JPH02297867A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH02297867A
JPH02297867A JP1116025A JP11602589A JPH02297867A JP H02297867 A JPH02297867 A JP H02297867A JP 1116025 A JP1116025 A JP 1116025A JP 11602589 A JP11602589 A JP 11602589A JP H02297867 A JPH02297867 A JP H02297867A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
positive electrode
secondary battery
pos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1116025A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kahata
利幸 加幡
Keiji Taniguchi
圭司 谷口
Okitoshi Kimura
興利 木村
Toshiyuki Osawa
利幸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1116025A priority Critical patent/JPH02297867A/en
Publication of JPH02297867A publication Critical patent/JPH02297867A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a secondary battery with large capacity and increased energy density by allowing the positive electrode of secondary battery to contain electrolyte in a specific wt.%. CONSTITUTION:The positive electrode of a secondary battery contains electrolyte in 35-50wt.%. Even with a thicker pos. electrode, the electrode reaction can be generated uniformly if not merely electrolyte exists inside the pos. electrode but the amount of electrolyte is ample. According to this constitution the pos. electrode contains sufficient electrolyte to perform electrode reactions, which take place uniformly over the whole pos. electrode, that should increase the rate of utilization of conductive highpolymer, enhance the energy density even it is achieved in large capacity, and also enlarge the output current.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、大容量で、かつ、高エネルギー密度である二
次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a secondary battery having a large capacity and a high energy density.

[従来の技術] 近年、電気機器の小型、軽量、薄型化などに伴い、その
電源として使用する電池においても小型、軽量、薄型化
の要望が高まり、種々の電池が提案されている。中でも
ポリピロール、ポリアニリン、ポリアセチレン等の導電
性高分子材料を正極、リチウムを負極に用いた二次電池
は、軽量であり、高エネルギー密度であることから注目
されている。
[Background Art] In recent years, as electric devices have become smaller, lighter, and thinner, there has been an increasing demand for smaller, lighter, and thinner batteries for use as power sources, and various batteries have been proposed. Among them, secondary batteries that use conductive polymer materials such as polypyrrole, polyaniline, and polyacetylene for the positive electrode and lithium for the negative electrode are attracting attention because they are lightweight and have high energy density.

特に、ポリアニリンはそのモルフォロジーがフィブリル
状で比表面積が大きいため、出力密度が高く、放電容量
が大きく、また充放電の繰返し寿命に優れた二次電池を
形成し得る電極活物質として注目されている。
In particular, polyaniline has a fibrillar morphology and a large specific surface area, so it is attracting attention as an electrode active material that can form secondary batteries with high output density, large discharge capacity, and excellent repeated charging and discharging life. .

このように導電性高分子材料を用い、大容量でエネルギ
ー密度の高い二次電池を作製する試みがなされてきた。
As described above, attempts have been made to use conductive polymer materials to produce secondary batteries with large capacity and high energy density.

しかしながら、導電性高分子材料の厚みが数十μ−程度
の薄膜で作製した数mAh程度の二次電池では十分に優
れた性能を示すものの、現存するニッカド電池のような
数十〜数ersAhクラス以上の二次電池を作製した場
合、導電性高分子材料の充填量に対する電池の容量が小
さく、ニッカド電池にくらべてエネルギー密度が同程度
、あるいはそれ以下となってしまう、また出力電流が小
さい等の不具合を生じていた。
However, although a secondary battery of several mAh made from a thin film of conductive polymer material with a thickness of several tens of microns exhibits sufficiently excellent performance, If the above secondary battery is manufactured, the capacity of the battery will be small relative to the amount of conductive polymer material filled, the energy density will be the same as or lower than that of a NiCd battery, and the output current will be small. This was causing a problem.

従来より導電性高分子材料を用いた大容量二次電池の製
作の試みは盛んであり、例えば特開昭63−28586
3では薄層の導電性高分子を用いた電極を積層し、導電
性高分子の利用率を向上される提案がなされているが、
薄層の電極を多数積層させるため各電極のずれが生じ易
いため、作業性が悪い、実装される電池の性能低下が生
じ易い等の欠点を持っていた。
There have been many attempts to fabricate high-capacity secondary batteries using conductive polymer materials; for example, Japanese Patent Application Laid-Open No. 63-28586
3 proposes stacking electrodes using thin layers of conductive polymer to improve the utilization rate of conductive polymer.
Since a large number of thin electrodes are laminated, each electrode is likely to be misaligned, resulting in disadvantages such as poor workability and a tendency for the performance of the mounted battery to deteriorate.

また特開昭61−200548では嵩密度を0.4〜1
.1 g/ctn3と調整したポリアニリンを電極に用
いることにより電解液の使用量を少なくさせる提案がな
されているが、ミニチュア二次電池では比較的良い結果
が得られるものの大容量二次電池では十分な性能をだす
ことができなかった。
In addition, in JP-A-61-200548, the bulk density is 0.4 to 1.
.. A proposal has been made to reduce the amount of electrolyte used by using polyaniline adjusted to 1 g/ctn3 as an electrode, but although relatively good results can be obtained with miniature secondary batteries, it is insufficient for large-capacity secondary batteries. I couldn't get the best performance.

[発明が解決しようとする課題] 本発明は、こうした実情に鑑み、大容量でかつエネルギ
ー密度の高い二次電池を提供することを目的とするもの
である。
[Problems to be Solved by the Invention] In view of these circumstances, an object of the present invention is to provide a secondary battery with large capacity and high energy density.

[課題を解決するための手段] 本発明者らは、こうしたミニチュア二次電池と大容量二
次電池との違いが何故に生起するのか、その原因につい
て鋭意究明に努めてきた結果、導電性高分子を用いた正
極の厚みがミニチュア電池では、数十μm程度であるの
に対し、大容量電池では数百μm−数■であり、ミニチ
ュア電池では電極反応が正極全体でほぼ均一に起こるこ
とができるのに対し、大容量電池では電極反応は主に電
解液と接している正極の外側付近でのみ起こり、正極内
部では電極反応が生じ難いことが分った。
[Means for Solving the Problems] The present inventors have diligently endeavored to investigate the cause of the difference between miniature secondary batteries and large-capacity secondary batteries, and have found that In miniature batteries, the thickness of the positive electrode using molecules is about a few tens of micrometers, while in large-capacity batteries it is several hundred micrometers to a few square meters, which means that in miniature batteries, the electrode reaction occurs almost uniformly across the entire positive electrode. In contrast, in large-capacity batteries, electrode reactions mainly occur only near the outside of the positive electrode, which is in contact with the electrolyte, and it has been found that electrode reactions are difficult to occur inside the positive electrode.

そこで、本発明者らはこの知見を基に厚い正極において
も電極反応が均一に起すことができるように正極内部に
おいても十分な電解液が存在すれば、電極反応は均一に
起すことができるのではないかと考え、さらに検討を重
ねた結果、単に正極内部に電解液が存在するのみではな
く十分な電解質が必要であることを見出し本発明に至っ
た。すなわち、本発明は正極活物質に導電性高分子材料
を用いた二次電池において該二次電池の正極が35〜5
0重二%の電解質を含有することを特徴とする二次電池
である。
Based on this knowledge, the present inventors believe that if enough electrolyte exists inside the positive electrode, the electrode reaction can occur uniformly even in thick positive electrodes. As a result of further investigation, we discovered that not only the presence of an electrolytic solution inside the positive electrode but also a sufficient amount of electrolyte is necessary, leading to the present invention. That is, the present invention provides a secondary battery using a conductive polymer material as a positive electrode active material, in which the positive electrode of the secondary battery has a diameter of 35 to 5.
This is a secondary battery characterized by containing 0.2% electrolyte.

本発明の二次電池は、正極が35〜50%の電解質を含
有しているため、電極反応に必要な電解質が正極内部に
おいて十分に存在し、電極反応は正極全体で均一に起こ
ることができ、導電性高分子の利用率が高く、また正極
外部からの電解質の供給を必要としないため、エネルギ
ー密度が高く、また出力電流を大きくすることができる
。本発明の二次電池の正極とは導電性高分子を用いた電
極であり、導電性高分子単独あるいはさらに必要に応じ
導電材及び結着剤を添加させたものである。本発明の正
極の電解質の含有量は35〜50重量%、好ましくは4
0〜50重量%である。35%以下では電極反応に必要
な電解質を正極外部より供給する必要があり、50%以
上では正極のエネルギー密度の点で不利である。
In the secondary battery of the present invention, since the positive electrode contains 35 to 50% electrolyte, the electrolyte necessary for the electrode reaction is sufficiently present inside the positive electrode, and the electrode reaction can occur uniformly throughout the positive electrode. , the utilization rate of the conductive polymer is high, and the supply of electrolyte from the outside of the positive electrode is not required, so the energy density is high and the output current can be increased. The positive electrode of the secondary battery of the present invention is an electrode using a conductive polymer, and the conductive polymer may be used alone or a conductive material and a binder may be added thereto as necessary. The electrolyte content of the positive electrode of the present invention is 35 to 50% by weight, preferably 4% by weight.
It is 0 to 50% by weight. If it is less than 35%, it is necessary to supply the electrolyte necessary for the electrode reaction from outside the positive electrode, and if it is more than 50%, it is disadvantageous in terms of the energy density of the positive electrode.

本発明で言う正極の重量とは正極活物質及び電解質のこ
とであり、本発明で言う電解質とは正極活物質にドーパ
ントとしてドープされ、エネルギーを貯蔵させる電解質
アニオン及びその電解質塩のことを言い、電解質は正極
活物質にドープされていても良く、イオンの形で電解液
に溶解していても良く、電解質塩として析出していても
良いが、正極内に常に存在することが必要である。電解
質としてはPFS ”’、5bF6−1AsF6″″、
BF’4−1C104−1SCN−1CI″″、Br−
1I′″などのアニオン及びこれらとLi+、Na+、
Ka”、(R4N)+などの塩を例示できる。
The weight of the positive electrode in the present invention refers to the positive electrode active material and the electrolyte, and the electrolyte in the present invention refers to the electrolyte anion and its electrolyte salt that are doped into the positive electrode active material as a dopant and store energy. The electrolyte may be doped into the positive electrode active material, dissolved in the electrolytic solution in the form of ions, or precipitated as an electrolyte salt, but it is necessary to always exist within the positive electrode. As an electrolyte, PFS '', 5bF6-1AsF6'',
BF'4-1C104-1SCN-1CI'''', Br-
Anions such as 1I′″ and these together with Li+, Na+,
Examples include salts such as Ka'' and (R4N)+.

正極に電解質を含有させる方法としては正極を高濃度電
解液中に浸漬後止極内部のガス抜きを行うことにより電
解質を含有させる方法、正極を成型する際に電解質塩を
混合し成型する方法、化学的、電気化的方法等あるいは
これらを組み合わせた方法により行うことができる。
Methods for containing electrolyte in the positive electrode include a method in which the positive electrode is immersed in a high concentration electrolytic solution and then gas is removed from the inside of the stopper, a method in which electrolyte salt is mixed and molded when molding the positive electrode, This can be carried out by a chemical method, an electrochemical method, or a combination of these methods.

正極に含有する電解液としては25〜65体積%存在す
ることが好ましい。25%以下では正極内部に存在する
電解質の正極活物質へのドープ、脱ドープ反応がスムー
ズに行うことができず、65%以上ではエネルギー密度
的に不利である。
The electrolytic solution contained in the positive electrode is preferably present in an amount of 25 to 65% by volume. If it is less than 25%, doping and dedoping reactions of the electrolyte present inside the positive electrode into the positive electrode active material cannot be carried out smoothly, and if it is more than 65%, it is disadvantageous in terms of energy density.

本発明の二次電池に用いる導電性高分子としては、ある
程度の導電性を持つことが要求され、リ、 +1             11 (式中、R1−R4は水素、アルキル、アリール) 具体的にはアニリン、4−アミノジフェニルアミン、N
−メチルアニリン、N−エチルアニリン、4−(N−メ
チルアミノ)ジフェニルアミン、ジフェニルアミン、O
−メチルアニリン、0−エチルアニリン、l−メチルア
ニリン、鳳−エチルアニリン、4−(N−エチルアミノ
)ジフェニルアミン、N、N’−ジフェニル−p−フェ
ニレンジアミン等が挙げられる。これらアニリンおよび
その誘導体は単独でもまた2種類以上の混合物として使
用することができる。しかし、最も好ましいものはアニ
リンである。
The conductive polymer used in the secondary battery of the present invention is required to have a certain degree of conductivity, and specifically, aniline, 4-aminodiphenylamine, N
-Methylaniline, N-ethylaniline, 4-(N-methylamino)diphenylamine, diphenylamine, O
Examples include -methylaniline, 0-ethylaniline, l-methylaniline, ethylaniline, 4-(N-ethylamino)diphenylamine, N,N'-diphenyl-p-phenylenediamine, and the like. These anilines and their derivatives can be used alone or as a mixture of two or more. However, most preferred is aniline.

本発明の導電性高分子は化学的重合法、電解重合法によ
り合成することができる。電解重合法によれば導電性高
分子は電解用電極上に膜状このような導電性高分子とし
ては例えばアセチレン、ビロール、チオフェン、アニリ
ン、ベンゼン、ジフェニルベンジジン、ジフェニルアミ
ン、トリフェニルアミン、アズレン、ピリジン等あるい
はこれらの誘導体を原料とした重合体があげられ、これ
らは不純物のドーピングにより高電気伝導度となると同
時にエネルギーを蓄積することができるものである。こ
の材料の電気伝導度は、電池に用いる場合には、少くと
もドープ状態で!0°5Slc112以上、好ましくは
10゛1s/c+a”以上である。10−’S/c*2
未満であると電池電極の内部インピーダンスが高くなり
不利である。
The conductive polymer of the present invention can be synthesized by a chemical polymerization method or an electrolytic polymerization method. According to the electrolytic polymerization method, a conductive polymer is formed in the form of a film on an electrode for electrolysis. Examples of such conductive polymers include acetylene, virol, thiophene, aniline, benzene, diphenylbenzidine, diphenylamine, triphenylamine, azulene, and pyridine. Examples include polymers made from these or derivatives thereof, which have high electrical conductivity by doping with impurities and can store energy at the same time. The electrical conductivity of this material is such that when used in batteries, at least in a doped state! 0°5Slc112 or more, preferably 10゛1s/c+a'' or more.10-'S/c*2
If it is less than this, the internal impedance of the battery electrode becomes high, which is disadvantageous.

特にポリアニリン及びその誘導体を原料としたポリアニ
リン系化合物はそのモルフォロジーは繊維状で表面積が
大きく、またエネルギー密度も高いことから大容量、人
出カニ次電池用活物質として最も好ましい。ポリアニリ
ン系化合物の単量体としては、 一般式(I)、(n)で表わされるものであに合成され
るのでこの電極を二次電池用正極としてそのまま用いれ
ば、導電性高分子の合成とともに二次電池用正極が製造
されることになり経済的に有利である。電解重合法によ
れば導電性高分子と電解用電極(集電体)との密若は良
好にとることができるが、密着性をより強くするために
集電体の表面を研磨機、研ゼ剤、エツチング等により粗
面化を行い、さらに好ましくは集電体に0.5〜100
0μ−1好ましくは1〜100μ園の孔を設けることに
より集電体の表面積を向上させることが好ましい。化学
的重合法によれば、導電性高分子は粉末状で得られ電極
として用いるためには成形を必要とするが、大量にまた
安価に導電性高分子を合成することができる。
In particular, polyaniline compounds made from polyaniline and its derivatives have a fibrous morphology, a large surface area, and a high energy density, so they are most preferred as active materials for large-capacity, artificially produced secondary batteries. As monomers of polyaniline compounds, those represented by general formulas (I) and (n) are synthesized in a similar manner, so if this electrode is used as it is as a positive electrode for secondary batteries, it will be possible to synthesize conductive polymers as well. This is economically advantageous since a positive electrode for a secondary battery is manufactured. According to the electrolytic polymerization method, good adhesion between the conductive polymer and the electrolytic electrode (current collector) can be obtained, but in order to strengthen the adhesion, the surface of the current collector must be polished using a polishing machine. The surface is roughened by gelatinizing agent, etching, etc., and more preferably, the current collector has a roughness of 0.5 to 100.
It is preferable to improve the surface area of the current collector by providing holes with a size of 0μ-1, preferably 1 to 100μ. According to the chemical polymerization method, conductive polymers are obtained in powder form and require molding in order to be used as electrodes, but conductive polymers can be synthesized in large quantities and at low cost.

本発明の二次電池に用いる正極は上述したように導電性
高分子単独で構成されていても良いが、導電性高分子は
脱ドープ(放電)状態ではその電気伝導度は低下するた
め導電材を正極中に分散させ、正極の電気伝導度を一定
に保ってもよい。
As mentioned above, the positive electrode used in the secondary battery of the present invention may be composed of a conductive polymer alone, but since the conductive polymer decreases in its electrical conductivity in a dedoped (discharged) state, it is necessary to use a conductive material. may be dispersed in the positive electrode to keep the electrical conductivity of the positive electrode constant.

導電材の分散の方法としては導電性高分子を粒子状に加
工し、導電材料とさらに結着剤を混合し、成型する方法
が好ましい。導電材としてはカーボンブラック、アセチ
レンブラック等の炭素体、CuSAl、Ni等の金属、
ステンレス等の合金の粒子あるいは繊維が用いられる。
A preferred method for dispersing the conductive material is to process the conductive polymer into particles, mix the conductive material and a binder, and then mold the particles. As the conductive material, carbon bodies such as carbon black and acetylene black, metals such as CuSAl and Ni,
Particles or fibers of alloys such as stainless steel are used.

導電材の使用量としては導電性高分子に対し、1〜25
%好ましくは2〜15%である。′1%以下では正極の
電気伝導度を向上させることは難しく、25%以上では
正極のエネルギー密度は小さくなってしまい不利である
。結着剤としては電解液に対し安定で結着性のあるもの
例えば、テフロン、ポリエステル、ポリエチレン、ポリ
プロピレン等の粉末あるいはディスパージョンを用いる
ことができその使用量は0.5〜20%、好ましくは1
〜15%である。0.5%以下では結若力が十分でなく
、20%以上では正極のエネルギー密度は小さくなって
しまい不利である。
The amount of conductive material used is 1 to 25 per conductive polymer.
% is preferably 2 to 15%. If it is less than 1%, it is difficult to improve the electrical conductivity of the positive electrode, and if it is more than 25%, the energy density of the positive electrode becomes small, which is disadvantageous. As the binder, a substance that is stable and has binding properties against the electrolyte, such as powder or dispersion of Teflon, polyester, polyethylene, polypropylene, etc., can be used, and the amount used is 0.5 to 20%, preferably 1
~15%. If it is less than 0.5%, the binding power will not be sufficient, and if it is more than 20%, the energy density of the positive electrode will become small, which is disadvantageous.

本発明の二次電池は、基本的には正極、負極および電解
液より構成され、電極間にセパレータを設けることもで
きる。電解液は、溶媒および電解質により構成される。
The secondary battery of the present invention basically includes a positive electrode, a negative electrode, and an electrolyte, and a separator may be provided between the electrodes. The electrolytic solution is composed of a solvent and an electrolyte.

負極活物質としてはポリアセチレン、ポリチオフェン、
ポリパラフェニレン、ポリピリジン等の導電性高分子、
LiとAI、Mg、Pb。
As negative electrode active materials, polyacetylene, polythiophene,
Conductive polymers such as polyparaphenylene and polypyridine,
Li and AI, Mg, Pb.

Si、Ga1 Inとの合金等使用可能である。An alloy of Si, Ga1, In, etc. can be used.

負極には、シート状負極活物質を単独で使用することも
できるが、シート状負極の取り扱い性の向上、集電効率
の向上を図る上で、上記負極活物質と集電体の複合体を
用いることができる。
Although a sheet-like negative electrode active material can be used alone for the negative electrode, in order to improve the handling properties of the sheet-like negative electrode and the current collection efficiency, a composite of the above-mentioned negative electrode active material and current collector is used. Can be used.

負極集電体の材料としては、Ni、AI。Materials for the negative electrode current collector include Ni and AI.

Cu5PtSAu、ステンレス鋼等が好ましいが、軽量
化の観点からAIがさらに好ましい。
Cu5PtSAu, stainless steel, etc. are preferable, and AI is more preferable from the viewpoint of weight reduction.

従来よりデンドライト防止のため、AI−LLが負極と
して用いられているが、AlとLiが合金化していない
ものでもよい。
Conventionally, AI-LL has been used as a negative electrode to prevent dendrites, but it may also be one in which Al and Li are not alloyed.

負極集電体への負極活物質の積層方法としては蒸着ある
いは電気化学的方法により負極活物質を形成せしめる方
法、集電体とLi等の活物質とのはり合わせ等機械的方
法等があげられる。
Methods for laminating the negative electrode active material on the negative electrode current collector include methods of forming the negative electrode active material by vapor deposition or electrochemical methods, and mechanical methods such as bonding the current collector and an active material such as Li. .

電気化学的方法では、負極集電体そのものを電極として
Liなどを析出させてもよいが、負極集電体上にイオン
電導性の高分子を被覆した後、電解析出させれば集電体
−高分子の界面にLiなどの活物質が均一に析出できる
In the electrochemical method, the negative electrode current collector itself may be used as an electrode to deposit Li, etc., but if the negative electrode current collector is coated with an ionic conductive polymer and then electrolytically deposited, the current collector can be deposited. - Active materials such as Li can be uniformly deposited at the interface of polymers.

電池の電解液の電解質(ドーパント)としては、例えば
以下の陰イオンまたは陽イオンを例示することができ、
陽イオンをドープした高分子錯体はn型の導電性高分子
を、陰イオンをドープした高分子錯体はp型の電導性高
分子を与える。陰イオンをドープした高分子錯体は正極
に、陽イオンをドープした高分子錯体は負極に用いるこ
とができる。陰イオンとしては、PFG″″、SbF6
″″、AgF6″″、SbCI G−のようなVa族の
元素のハロゲン化物アニオンHBFa−BRs−(R:
フェニル、アルキルJIi)のようなNa族の元素のハ
ロゲン化物アニオン:ClO4−のような過塩素酸アニ
オン、Ct−1Br’″、!−のようなハロゲンアニオ
ン等が例示できる。
Examples of the electrolyte (dopant) in the battery electrolyte include the following anions or cations:
A polymer complex doped with cations provides an n-type conductive polymer, and a polymer complex doped with anions provides a p-type conductive polymer. A polymer complex doped with anions can be used for the positive electrode, and a polymer complex doped with cations can be used for the negative electrode. As anions, PFG″″, SbF6
Halide anions of elements of the Va group such as ``'', AgF6'''', SbCI G- HBFa-BRs- (R:
Examples include halide anions of Na group elements such as phenyl and alkyl JIi), perchlorate anions such as ClO4-, and halogen anions such as Ct-1Br''' and !-.

陽イオンとしては、Li”、Na”、K”のよ□うなア
ルカリ金属イオン、(R4N)”  [R:炭素数1〜
20の炭化水素基1などが例示される。
Examples of cations include alkali metal ions such as Li'', Na'', and K'', (R4N)'' [R: carbon number 1~
Examples include 20 hydrocarbon groups 1 and the like.

上記のドーパントを与える化合物の具体例としては、L
iPFi、t、tsbFs、LiAsF5、LiCIO
4、NaClO4、K I 1K P F @ 1K 
S b F G 、K A s F G、K CI O
4、[(n−Bu) 4 Nl ” ・AsF6−1[
(n−Bu)、4N] ” ・ClO4″″、[(n 
 B u) 4 Nl ” ΦB F 4″″、LiA
lCl4、LiBF4などを挙げることができる。
Specific examples of compounds that provide the above dopants include L
iPFi, t, tsbFs, LiAsF5, LiCIO
4, NaClO4, K I 1K P F @ 1K
S b F G , K A s F G , K CI O
4, [(n-Bu) 4 Nl ”・AsF6-1[
(n-Bu), 4N] ”・ClO4″”, [(n
B u) 4 Nl ” ΦB F 4″″, LiA
Examples include lCl4, LiBF4, and the like.

電解質溶液を構成する溶媒としては、特に限定はされな
いが、比較的極性の大きい溶媒が好適に用いられる。具
体的には、プロピレンカーボネート、エチレンカーボネ
ート、ベンゾニトリル、アセトニトリル、テトラヒドロ
フラン、2−メチルテトラヒドロフラン、γ−ブチルラ
クトン、ジオキソラン、トリエチルフォスフェート、ト
リエチルフォスファイト、ジメチルホルムアミド、ジメ
チルアセトアミド、ジメチルスルフオキシド、ジオキサ
ン、ジメトキシエタン、ポリエレングリコール、スルフ
オラン、ジクロロエタン、クロルベンゼン、ニトロベン
ゼンなどの有機溶媒の1種又は2種以上の混合物を挙げ
ることができる。
The solvent constituting the electrolyte solution is not particularly limited, but a relatively highly polar solvent is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyl lactone, dioxolane, triethyl phosphate, triethyl phosphite, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane. , dimethoxyethane, polyethylene glycol, sulfuran, dichloroethane, chlorobenzene, nitrobenzene, or a mixture of two or more organic solvents.

セパレータとしては、電解質溶液のイオン移動に対して
低抵抗であり、かつ、溶液保持性に優れたものが用いら
れる。例えば、ガラス繊維フィルタ;ポリエステル、テ
フロン、ポリフロン、ポリプロピレン等の高分子ボアフ
ィルタ、不織布;あるいはガラス繊維とこれらの高分子
からなる不織布等を用いることができる。
As the separator, one is used that has low resistance to ion movement of the electrolyte solution and has excellent solution retention. For example, glass fiber filters; polymeric bore filters such as polyester, Teflon, polyflon, and polypropylene; nonwoven fabrics; or nonwoven fabrics made of glass fibers and these polymers can be used.

実施例 O正極活物質の製造方法1 0.5Mアニリン、0.75M硫酸水溶液を作用極、対
極白金板とした電解槽で0.8VvsSCEの定電位電
解重合法により作用極上にポリアニリンを合成した。白
金−ポリアニリン電極を作用極とし0.2N硫酸水溶液
中で−0,4VvsSCEの脱ドープを行った後、水洗
、真空乾燥した。ポリアニリンを白金より剥離させ、メ
ノウ製乳バチで粉砕し正極活物質を製造した。
Example O Manufacturing method of positive electrode active material 1 Polyaniline was synthesized on the working electrode by constant potential electrolytic polymerization method at 0.8 V vs SCE in an electrolytic cell in which 0.5 M aniline and 0.75 M sulfuric acid aqueous solution were used as a working electrode and a platinum plate as a counter electrode. After dedoping -0.4V vs SCE in a 0.2N sulfuric acid aqueous solution using a platinum-polyaniline electrode as a working electrode, it was washed with water and dried in vacuum. The polyaniline was peeled off from the platinum and ground with an agate mill to produce a positive electrode active material.

O正極活物質の製造方法2 0.5Mアニリン、1M塩酸水溶液中に0.5M過硫酸
アンモニウムを添加しポリアニリン粉末を合成した。こ
のポリアニリン粉末を20%のヒドラジン/メタノール
溶液で脱ドープ後アセトニトリルで洗浄、真空乾燥して
正極活物質を製造した。
Manufacturing method 2 of O positive electrode active material 0.5M ammonium persulfate was added to a 0.5M aniline and 1M hydrochloric acid aqueous solution to synthesize polyaniline powder. This polyaniline powder was dedoped with a 20% hydrazine/methanol solution, washed with acetonitrile, and dried in vacuum to produce a positive electrode active material.

O正極活物質の製造方法3 厚さ10μ■のSOSホイル上に、エツチングにより直
径5■の孔を100個/am2の割合で設けた後、#2
00のエメリー粒子で1kg/cm 2の加圧力でブラ
スト加工を行った。
Manufacturing method 3 of O cathode active material After etching holes with a diameter of 5 μm at a rate of 100 holes/am2 on a 10 μμ thick SOS foil, #2
Blasting was performed using No. 00 emery particles at a pressure of 1 kg/cm 2 .

これを電解用電極として1Mアニリン、3MI(BF4
水溶液中で、lsA/am 2の定電流、電解! 20
C/cs+ 2で電解重合を行った。5US−ポリアニ
リン電極を作用極として0.1MHBF4水溶液中で−
0,4V vsS CEで脱ドープを行った後、水洗、
真空乾燥を行い5US−ポリアニリン電極を製造した。
This was used as an electrode for electrolysis using 1M aniline, 3MI (BF4
In an aqueous solution, constant current of lsA/am 2, electrolysis! 20
Electrolytic polymerization was performed at C/cs+2. 5US - In a 0.1MHBF4 aqueous solution using a polyaniline electrode as a working electrode -
After dedoping with 0.4V vsS CE, washing with water,
Vacuum drying was performed to produce a 5US-polyaniline electrode.

実施例1 正極活物質の製造方法1で製造したポリアニリン0.2
gを用いポリアニリン lに対し、カーボンブラック 
0.1、テフロンディスパージョン0゜05を混合し、
50kgの加圧成型を行った後、100℃で2時間真空
乾燥を行った。これを4MLiB F 4 / P C
溶液中に浸漬した状態で10−2トールの減圧ドに5分
放置しガス抜きを行った後、アルゴンガスにより常圧に
もどした状態で24時間溶液中に浸漬した。
Example 1 Polyaniline 0.2 manufactured by manufacturing method 1 of positive electrode active material
Using g, polyaniline l, carbon black
0.1, Teflon dispersion 0°05 mixed,
After performing pressure molding of 50 kg, vacuum drying was performed at 100° C. for 2 hours. This is 4MLiB F 4 / P C
After being immersed in the solution, it was left in a vacuum of 10-2 torr for 5 minutes to degas it, and then returned to normal pressure with argon gas and immersed in the solution for 24 hours.

次に負極にLi、電解液に 3.5M L i BF4 /プロピレンカーボネート中ジメトキ
シエタン(7: 3) 、セパレータにポリプロピレン
不織布を用い第1図に示すような試験セルで5mA/c
m ”の定電流で充放電を行い電池特性を測定した。な
お、この正極の電解質の含有量は30%であった。
Next, using Li as the negative electrode, 3.5M Li BF4 / dimethoxyethane in propylene carbonate (7:3) as the electrolyte, and a polypropylene nonwoven fabric as the separator, the test cell was heated at 5 mA/c as shown in Figure 1.
The battery characteristics were measured by charging and discharging at a constant current of m''.The electrolyte content of this positive electrode was 30%.

実施例2 正極活物質の製造方法2で製造したポリアニリンを用い
る以外は実施例1と同じ方法で電池を製造し電池特性を
測定した。なお、この正極の電解液の含有量は37%で
あった。
Example 2 A battery was manufactured in the same manner as in Example 1, except that polyaniline manufactured by positive electrode active material manufacturing method 2 was used, and battery characteristics were measured. Note that the content of the electrolyte in this positive electrode was 37%.

実施例3 正極活物質の製造方法2で製造したポリアニリン0.2
gを用いポリアニリン 1に対しカーボンブラック0.
15、テフロンディスパージョン0.05L i S 
b F 60.20を混合し、60kgの加圧成型を行
った後100℃で2時間真空乾燥を行い正極を作製した
。この正極を3.0M  L i S b F 6 /
プロピレンカーボネート溶液に浸漬、ガス抜きを行った
。次に負極にL L −A I合金(A120%)、電
解液に3.0M  LIBF4/プロピレンカーボネー
ト溶液を用い、第1図に示すような試験セルで5■A/
c■2の定電流で充放電を行い電池特性を測定した。な
おこの正極の電解質の含有量は39%であった。
Example 3 Polyaniline 0.2 manufactured by manufacturing method 2 of positive electrode active material
using 1.g of polyaniline and 0.0.g of carbon black.
15, Teflon dispersion 0.05L i S
b F 60.20 was mixed, pressure molded into 60 kg, and then vacuum dried at 100° C. for 2 hours to produce a positive electrode. This positive electrode was 3.0M L i S b F 6 /
It was immersed in a propylene carbonate solution and degassed. Next, using L L -A I alloy (A120%) as the negative electrode and 3.0M LIBF4/propylene carbonate solution as the electrolyte, the test cell was heated at 5 A/
The battery characteristics were measured by charging and discharging at a constant current of c2. Note that the electrolyte content of this positive electrode was 39%.

実施例4 正極活物質の製造方法3で製造した5US−ポリアニリ
ン電極(ポリアニリン重量0.3g)を5M  LiB
F</プロピレンカーボネート溶液中に浸漬、ガス抜き
を行った後、溶液中に12時間放置を行った。次に電解
液に3.5ML i BF4 /プロピレンカーボネー
ト、負極にリチウムを用い、実施例1と同じ条件で電池
特性をハ1定した。なおこの正極の電解質の含有量は4
5%であった。
Example 4 A 5US-polyaniline electrode (polyaniline weight 0.3g) manufactured by manufacturing method 3 of positive electrode active material was used as a 5M LiB
After immersing in F</propylene carbonate solution and degassing, it was left in the solution for 12 hours. Next, battery characteristics were determined under the same conditions as in Example 1 using 3.5 ML i BF4 /propylene carbonate as the electrolyte and lithium as the negative electrode. The electrolyte content of this positive electrode is 4
It was 5%.

比較例1 実施例1において250kgの加圧成型を行う以外は同
様にして電池を製造し電池特性を肺1定した。なおこの
正極の電解質の含有量は17%であった。
Comparative Example 1 A battery was manufactured in the same manner as in Example 1, except that 250 kg of pressure molding was performed, and the battery characteristics were determined in one lung. Note that the electrolyte content of this positive electrode was 17%.

比較例2 実施例2においてlokgの加圧成型を行う以外は同様
にして正極を製造した。製造した正極は非常にもろく、
電池の組込みの際に電極は複数に割れてしまった。この
電池を実施例2と同様に電池性能を試験した。なおこの
正極の電解質の含有量は52%であった。
Comparative Example 2 A positive electrode was produced in the same manner as in Example 2, except that pressure molding of 100 kg was performed. The produced positive electrode is extremely brittle;
When installing the battery, the electrode broke into multiple pieces. This battery was tested for battery performance in the same manner as in Example 2. Note that the electrolyte content of this positive electrode was 52%.

比較例3 実施例4において、200kgの加圧プレスを行った5
US−ポリアニリン電極を用いる以外は同様にして電池
を製造し、電池特性を測定した。
Comparative Example 3 In Example 4, a 200 kg pressure press was performed.
A battery was manufactured in the same manner except that a US-polyaniline electrode was used, and the battery characteristics were measured.

なお、この正極の電解質の含有量は、19%であった。Note that the electrolyte content of this positive electrode was 19%.

電池性能試験結果 [発明の効果] 以上説明したように、本発明の構成による二次電池は、
大容量でかつ、高エネルギー密度を有する。
Battery performance test results [Effects of the invention] As explained above, the secondary battery according to the configuration of the present invention has the following effects:
It has large capacity and high energy density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の二次電池の特性評価のために使用し
た試験セルの概略図。 第1ブ
FIG. 1 is a schematic diagram of a test cell used for evaluating the characteristics of the secondary battery of the present invention. 1st block

Claims (1)

【特許請求の範囲】[Claims] (1)正極活物質に導電性高分子材料を用いた二次電池
において該二次電池の正極が35〜50重量%の電解質
を含有することを特徴とする二次電池。
(1) A secondary battery using a conductive polymer material as a positive electrode active material, wherein the positive electrode of the secondary battery contains 35 to 50% by weight of electrolyte.
JP1116025A 1989-05-11 1989-05-11 Secondary battery Pending JPH02297867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1116025A JPH02297867A (en) 1989-05-11 1989-05-11 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1116025A JPH02297867A (en) 1989-05-11 1989-05-11 Secondary battery

Publications (1)

Publication Number Publication Date
JPH02297867A true JPH02297867A (en) 1990-12-10

Family

ID=14676912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1116025A Pending JPH02297867A (en) 1989-05-11 1989-05-11 Secondary battery

Country Status (1)

Country Link
JP (1) JPH02297867A (en)

Similar Documents

Publication Publication Date Title
US4948685A (en) Sheet-shaped electrode, method of producing the same, and secondary battery using the sheet-shaped electrode
US4999263A (en) Sheet-shaped electrode, method or producing the same, and secondary battery
KR100284914B1 (en) Secondary Battery and Manufacturing Process Thereof
US5437943A (en) Positive electrode and secondary battery using the same
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
US5011751A (en) Electrochemical device
US10340551B2 (en) Electrolyte for nonaqueous secondary battery and nonaqueous secondary battery using the same
JPH0315175A (en) Secondary battery furnishing polymer electrodes
US4803138A (en) Nonaqueous secondary battery
US20180076458A1 (en) Porous Silicon Materials and Conductive Polymer Binder Electrodes
JP2002329495A (en) Lithium secondary battery and production process thereof
US5037713A (en) Secondary battery
JP3062203B2 (en) Electrochemical element
JPH08298137A (en) Secondary battery and electrode used in this secondary battery
JPH07302586A (en) Battery electrode and its manufacture
JPH02297867A (en) Secondary battery
JP3089707B2 (en) Solid electrode composition
JPS61203565A (en) Secondary battery and its electrode
JPH0230060A (en) Negative electrode for secondary battery
JP2752377B2 (en) Sheet electrode
JP2826850B2 (en) Method for producing polyaniline
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPS61245468A (en) Nonaqueous electrolyte storage battery
JPS61206170A (en) Secondary battery and its electrode
Wu et al. Electrospun polyacrylonitrile/silica separator with high mechanical strength and electrolyte affinity for aqueous zinc-ion batteries