by electrolytic polymerization using a comb-shaped electrode placed in contact with the metal oxide layer. A solid electrolytic capacitor characterized in that each capacitor is individually cut to form one capacitor element.
(2)金属酸化物がマンガン酸化物である特許請求の範
囲第1項記載の固体電解コンデンサ。
(2) The solid electrolytic capacitor according to claim 1, wherein the metal oxide is a manganese oxide.
(3)弁金属により構成され、かつ突起部を複数個有す
る櫛型の陽極体の表面に陽極化成皮膜を形成する工程と
、前記陽極体の突起部に金属酸化物を島状または層状に
均一に付着させ、さらに前記金属酸化物層に接触するよ
うに配置された櫛型電極を用いて前記陽極体の突起部に
導電性高分子膜を電解重合により形成する工程と、前記
陽極体の突起部を個別に切断して1個のコンデンサ素子
を構成する工程とを備えたことを特徴とする固体電解コ
ンデンサの製造方法。
(3) Forming an anode chemical coating on the surface of a comb-shaped anode body made of valve metal and having a plurality of protrusions, and uniformly applying metal oxide in the form of islands or layers on the protrusions of the anode body. and forming a conductive polymer film on the protrusion of the anode body by electrolytic polymerization using a comb-shaped electrode placed in contact with the metal oxide layer; A method for manufacturing a solid electrolytic capacitor, comprising the step of individually cutting the parts to form one capacitor element.
(4)金属酸化物層に接触するように配置された櫛型電
極が、導電性を有する金属,金属酸化物,導電性高分子
のいずれか、もしくはそれらの複合体であることを特徴
とする特許請求の範囲第3項記載の固体電解コンデンサ
の製造方法。
(4) The comb-shaped electrode placed in contact with the metal oxide layer is made of a conductive metal, a metal oxide, a conductive polymer, or a composite thereof. A method for manufacturing a solid electrolytic capacitor according to claim 3.
JP12218589A 1989-05-16 1989-05-16 Solid electrolytic capacitor and method of manufacturing the same Expired - Fee Related JP2870805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12218589A JP2870805B2 (en) 1989-05-16 1989-05-16 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12218589A JP2870805B2 (en) 1989-05-16 1989-05-16 Solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02302019A true JPH02302019A (en) 1990-12-14
JP2870805B2 JP2870805B2 (en) 1999-03-17

Family

ID=14829683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12218589A Expired - Fee Related JP2870805B2 (en) 1989-05-16 1989-05-16 Solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2870805B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030327A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same
EP1030328A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacutring solid electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030327A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same
EP1030328A2 (en) * 1999-02-17 2000-08-23 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacutring solid electrolytic capacitor
SG84567A1 (en) * 1999-02-17 2001-11-20 Matsushita Electric Ind Co Ltd Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same
EP1030328A3 (en) * 1999-02-17 2005-01-26 Matsushita Electric Industrial Co., Ltd. Method and apparatus for manufacutring solid electrolytic capacitor
EP1030327A3 (en) * 1999-02-17 2005-01-26 Matsushita Electric Industrial Co., Ltd. Method of manufacturing solid electrolytic capacitor, and apparatus of manufacturing the same

Also Published As

Publication number Publication date
JP2870805B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JPH09293639A (en) Solid electrolytic capacitor and manufacture thereof
JP3663952B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003086459A (en) Solid electrolytic capacitor
JPH02302019A (en) Solid electrolytic capacitor and its manufacture
JP2730192B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2940017B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03250723A (en) Manufacture of solid electrolytic capacitor
JPH04274312A (en) Manufacture of solid electrolytic capacitor
JP3416076B2 (en) Manufacturing method of electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH06168851A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH0536575A (en) Solid electrolytic capacitor and its manufacture
JP3725392B2 (en) Electrolytic capacitor and manufacturing method thereof
JPH04103117A (en) Manufacture of solid electrolytic capacitor
JPH02137311A (en) Solid electrolytic capacitor
JP2969703B2 (en) Solid electrolytic capacitors
JP3963458B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3401447B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JP4642257B2 (en) Solid electrolytic capacitor
JP3496013B2 (en) Electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees