JPH02299766A - Instrument for inspecting deformation of sand mold - Google Patents

Instrument for inspecting deformation of sand mold

Info

Publication number
JPH02299766A
JPH02299766A JP12174889A JP12174889A JPH02299766A JP H02299766 A JPH02299766 A JP H02299766A JP 12174889 A JP12174889 A JP 12174889A JP 12174889 A JP12174889 A JP 12174889A JP H02299766 A JPH02299766 A JP H02299766A
Authority
JP
Japan
Prior art keywords
distance
sand mold
wall face
wall surface
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12174889A
Other languages
Japanese (ja)
Other versions
JP2686649B2 (en
Inventor
Yoshikazu Fujiwara
義和 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP12174889A priority Critical patent/JP2686649B2/en
Publication of JPH02299766A publication Critical patent/JPH02299766A/en
Application granted granted Critical
Publication of JP2686649B2 publication Critical patent/JP2686649B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To accurately and quickly discriminate deformation of cavity by calculating deforming quantity of the cavity from inner wall face distance measured with a first distance sensor and the reference wall face distance measured with a second distance sensor. CONSTITUTION:The inner wall face distance (d1) and the reference wall face distance (d2) are detected with distance sensors 6a, 6b, respectively. The inner wall face distance (d1) denotes the distance between the inner wall face 4a at front part of a sand mold 8 and the first distance sensor 6a, and the reference wall face distance (d2) denotes the distance between the reference wall face 74 of a mold 7 and the second distance sensor 6b. Distance Dx of the wall face between the inner wall face 4a and the reference wall face 74 is calculated from the wall face distances (d1), (d2), and difference DELTAx between the prestored distance Dxo of the reference wall face and the distance Dx is obtd. The distance Dxo of the reference wall face corresponds to the distance Dx of the wall face when the deformation of the cavity 80 is not generated and is the fixed value. Successively, degree of the absolute value in the difference DELTAx = Dx - Dxo is checked, and when this is large, sand mold fail signal is outputted and when not, a lifting member 3 is ascended by the fixed distance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、搬送などによる砂型の変形を検査する砂型変
形検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a sand mold deformation inspection device for inspecting deformation of a sand mold due to transportation or the like.

[従来の技術] 従来の鋳型造型ラインの一例では、砂型造形機により造
型された一対のL側及び下側の砂型をコンベヤで搬送し
、注湯機の手前でそれらを重ね合せて内部に密閉された
キャビティをもつ鋳型を形成し、次いでこの鋳型に注湯
している。
[Prior art] In an example of a conventional mold making line, a pair of L side and lower sand molds formed by a sand mold making machine are conveyed by a conveyor, and before a pouring machine, they are overlapped and sealed inside. A mold with a hollow cavity is formed, and then the metal is poured into the mold.

この従来の鋳型造型ラインでは、大型大重量の鋳箱をコ
ンベヤの一連の間欠(インタバル)運転により搬送して
いるので、コンベヤ起動停止時の機械的VfI′!f!
力などによって砂型のキャビティ形状が注湯前に変形し
てしまうという問題があった。
In this conventional mold making line, large and heavy casting boxes are transported by a series of intermittent operations of the conveyor, so the mechanical VfI' when the conveyor starts and stops! f!
There was a problem in that the shape of the sand mold cavity was deformed before pouring due to force.

従来、このキャビティ変形を検査するには、鋳型造型ラ
インを一旦停止し特製のゲージなどによリキャビティ形
状@壊さないようにマニュアル計測していた。
Conventionally, to inspect this cavity deformation, the mold making line was temporarily stopped and the cavity shape was manually measured using a specially made gauge to avoid destroying it.

[発明が解決しようとする課題] しかしながら上記した従来の検査方法では、キャビティ
各部を検査づるのにvI型造型ラインを長時間停止する
必要があり、抜取り検査するにして乙多大な労力負担が
生じた。また、測定対象である砂型が脆いので不良品を
新たに出してしまう場合もあった。
[Problem to be solved by the invention] However, in the conventional inspection method described above, it is necessary to stop the VI molding line for a long time to inspect each part of the cavity, and a large labor burden is incurred when conducting a sampling inspection. Ta. Furthermore, since the sand mold to be measured is brittle, new defective products may be produced.

砂型のキX・ビテイ変形を自動的に検査することは当業
界の年来の夢であったが、鋳型造型ラインのコンベヤで
移動している最中の砂型からキャビティ寸法を計測する
ことは元より困難であり、また、砂型を検査装置に対し
て所定位置に正確に静止させることも困難であった。
It has been a long-held dream of our industry to automatically inspect sand molds for chipping and biting deformation, but it is not possible to measure cavity dimensions from a sand mold while it is being moved on a conveyor in a mold making line. It was also difficult to accurately hold the sand mold at a predetermined position relative to the inspection device.

本発明はこのような課題に鑑みなされたものであり、検
査装置に対して多少の相対位置変動がおっても短時間で
効率よく検査できしかもキャビティを変形することがな
い砂型変形検査装置を提供ブーることを解決すべき課題
としている。
The present invention has been made in view of these problems, and provides a sand mold deformation inspection device that can perform inspection efficiently in a short time even if there is some relative positional variation with respect to the inspection device, and does not deform the cavity. This is an issue that needs to be solved.

[課題を解決するための手段] 本発明の砂型変形検査装置は、内部に砂型が成型された
鋳箱を搬送づるV1造ラインに沿って配置された基部と
、前記基部に冒険可能に保持されて先端部が前記砂型の
キ(pビディ内に挿入される昇降部材と、前記シー?降
部材に固定δれるとともに、前記キャビティを区画する
前記砂型の内壁面までの内壁面距離をt1測りる非接触
型の第1距離センザと、前記昇降部材に固定されるとと
もに、前記鋳箱に設けられた基準壁面までの% i%壁
面距離を計測する第2距離センリと、前記内壁面距離及
び前記基準壁面距離からキVビデイ変形量を算出するキ
Vごティ変形締出手段と、算出された前記:1:ヤビデ
ィ変形量の大小ににり砂型の成否を判別する砂型変形判
別手段とを具備することを特徴としている。
[Means for Solving the Problems] The sand mold deformation inspection device of the present invention includes a base portion disposed along a V1 manufacturing line for conveying a casting box in which a sand mold is molded, and a sand mold deformation inspection device that is movably held in the base portion. The distal end is fixed to the sand mold's key (p biddy) and the sear member, and the inner wall surface distance t1 is measured to the inner wall surface of the sand mold that partitions the cavity. a non-contact first distance sensor; a second distance sensor that is fixed to the lifting member and measures a wall distance to a reference wall provided in the casting box; The sand mold deformation determining means is provided, which calculates the amount of deformation from the reference wall surface distance, and determines the success or failure of the sand mold based on the magnitude of the calculated amount of deformation. It is characterized by

非接触型の第1距離センサとして、光学式や超音波式な
どのセンサを使用することができる。
As the non-contact first distance sensor, an optical sensor, an ultrasonic sensor, or the like can be used.

[作用] 昇降部材は降下して第1距離センサを砂型のキャビティ
内に挿入し、第1距離センサを計測すべき内壁面に対面
させ、第2距離センサを基準壁面に対面させる。第1、
第2距離センザはそれぞれ内壁面及び基準壁面までの内
壁面距離及び基準壁面距離を検出し、キャビティ変形算
出手段はこれら各距離からキャビティ変形量を算出する
。例えば、第1、第2距離センサ間のセンサ間距離は既
知であるので、このセンサ間距離から内壁面距離及び基
準壁面距離を減粋すると、キャビティを区画する内壁面
とり準壁面との間の面間距離を算出することができる。
[Operation] The elevating member descends and inserts the first distance sensor into the cavity of the sand mold, causing the first distance sensor to face the inner wall surface to be measured and the second distance sensor to face the reference wall surface. First,
The second distance sensor detects the inner wall surface distance and the reference wall surface distance to the inner wall surface and the reference wall surface, respectively, and the cavity deformation calculation means calculates the amount of cavity deformation from these distances. For example, since the inter-sensor distance between the first and second distance sensors is known, if the inner wall surface distance and the reference wall surface distance are subtracted from this inter-sensor distance, the distance between the inner wall surface and the semi-wall surface that partitions the cavity can be reduced. The distance between surfaces can be calculated.

キャビティ変形が無い場合にはこの面間距離は既知の標
(11面間距離に一致するので、算出した面間距離と標
型面間距離との鈴からキャビティ変形量がわかる。砂型
変形判別手段は算出されたキャビティ変型mの大小によ
り、差が大である場合に砂型不良と、差が小である場合
に砂型良と判別する。
If there is no cavity deformation, this distance between surfaces matches the distance between surfaces of the known target (11), so the amount of cavity deformation can be determined from the difference between the calculated distance between surfaces and the distance between surfaces of the target.Sand mold deformation determination means Based on the magnitude of the calculated cavity deformation m, it is determined that the sand mold is defective if the difference is large, and that the sand mold is good if the difference is small.

[実施例] (実施例1) 本発明の砂を変形検査装置の一実施例の一部断面模式側
面図を第1図に、その八−へ′線矢視の模式断面平面図
を第2図に示す。
[Example] (Example 1) Fig. 1 is a partial cross-sectional schematic side view of an embodiment of the sand deformation inspection device of the present invention, and Fig. 2 is a schematic cross-sectional plan view taken along the line 8-1'. As shown in the figure.

この砂型変形検査装置は、油圧シリンダ2をもつ基部1
と、油圧シリンダ2のピストンロッド21に固定された
胃降部材3と、昇降部材3に固定された非接触型の第1
距離センサ6a、第2距離センサ6b及び第3距離セン
サ6Cと、本発明でいうギャビティ寸法筒用手段及び砂
型変形判別手段を構成する信号処理装置4とからなる。
This sand mold deformation testing device consists of a base 1 having a hydraulic cylinder 2;
, a gastric descent member 3 fixed to the piston rod 21 of the hydraulic cylinder 2, and a non-contact type first member fixed to the elevating member 3.
It consists of a distance sensor 6a, a second distance sensor 6b, a third distance sensor 6C, and a signal processing device 4 that constitutes a gap dimension cylinder means and a sand mold deformation determining means in the present invention.

基部1は、鋳造ラインを構成覆る砂型造形機(図示せず
)及び注湯機(図示けず)の間に設置されており、搬送
用のローラーコンベヤ5の側方に立設されている。基部
1のヘッド11はローラーコンベヤ5の上方に伸びてお
り、ヘッド11に油圧シリンダ2が固定されている。油
圧シリンダ2のピストンロッド21は垂直方向に伸びて
おり、ピストンロッド21の先端はローラーコンベヤ5
に対面している。
The base 1 is installed between a sand mold forming machine (not shown) and a pouring machine (not shown) that constitute a casting line, and is erected on the side of a roller conveyor 5 for conveyance. A head 11 of the base 1 extends above the roller conveyor 5, and a hydraulic cylinder 2 is fixed to the head 11. The piston rod 21 of the hydraulic cylinder 2 extends vertically, and the tip of the piston rod 21 is connected to the roller conveyor 5.
is facing.

昇降部材3は、主部31及び一対の突部32.33から
なる]字形状をもち、主部31はビストンロツド21の
先端に固定され水平方向に伸びている。突部32.33
は主部31の両端から下方に伸びており、突部32.3
3の先端に第1、第2距離センサ6a、6bが水平距離
を測定するべく固定されている。第1、第2距離センサ
5a。
The elevating member 3 has a shape consisting of a main part 31 and a pair of protrusions 32 and 33, and the main part 31 is fixed to the tip of the piston rod 21 and extends in the horizontal direction. Projection 32.33
extend downward from both ends of the main portion 31, and the protrusions 32.3
First and second distance sensors 6a and 6b are fixed to the tip of the sensor 3 to measure horizontal distance. First and second distance sensors 5a.

6bは互いに対向するように配設されている。また、第
3距離センサ6Cは主部31の下面に垂直距離を測定す
るべく固定されている。各距離センサ6a〜6Cは各々
光学式距離センサで構成されている。各距離センサ6a
〜6Cは発光ダイオード(図示せず〉及びPSD (図
示せず)をもち、三角測量法により測定対象までの距餌
1を測定する距離センサで構成されているが、詳細説明
は省略する。
6b are arranged so as to face each other. Further, the third distance sensor 6C is fixed to the lower surface of the main portion 31 to measure the vertical distance. Each of the distance sensors 6a to 6C is an optical distance sensor. Each distance sensor 6a
6C is a distance sensor that has a light emitting diode (not shown) and a PSD (not shown) and measures the distance bait 1 to the measurement target by triangulation method, but detailed explanation will be omitted.

信号処理装置4は、マイコンで構成されており、ローラ
ーコンベヤ5と同期して油圧シリンダ2を作動させると
ともに、各距離センサ6a〜6Cからの信号を処理して
砂型の良否を判定するようにプログラムされている。
The signal processing device 4 is composed of a microcomputer, and is programmed to operate the hydraulic cylinder 2 in synchronization with the roller conveyor 5, and to process the signals from the respective distance sensors 6a to 6C to determine the quality of the sand mold. has been done.

模式的に図示されたローラーコンベヤ5上には、鋼板製
で上端間1コ角箱形状の鋳箱7が載置されてiJ3す、
鋳箱7には砂へ“L8が充填されている。この鋳箱7の
長辺は約1m、短辺は約0.5m、高さは約3Qcmで
ある。砂型8を有する鋳箱7の小組は約170kgであ
り、インタバル運転型のローラーコンベヤ5には数十個
の鋳箱7が搭載されている。砂型8の合せ面81は&I
Jffi7の前端上面71及び後端上面72と同一直線
上に成型されており、ズレが無い理想状態において水平
方向に伸びている。また、鋳箱7の前端面73は鋳箱7
の前端上面71及び後端上面72に対して直角方向かつ
搬送方向に対して直角方向に伸びて43す、前端面73
の中央部に縦溝形状の祉準檗面74が前端面73と平行
に凹設されている。
On the schematically illustrated roller conveyor 5, a square box-shaped casting box 7 made of steel plate is placed between the upper ends.
The sand in the casting box 7 is filled with L8. The long side of the casting box 7 is about 1 m, the short side is about 0.5 m, and the height is about 3 Qcm. The small assembly weighs approximately 170 kg, and several dozen casting boxes 7 are mounted on an interval-operated roller conveyor 5.The mating surface 81 of the sand mold 8 is
It is molded on the same straight line as the front end upper surface 71 and rear end upper surface 72 of Jffi7, and extends in the horizontal direction in an ideal state without deviation. Further, the front end surface 73 of the casting box 7 is
A front end surface 73 extending in a direction perpendicular to the front end upper surface 71 and rear end upper surface 72 and in a direction perpendicular to the conveyance direction.
A vertical groove-shaped recessed surface 74 is recessed in the center of the front end surface 73 in parallel with the front end surface 73.

砂型8には上端開口で直方体形状のキャビティ80が1
個形成されており、砂型8の内壁面4a〜4dがキャビ
ティ80の側面を区画している(第2図参照)。砂型4
の前部の内壁面4aは鋳箱7の基準壁面74と平行に形
成されている。
The sand mold 8 has one rectangular parallelepiped-shaped cavity 80 with an open top end.
The inner wall surfaces 4a to 4d of the sand mold 8 define the side surfaces of the cavity 80 (see FIG. 2). sand mold 4
The front inner wall surface 4a is formed parallel to the reference wall surface 74 of the casting box 7.

第1図では、ピストンロッド21が伸長して第1距離セ
ン量す6aはキャビティ80の内部に挿入されており、
第2距離センサ6bは基準壁面74に対向しており、第
3距離センサ6 C4,を鋳箱7の前端上面71に対面
している。
In FIG. 1, the piston rod 21 is extended and the first distance sensor 6a is inserted into the cavity 80.
The second distance sensor 6b faces the reference wall surface 74, and the third distance sensor 6C4 faces the front end upper surface 71 of the casting box 7.

次に、この砂型変形倹査装首の測定動作を第3図及び第
4図のフローチャートにより説明する。
Next, the measurement operation of this sand mold deformation head will be explained with reference to the flowcharts of FIGS. 3 and 4.

まず、マイコン4を初期設定した1多、鋳箱7が昇降部
材3の直下の所定位置に停止したかどうかをリミットス
イッチなどの図示しない検出装置により検出する(31
00)。なお、ローラーコンベヤ5はインタバル運転さ
れており、ローラーコンベヤ5上は各鋳箱7を昇降部材
3の直下の所定位置に順番に停止するように運転制御さ
れている。
First, after initializing the microcomputer 4, a detection device (not shown) such as a limit switch detects whether or not the casting box 7 has stopped at a predetermined position directly below the lifting member 3 (31
00). The roller conveyor 5 is operated at intervals, and the operation of the roller conveyor 5 is controlled so that the casting boxes 7 are sequentially stopped at a predetermined position immediately below the elevating member 3.

鋳箱7が昇降部材3の直下の所定位置に停止したことを
検出すると、油圧シリンダ2を作動させて昇降部材3を
降下させ(3102>、昇降部材3が所定位置まで降下
したかどうかを判別する(3104)。なお、この判別
は第3距離センサ6Cが計測する鋳箱7の前端上面71
までの垂直距離dhが予め設定された垂直圧1iSll
値以下かどうかを判別して実行される。
When it is detected that the casting box 7 has stopped at a predetermined position directly below the elevating member 3, the hydraulic cylinder 2 is activated to lower the elevating member 3 (3102>, and it is determined whether the elevating member 3 has descended to a predetermined position. (3104).This determination is based on the front end upper surface 71 of the casting box 7 measured by the third distance sensor 6C.
vertical distance dh is preset vertical pressure 1iSll
It is executed after determining whether it is less than or equal to the value.

昇降部材3が所定位置まで降下した場合には、昇降部材
3の降下を停止させ(3106)、検査回数を示す検査
回数フラグTをT+1に設定する。
When the elevating member 3 has descended to the predetermined position, the lowering of the elevating member 3 is stopped (3106), and a test number flag T indicating the number of tests is set to T+1.

ただし、フラグTはスタート直後の初期設定ににすOに
設定されており、ここでは1となる。(S108)。
However, the flag T is initially set to O immediately after the start, and is set to 1 here. (S108).

次に、各距離センサ6a、6bにより内壁面距離d1及
び基準壁面距離d2を検出する(3110)。ただし、
内壁面距離d1は砂型8の前部の内壁面4aと第1距離
センサ6aとの間の距離を意味し、基準壁面距離d2は
鋳箱7の基準壁面74と第2距離センサ6bとの間の距
離を意味する。
Next, the inner wall surface distance d1 and the reference wall surface distance d2 are detected by each distance sensor 6a, 6b (3110). however,
The inner wall surface distance d1 means the distance between the inner wall surface 4a of the front part of the sand mold 8 and the first distance sensor 6a, and the reference wall surface distance d2 means the distance between the reference wall surface 74 of the casting box 7 and the second distance sensor 6b. means the distance.

次に、これら壁面距離di、d2から、内壁面4aと基
準壁面74との間の壁面間距離D×を詐出し、算出した
壁面間距離[)Xと予め記憶した標準壁面間距離DXO
との差ΔXを求める(S112)。ここで、標準壁面間
距離DXOはキャビティ80の変形が無い場合の壁面間
距離DXを意味しており一定値となる。すなわち、鋳箱
7の肉厚は不変であるので、壁面間距離DXの変化は砂
型8の肉厚の変動に等しい。
Next, from these wall distances di and d2, the wall distance Dx between the inner wall surface 4a and the reference wall surface 74 is calculated, and the calculated wall distance [)X and the pre-stored standard wall distance DXO are calculated.
The difference ΔX is calculated (S112). Here, the standard wall-to-wall distance DXO means the wall-to-wall distance DX when the cavity 80 is not deformed, and is a constant value. That is, since the wall thickness of the casting box 7 remains unchanged, a change in the wall distance DX is equal to a change in the wall thickness of the sand mold 8.

次に、差Δx=Dx−DXOの絶対値の大小を調べ(S
114)、大であれば砂型不良信号を出力しく8116
)、そうでない場合には昇降部材3を一定距離だけ上昇
させる(811B)。なお、砂型不良信号が出力される
と、砂型8への注湯を停止する信号を注湯機(図示せず
)に出力し、この不良の砂型8への注湯を中止する。
Next, check the magnitude of the absolute value of the difference Δx = Dx - DXO (S
114), if it is large, output a sand mold failure signal 8116
), otherwise the elevating member 3 is raised by a certain distance (811B). Note that when a sand mold defect signal is output, a signal to stop pouring into the sand mold 8 is output to a pouring machine (not shown), and pouring into the defective sand mold 8 is stopped.

次に、5120に進んで検査回数フラグTが設定値n(
ここでは5)以下かどうかを判別し、以下であれば81
08に回帰して再度砂型8の良否を調べ、検査回数丁が
設定値nを越えた場合には砂型良信号を出力しく512
2>、昇降部材3を最初の位置まで上昇してコンベヤ5
を再起動する(3124>。 なお、本実施例では、昇
降部材3の上昇と検査を交互に実行していたが昇降部材
3を定速度で垂直移動しつつ定時間毎に検査を実施して
もよいし、また検査を1回だけ実施してもよい。また、
本実施例では、内壁面4aは垂直に伸びかつ搬送方向 と直角に伸びる平面で構成されているが、他の表面形状
を有していてもよい。例えば、標準壁面間距離DxOの
垂直方向の変化を逐一記憶しておき、求めた壁面間距離
Dxの垂直方向位置と同位置の標へ【壁面間距離DXO
を読み出せばよい。
Next, the process advances to 5120 where the number of inspection flag T is set to the set value n(
Here, determine whether it is less than or equal to 5), and if it is less than or equal to 81
Return to step 08 and check the quality of the sand mold 8 again, and if the number of inspections exceeds the set value n, output a sand mold good signal.512
2>, raise the elevating member 3 to the initial position and move the conveyor 5
(3124>. In this embodiment, the lifting and inspection of the lifting member 3 were performed alternately, but the inspection was performed at fixed time intervals while vertically moving the lifting member 3 at a constant speed. The test may be carried out only once, or the test may be carried out only once.
In this embodiment, the inner wall surface 4a is formed of a plane extending vertically and perpendicular to the conveying direction, but may have other surface shapes. For example, you can memorize the changes in the standard wall distance DxO in the vertical direction, and move the mark at the same vertical position as the calculated wall distance Dx to [Wall distance DXO].
All you have to do is read out the .

なお、砂型8の姿勢が変化すると壁面間距離DXが変動
する場合があるが、これを防止するには、例えば第5図
に示すように、ローラーコンベヤ5を搬送方向と直角方
向に傾斜させ、かつローラーコンベヤ5と直角にガイド
ローラー9を設ければよい。このようにすれば、大1f
flの鋳箱7が自己のff1ffiでガイドローラー9
に押付けられ、砂型8の姿勢は、搬送方向にあCプる静
止位置のばらつきを除いて、正確に規定される。
Note that when the attitude of the sand mold 8 changes, the wall-to-wall distance DX may change, but in order to prevent this, for example, as shown in FIG. In addition, a guide roller 9 may be provided at right angles to the roller conveyor 5. If you do this, the large 1f
The fl casting box 7 is attached to the guide roller 9 with its own ff1ffi.
The posture of the sand mold 8 is precisely defined, excluding variations in the resting position in the conveyance direction.

以上説明した本実施例の砂型検査装置では、以下の利点
がめる。
The sand mold inspection apparatus of this embodiment described above has the following advantages.

(1)鋳箱7の停止位置はコンベヤの起動停止状況によ
り、搬送方向において不可避的にばらつく。このばらつ
きの存在にもかかわらず、正確にキャビティ変形量を計
測することができる。
(1) The stopping position of the casting box 7 inevitably varies in the conveying direction depending on the startup/stop status of the conveyor. Despite the existence of this variation, the amount of cavity deformation can be accurately measured.

(2)不良と判定した砂型8への注湯を停止する信号を
注湯機(図示せず)に出力しているので、溶湯の無駄を
減らし不良品の選別や処理の手間を省くことができる。
(2) A signal to stop pouring into the sand mold 8 determined to be defective is output to the pouring machine (not shown), which reduces waste of molten metal and eliminates the trouble of sorting and processing defective products. can.

なお、本実施例の変形態様として、検査すべき内壁面4
aが基準壁面74と平行でおる場合には、計測した内壁
面距離と基71(壁面距離の合計のばらつきの大小によ
り砂型8の良否を判別することもてきる。
In addition, as a modification of this embodiment, the inner wall surface 4 to be inspected
When a is parallel to the reference wall surface 74, the quality of the sand mold 8 can be determined based on the magnitude of variation in the measured inner wall surface distance and the total distance of the base 71 (wall surface distance).

第6図に、変形態様を示す。鋳箱7aには2個のキャビ
ティ81.82をもつ砂型8aが形成されている。昇降
部材3は3本の突部34.35.36をもち、突部34
の先端に第1距離センサ6aが、突部35の先端に第2
距離センサ6bが、突部36の先端に第4距離センサ6
dが固定されている。第1距離センサ6aはキャビティ
81の内壁面4fを計測し、第4距離センザ6dはキャ
ビティ82の内壁面4gを計測する。
FIG. 6 shows the deformed form. A sand mold 8a having two cavities 81 and 82 is formed in the casting box 7a. The elevating member 3 has three protrusions 34, 35, and 36.
A first distance sensor 6a is located at the tip of the protrusion 35, and a second distance sensor 6a is located at the tip of the protrusion 35.
The distance sensor 6b is connected to the fourth distance sensor 6 at the tip of the protrusion 36.
d is fixed. The first distance sensor 6a measures the inner wall surface 4f of the cavity 81, and the fourth distance sensor 6d measures the inner wall surface 4g of the cavity 82.

(実施例2) この実施例の砂型変形検査装置の一部断面模式側面図を
第7図に、そのA−A−線矢視の模式断面平面図を第8
図に示す。ただし、実施例1の構成要素と共通する機能
を有する要素には同一符号を付す。
(Example 2) FIG. 7 is a partial cross-sectional schematic side view of the sand mold deformation testing device of this example, and FIG. 8 is a schematic cross-sectional plan view taken along the line A-A.
As shown in the figure. However, elements having functions common to those of the first embodiment are given the same reference numerals.

この砂型変形検査装置は、油圧シリンダ2をもつ基部1
と、油圧シリンダ2のピストンロッド21に固定された
昇降部材3と、昇降部材3に固定された第1〜第3距離
センサ6a〜6Cと、信号処理装置4とを有し、更には
昇降部材3に固定された第5距離センサ6eを有してい
る。
This sand mold deformation testing device consists of a base 1 having a hydraulic cylinder 2;
, an elevating member 3 fixed to the piston rod 21 of the hydraulic cylinder 2, first to third distance sensors 6a to 6C fixed to the elevating member 3, and a signal processing device 4. It has a fifth distance sensor 6e fixed to No. 3.

昇降部材3は、水平方向に伸びる主部31と、主部31
の前端部下面から下方に伸びる突部32と、主部31の
中央部下面から下方に伸びる突部33とからなり、主部
31の後端部は鋳箱7の後端上面72の上方にまで伸び
ている。
The elevating member 3 includes a main portion 31 extending in the horizontal direction;
The main part 31 has a protrusion 32 extending downward from the lower surface of the front end thereof, and a protrusion 33 extending downward from the lower surface of the center of the main part 31. It is growing up to.

第5距離センサ6eは、光学式距1eIII?ン1すで
構成されており、昇降部材3の主部31の後端部下面に
下方に向けて垂直距離を測定するべく固定されている。
The fifth distance sensor 6e is an optical distance sensor 1eIII? It is fixed to the lower surface of the rear end of the main part 31 of the elevating member 3 in order to measure the vertical distance downward.

第7図では鋳箱7の後端上面72に対而している。In FIG. 7, the rear end upper surface 72 of the casting box 7 is shown.

この砂型変形検査装置の測定動作を第9図のフローチャ
ートにより説明する。
The measurement operation of this sand mold deformation testing device will be explained with reference to the flowchart of FIG.

このフローチャートは第3図に示す第1実施例のフロー
チャートに、ス°jツブ5126及び5128を付【プ
加えたものであり、5126は5106と8108の間
に、5128は5110と5112の間に挿入されてい
る。
This flowchart is the same as the flowchart of the first embodiment shown in FIG. It has been inserted.

8126は、第3距離センサ6Cにより計測された鋳箱
7の前端上面71までの垂直距1i51Idhと、第5
距離セ′ンサ6eが計測する鋳箱7の後端−F面72ま
での垂直距離d h−とから、搬送方向に沿っての鋳箱
7の傾斜率を算出するステップである。
8126 is the vertical distance 1i51Idh to the front end upper surface 71 of the casting box 7 measured by the third distance sensor 6C, and the fifth
This is a step of calculating the inclination rate of the casting box 7 along the transport direction from the vertical distance dh- from the rear end of the casting box 7 to the F surface 72 measured by the distance sensor 6e.

すなわら、第3、第5距離セン1)6C及び60間の距
離しは既知一定であるので、上記傾斜率は(dh−dh
”)/Lとなる。
In other words, since the distance between the third and fifth distance sensors 1) 6C and 60 is known and constant, the above slope rate is (dh-dh
”)/L.

5128は、5126で算出された鋳箱7の傾斜率によ
り5110で締出された壁面間距MDX=dlを補正す
るステップである。すなわち、第10図かられかるよう
に、真の壁面間距離[)X−は、 □x−=cosθXDX tanθ=(dh−dt)”)/Lとなる。
5128 is a step of correcting the distance between the wall surfaces MDX=dl, which was excluded in 5110, by the inclination rate of the casting box 7 calculated in 5126. That is, as can be seen from FIG. 10, the true distance between the walls [)X- is as follows: □x-=cosθXDX tanθ=(dh-dt)'')/L.

このようにJれば、鋳箱7の搬送方向への傾斜による誤
差を補正することができる。
By doing so, it is possible to correct errors caused by the inclination of the casting box 7 in the transport direction.

[発明の効果] 以上説明したように本発明の砂型変形検査装置は、砂型
のキャビティ内に挿入される4降部材に固定される第1
、第2距離ゼンリをもち、第1距離センサが計測した内
壁面距離と、第2距離センザが計測した基準壁面距離と
から、キA・ビティ変形量を算出しているので、たとえ
砂型と各距離センサとの間の相対距離がばらついても正
確かつ高速にキャビティ変形を判別することができ、か
つこの検査によってキャビティを壊す恐れがない。
[Effects of the Invention] As explained above, the sand mold deformation inspection device of the present invention has a first
, has a second distance center, and calculates the amount of KiA-biti deformation from the inner wall surface distance measured by the first distance sensor and the reference wall surface distance measured by the second distance sensor, so even if the sand mold and each Even if the relative distance to the distance sensor varies, cavity deformation can be determined accurately and quickly, and there is no risk of damaging the cavity due to this inspection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の砂型変形検査装置を実施する一部断面
模式側面図、第2図はその模式断面平面図、第3図及び
第4図は上記砂型検査装置の動作を示すフローチャート
、第5図は砂型8の姿勢制り11方法の一例を示す模式
正面図、第6図は変形態様を示す一部断面側面図である
。第7図は第2実施例の砂型変形検査装置の一部断面模
式側面図、第8図は第7図の装置の模式断面平面図、第
9図は第7図の砂型検査装置の動作を示すフローチャー
ト、第10図は、鋳箱7の傾斜率と壁面間距離[)Xと
の関係を示す説明図でおる。 1・・・基部 3・・・昇降部材 6a・・・第1距離センサ 6b・・・第2距離センザ 4・・・マイコン (キャビティ変形算出手段) (砂型変形判別手段) 特許出願人   アイシン高丘株式会社代理人    
弁理士 大川 宏 第2図 第6図 第3図 第4図 第5図 第8図 H−Dx・4
FIG. 1 is a partial cross-sectional schematic side view of the sand mold deformation testing device of the present invention; FIG. 2 is a schematic cross-sectional plan view thereof; FIGS. 3 and 4 are flow charts showing the operation of the sand mold testing device; FIG. 5 is a schematic front view showing an example of the method 11 for controlling the posture of the sand mold 8, and FIG. 6 is a partially sectional side view showing a modified form. FIG. 7 is a partial cross-sectional schematic side view of the sand mold deformation testing device of the second embodiment, FIG. 8 is a schematic cross-sectional plan view of the device shown in FIG. 7, and FIG. 9 shows the operation of the sand mold testing device of FIG. 7. The flowchart shown in FIG. 10 is an explanatory diagram showing the relationship between the inclination ratio of the casting box 7 and the wall distance [)X. 1... Base 3... Lifting member 6a... First distance sensor 6b... Second distance sensor 4... Microcomputer (cavity deformation calculating means) (sand mold deformation determining means) Patent applicant Aisin Takaoka Co., Ltd. company agent
Patent Attorney Hiroshi OkawaFigure 2Figure 6Figure 3Figure 4Figure 5Figure 8H-Dx・4

Claims (2)

【特許請求の範囲】[Claims] (1)内部に砂型が成型された鋳箱を搬送する鋳造ライ
ンに沿つて配置された基部と、 前記基部に昇降可能に保持されて先端部が前記砂型のキ
ャビティ内に挿入される昇降部材と、前記昇降部材に固
定されるとともに、前記キャビティを区画する前記砂型
の内壁面までの内壁面距離を計測する非接触型の第1距
離センサと、前記昇降部材に固定されるとともに、前記
鋳箱に設けられた基準壁面までの基準壁面距離を計測す
る第2距離センサと、 前記内壁面距離及び前記基準壁面距離からキャビティ変
形量を算出するキャビティ変形算出手段と、 算出された前記キャビティ変形量の大小により砂型の良
否を判別する砂型変形判別手段と、を具備することを特
徴とする砂型変形検査装置。
(1) a base disposed along a casting line for conveying a casting box with a sand mold molded therein; and an elevating member that is held movably up and down by the base and whose tip end is inserted into the cavity of the sand mold. a non-contact type first distance sensor that is fixed to the lifting member and measures an inner wall surface distance to an inner wall surface of the sand mold that partitions the cavity; and a first distance sensor that is fixed to the lifting member and measures the inner wall surface distance of the sand mold that defines the cavity; a second distance sensor that measures a reference wall surface distance to a reference wall surface provided in the inner wall surface; a cavity deformation calculation means that calculates a cavity deformation amount from the inner wall surface distance and the reference wall surface distance; A sand mold deformation inspection device characterized by comprising: sand mold deformation determining means for determining whether a sand mold is good or bad based on its size.
(2)前記昇降部材の変位とともに前記判別を複数回実
施する特許請求の範囲第1項記載の砂型変形検査装置。
(2) The sand mold deformation inspection device according to claim 1, wherein the determination is performed a plurality of times as the elevating member is displaced.
JP12174889A 1989-05-16 1989-05-16 Sand mold deformation inspection device Expired - Lifetime JP2686649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12174889A JP2686649B2 (en) 1989-05-16 1989-05-16 Sand mold deformation inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12174889A JP2686649B2 (en) 1989-05-16 1989-05-16 Sand mold deformation inspection device

Publications (2)

Publication Number Publication Date
JPH02299766A true JPH02299766A (en) 1990-12-12
JP2686649B2 JP2686649B2 (en) 1997-12-08

Family

ID=14818908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12174889A Expired - Lifetime JP2686649B2 (en) 1989-05-16 1989-05-16 Sand mold deformation inspection device

Country Status (1)

Country Link
JP (1) JP2686649B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477618A (en) * 1994-05-03 1995-12-26 Gibson; Stephen P. Sand core dimension checking apparatus
US5996681A (en) * 1995-09-20 1999-12-07 Adolf Hottinger Kg Method for quality control in core or shell shooters and a device for core or shell shooting
US6173757B1 (en) 1995-09-22 2001-01-16 Adolf Hottinger Kg Method of quality control in the production of finished cast shells or core stackings

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8205663B2 (en) * 2008-09-30 2012-06-26 Mohamed Abdelrahman Apparatus and method for monitoring and evaluating greensand molds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477618A (en) * 1994-05-03 1995-12-26 Gibson; Stephen P. Sand core dimension checking apparatus
US5996681A (en) * 1995-09-20 1999-12-07 Adolf Hottinger Kg Method for quality control in core or shell shooters and a device for core or shell shooting
US6173757B1 (en) 1995-09-22 2001-01-16 Adolf Hottinger Kg Method of quality control in the production of finished cast shells or core stackings

Also Published As

Publication number Publication date
JP2686649B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US5766538A (en) Method of quality control during production of concrete blocks
CN108348987B (en) Device and method for detecting mismatching of upper and lower molds
JP2018520009A5 (en)
CN110227804A (en) A kind of silver ingot automatic casting equipment
KR960013528A (en) Molded or Formed Water Quality Testing Method and Apparatus
JPH02299766A (en) Instrument for inspecting deformation of sand mold
JPH11508999A (en) Method and apparatus for checking the tightness of a deformable container
NL8602108A (en) METHOD AND APPARATUS FOR GENERATING FORMS WITH UNIFORM RAW DENSITY AND DIMENSIONS
US11045866B2 (en) Method for preventing defect caused by shift in cavity parts
KR100817514B1 (en) Apparatus and method for measuring displacement
JP2686648B2 (en) Sand mold deformation inspection device
CN111983204A (en) Masonry molding refractory mortar shrinkage testing tool and testing method
US5771100A (en) Method of measuring dimension of mold or mold-associated component by laser measuring instrument
JP2597172B2 (en) Sand mold deformation inspection method
CN216081682U (en) Device for detecting high-temperature metal liquid level in flame and smoke environment
CA2207389C (en) Mold core-pin deflection transducer
JPS61111800A (en) Powder compression molding machine
KR102595425B1 (en) Cover deformation inspection jig
KR20000026546A (en) Apparatus and method for checking flat display
JP5550144B2 (en) Defective hole inspection apparatus and method
KR200332070Y1 (en) Jig for apparatus for mesuring inside face of crt glass panel
US20110270572A1 (en) Method and apparatus for calculating the density of concrete blocks
US5174355A (en) Method for detecting casting alignment defects
JPH02285235A (en) Method and apparatus for detecting reject of concrete product
JPH1047905A (en) Thickness measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 12