JPH022977A - Boiling water reactor fuel assembly - Google Patents

Boiling water reactor fuel assembly

Info

Publication number
JPH022977A
JPH022977A JP63144705A JP14470588A JPH022977A JP H022977 A JPH022977 A JP H022977A JP 63144705 A JP63144705 A JP 63144705A JP 14470588 A JP14470588 A JP 14470588A JP H022977 A JPH022977 A JP H022977A
Authority
JP
Japan
Prior art keywords
fuel
length
enrichment
rod
fuel rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63144705A
Other languages
Japanese (ja)
Other versions
JP2723253B2 (en
Inventor
Koji Hiraiwa
宏司 平岩
Hisao Suzuki
鈴木 寿生
Toshisuke Ogiya
扇谷 俊亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63144705A priority Critical patent/JP2723253B2/en
Priority to DE3844595A priority patent/DE3844595C2/de
Priority to DE3828616A priority patent/DE3828616A1/en
Priority to US07/235,629 priority patent/US4968479A/en
Priority to SE8803006A priority patent/SE503596C2/en
Publication of JPH022977A publication Critical patent/JPH022977A/en
Application granted granted Critical
Publication of JP2723253B2 publication Critical patent/JP2723253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To contrive the adjustment of an axial enrichment distribution by making fissionable material concentration in which one is lower than the average concentration of a fuel assembly and the other is higher than that and simultaneously allowing them to differ from the average fissionable material concentration. CONSTITUTION:Natural uranium corresponding enrichment N is used on the upper part and the lower part of full length fuel rods 21, 22, 23, their enrichments H, M, L are low in order or the fuel rods 21, 22, 23 respectively and the enrichment M is the same degree as the average enrichment of a fuel assembly. The fuel rod 23 is arranged on four corners and the fuel rod 22 on eight peripheral positions adjacent to the fuel rod 23. The long partial length fuel rod 24 uses the same maximum enrichment H as the fuel rod 21 and the short partial length fuel rod 25 uses the same minimum enrichment as the fuel rod 23. These fuel rods 24, 25 do not use any blanket, their lower ends are cladding tubes alone and fissionable producing gas adsorption getter is inserted in place of fuel pellets. The combustible toxicant containing full length fuel rod 26 is the enrichment M, the concentration of the combustible toxicant is G and the enrichment N is used in its upper part and the lower part.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は長さの異なる3種類の燃料棒を組み合わせて構
成される沸騰水型原子炉用燃料集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel assembly for a boiling water reactor that is constructed by combining three types of fuel rods of different lengths.

(従来の技術) 従来の′aII!水型原子炉用燃料集合体では燃料棒の
長さが一定であったため、あらかじめ必要な上下の反応
度差を設定する目的で燃料棒ごとに上下の濃縮度分布、
可燃性毒物分布を設けている。
(Prior art) Conventional 'aII! In fuel assemblies for water reactors, the length of the fuel rods is constant, so in order to set the required reactivity difference between the upper and lower sides in advance, the upper and lower enrichment distributions for each fuel rod are calculated.
A burnable poison distribution is established.

例えば、代表的な沸騰水型原子炉用燃料集合体(8×8
燃料)における従来の設計例を第8図に示す。同図(a
)は燃料集合体1体を構成する燃料棒11〜17の配置
例であり、同図(b)に燃料棒11〜15にはそれぞれ
濃縮度e1〜e5の一定のものが使用され、燃料棒16
はe3+G2 、また燃。料棒17ではその上半部にe
3.その下半部にe3+Q1が使用されている。Wはウ
ォータロッドである。
For example, a typical boiling water reactor fuel assembly (8 x 8
An example of a conventional design for fuel) is shown in Fig. 8. The same figure (a
) is an example of the arrangement of fuel rods 11 to 17 constituting one fuel assembly, and in FIG. 16
is e3+G2, also fire. For the feed rod 17, there is an e on the upper half of the rod.
3. e3+Q1 is used in the lower half. W is a water rod.

したがって、この設計例では1つの燃料棒についてa縮
度は一定であり、上下の反応度差を可燃性毒物の分布に
より実現している。すなわち、集合体下部で可燃性毒物
入り燃料の本数が1本多くなっており、また上下の燃焼
速度に差があることに対応して可燃性毒物は下部の濃度
が上部よりも濃くなっている。
Therefore, in this design example, the degree of contraction a is constant for one fuel rod, and the difference in reactivity between the upper and lower sides is realized by the distribution of burnable poison. In other words, the number of fuel containing burnable poisons is one more at the bottom of the assembly, and the concentration of burnable poisons at the bottom is higher than at the top, corresponding to the difference in burning speed between the top and bottom. .

第9図は他の従来例であり、同図(a)は燃料集合体を
構成する燃料棒61〜68の配置図、同図(b)に前記
燃料棒61〜66のうち燃料棒61.63.65.66
にはそれぞれ濃縮度e1 、 e3 、 ea 、 e
5の一定のものが使用され、燃料棒62.64では上半
分の濃縮度を下半分より高くしている。また、可燃性毒
物入り燃料棒67、68は上下で本数を同じにしている
。これら燃料棒のうち可燃性毒物入り燃料棒67は全長
にわたり濃度e3+Gzが用いられ、可燃性毒物入り燃
料棒68はその濃度が上部でG2 。
FIG. 9 shows another conventional example, in which FIG. 9(a) is a layout diagram of fuel rods 61 to 68 constituting a fuel assembly, and FIG. 9(b) is a layout diagram of fuel rods 61 to 68 of the fuel rods 61 to 66. 63.65.66
have enrichment degrees e1, e3, ea, and e, respectively.
A constant of 5 is used, with fuel rods 62 and 64 having higher enrichment in the upper half than in the lower half. Further, the number of fuel rods 67 and 68 containing burnable poison is the same on the upper and lower sides. Among these fuel rods, the fuel rod 67 containing burnable poison has a concentration of e3+Gz over its entire length, and the fuel rod 68 containing burnable poison has a concentration of G2 at the top.

下部で01 であるから下部の方が上部より高くなって
いる。
Since it is 01 at the bottom, the bottom is higher than the top.

上記した従来例はいずれも沸騰水型原子炉に特徴的なボ
イド分布に伴なう上下方向の反応度差を一定の運転期間
にわたって濃縮度と可燃性毒物により相殺し、上下方向
の出力分布を平坦にし、最大線出力密度を抑制するよう
にしたものであり、現在の沸騰水型原子炉では普通に使
用されている設計でおる。
In all of the conventional examples described above, the difference in reactivity in the vertical direction due to the void distribution characteristic of boiling water reactors is offset by enrichment and burnable poison over a certain operating period, and the power distribution in the vertical direction is It is designed to be flat and suppress the maximum linear power density, a design commonly used in current boiling water reactors.

(発明が解決しようとする課題) ところで、上記した従来の設計方法は燃料集合体の上下
方向く軸方向)の熱的ピーキングを抑制するために効果
的であり、原子炉の安全性向上に寄与してきた。しかし
ながら、現在の8X8燃料を前提として第8図あるいは
第9図に示す従来の設計方式に従って高燃焼度あるいは
長期間運転を目標とした設計を行なうとした場合には以
下に説明するような種々の問題点があることがわかって
きた。
(Problem to be Solved by the Invention) By the way, the conventional design method described above is effective for suppressing thermal peaking in the vertical and axial directions of the fuel assembly, and contributes to improving the safety of the nuclear reactor. I've done it. However, when designing for high burnup or long-term operation according to the conventional design method shown in Figure 8 or Figure 9 based on the current 8X8 fuel, various methods as explained below are required. It has become clear that there are problems.

すなわち、高燃焼度燃料では燃料が長期間炉心で燃焼す
るために核分裂性物質の濃度を従来燃料より高くしてい
るが、これに伴ない燃料の余剰反応度が大きくなり、そ
れによって必要な可燃性毒物の旧は増加させねばならな
いことになる。
In other words, in high-burnup fuel, the concentration of fissile material is higher than in conventional fuel because the fuel burns in the core for a long period of time, but this increases the excess reactivity of the fuel, which reduces the necessary flammability. The amount of toxic substances will have to be increased.

しかし、可燃性毒物の相対、的な出力は可燃性毒物のな
い燃料棒に対して燃焼初期では1/2程度の出力しか出
往ないため可燃性毒物本数の増加は格子の局所出力ビー
キングを大きくさせる。ざらに高燃焼度化に伴ないボイ
ド反応度が大きくなることを抑制するために燃料棒本数
を減らした8×8燃料ではさらに局所出力ビーキングを
大きくする傾向にある。
However, since the relative output of burnable poison is only about 1/2 of the output of fuel rods without burnable poison at the initial stage of combustion, an increase in the number of burnable poison greatly increases the local power peaking of the lattice. let In order to suppress the void reactivity from increasing due to higher burnup, the 8×8 fuel has a reduced number of fuel rods, which tends to further increase local power peaking.

また、この局所出力ビーキングを抑制するためには濃縮
度を従来例よりざらに細分化して設計する必要がある。
In addition, in order to suppress this local output peaking, it is necessary to design the enrichment level by dividing it more roughly than in the conventional example.

本発明は上記事情に迄みてなされたもので、その目的は
、長さの異なる燃料棒を利用して軸方向の濃縮度分布を
調整できるようにした沸騰水型原子炉用燃料集合体を提
供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a fuel assembly for a boiling water nuclear reactor that can adjust the enrichment distribution in the axial direction by using fuel rods of different lengths. It's about doing.

[発明の構成] (課題を解決するための手段) 本発明は、上記目的を達成するためになされたもので、
燃料棒の長さが当該燃料集合体の長さと同程度の全長燃
料棒と、断面の面積が上部で大きく下部で小さいウォー
ターロッドと、前記ウォーターロッドの断面積の小さい
部分の長さと同程度かそれ以下の長さの第1の部分長燃
料棒と、前記第1の部分長燃料棒より長く前記全長燃料
棒より短い第2の部分長燃料棒とからなり、前記各燃料
棒の下端位置を一致させて構成された沸騰水型原子炉用
燃料集合体において、それぞれの部分長燃料棒の核分裂
性物質濃度を上下方向についてほぼ一定値とし、前記第
1の部分長燃料棒の核分裂性物質濃度を当該燃料集合体
の平均の濃度と同じかそれより低い核分裂性物質濃度と
し、前記第2の部分長燃料棒の核分裂性物質濃度を当該
燃料集合体の平均の濃度と同じか平均の濃度よりも高い
核分裂性物質濃度とし、かつ前記第1及び第2の部分長
燃料棒の核分裂性物質濃度が同時に当該燃料集合体の平
均の核分裂性物質濃度と同じにならないようにするとと
もに前記全長燃料棒の一部に可燃性毒物を含有している
ことを特徴とするものである。
[Structure of the invention] (Means for solving the problem) The present invention has been made to achieve the above object,
A full-length fuel rod whose length is about the same as the length of the fuel assembly, a water rod whose cross-sectional area is large at the top and small at the bottom, and a water rod whose cross-sectional area is about the same length as the part of the water rod whose cross-sectional area is small. a first part-length fuel rod having a length shorter than that, and a second part-length fuel rod that is longer than the first part-length fuel rod and shorter than the full-length fuel rod; In a fuel assembly for a boiling water reactor configured in the same manner, the fissile material concentration of each partial length fuel rod is set to a substantially constant value in the vertical direction, and the fissile material concentration of the first partial length fuel rod is set to a substantially constant value in the vertical direction. is a fissile material concentration that is the same as or lower than the average concentration of the fuel assembly, and the fissile material concentration of the second part-length fuel rod is the same as or lower than the average concentration of the fuel assembly. The concentration of fissile material in the first and second part-length fuel rods is not simultaneously equal to the average concentration of fissile material in the fuel assembly, and the concentration of fissile material in the first and second partial-length fuel rods is set to be high. It is characterized by containing a burnable poison in part.

(作 用) 本発明では9×9高燃焼度用集合体が有する特徴、すな
わち、あらかじめ燃料の上下方向に燃料棒本数の分イ[
があり、下部はど本数が大きくなっているので、燃料棒
の上下方向の各位置で水素原子数対ウラン原子数比(H
/U比という)が平坦化され、燃焼度分イ[が平坦化さ
れるという特徴を利用したものである。
(Function) In the present invention, the characteristics of the 9×9 high burnup assembly are as follows:
Since the number of rods is large at the bottom, the ratio of hydrogen atoms to uranium atoms (H
/U ratio) is flattened, and the burnup ratio I[ is flattened.

すなわち、上下方向核分裂性物質濃度分布は出力分イ[
平坦化の観点から中央部の約1/3を高く、下部的1/
3をそれより低く、残りの上部は炉停止余裕向上の観点
から中央部より低く設定し、あるいは核分裂性物質濃度
分布を一定とする場合は可燃性毒物本数を下部で多くす
ることが熱的ピーク低減化に有効であるが、このような
分布を9×9高燃焼度用集合体を用いて実現するために
は、第1の部分長燃料棒の核分裂性物質濃度をその断面
の濃度の平均値以下とし、第2の部分長燃料棒の核分裂
性物質濃度をその断面の濃度の平均値以上とすることに
よって必要な上下反応度分布をつけるか、あるいは第1
.第2の核分裂性物質濃度を平均濃縮度程度として、可
燃性汚物を全長燃料棒の一部と部分長燃料棒の一部に含
ませることにより適切な可燃性毒物入り燃料本数の分布
を作ることで適切な上下反応度分布とすることができる
In other words, the vertical fissionable material concentration distribution is
From the point of view of flattening, approximately 1/3 of the central part should be made higher and the lower 1/3 part should be made higher.
3 is lower than that, and the remaining upper part is set lower than the central part from the perspective of improving reactor shutdown margin, or if the fissile material concentration distribution is kept constant, it is recommended to increase the number of burnable poisons in the lower part to avoid the thermal peak. However, in order to achieve such a distribution using a 9x9 high burnup assembly, the fissile material concentration of the first part-length fuel rod must be the average concentration of its cross section. or below, and by making the fissile material concentration in the second partial length fuel rod greater than or equal to the average concentration of its cross section, or by creating the required vertical reactivity distribution in the first
.. Creating an appropriate distribution of the number of burnable poison-containing fuels by setting the second fissionable material concentration at about the average enrichment level and including combustible waste in a portion of the full-length fuel rods and a portion of the partial-length fuel rods. An appropriate vertical reactivity distribution can be obtained.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図(e)は本発明の一実施例の概略側面図であり、
同図(a) 、 (b) 、 (C)はそれぞれ同図(
e)のA−A線、ト8線、 C−C線に沿った燃料集合
体内の燃料棒の配置図、同図(d)は本実施例に用いら
れる各種燃料棒の上下方向の核分裂性物質濃度と可燃性
毒物の分布を示した図である。
FIG. 1(e) is a schematic side view of an embodiment of the present invention,
Figures (a), (b), and (C) are from the same figure (
Figure (d) shows the fissionability of the various fuel rods used in this example in the vertical direction. FIG. 2 is a diagram showing the substance concentration and the distribution of burnable poisons.

本実施例の燃料集合体1の内部の燃料バンドル2は第1
図(e)に示すように、長さの異なる燃料棒3,4.5
および中央部分を境にして上部が太く下部で細くなって
いるウォーターロッド6(以下図では5LCWRで示す
)を格子状に組み立て、スペーサー7で束ね、上部を上
部タイプレート8で固定し、下部を下部タイプレート9
で固定している。全長燃料棒の約273程度の長い部分
長燃料棒4は外側から第2列に配置されている。全長燃
料棒の約1/3程度の短い部分長燃は1棒5は燃料集合
体の中心に位置するウォーターロッド6が細くなってで
きた空間にウォータロッドを中心に配置されている。
The fuel bundle 2 inside the fuel assembly 1 of this embodiment is the first
As shown in figure (e), fuel rods 3, 4.5 with different lengths
The water rods 6 (indicated by 5LCWR in the figure below), which are thick at the top and thin at the bottom, are assembled in a lattice shape with the center as the boundary, bundled with spacers 7, the upper part is fixed with the upper tie plate 8, and the lower part is Lower tie plate 9
It is fixed at The longer partial length fuel rods 4, which are about 273 of the full length fuel rods, are arranged in the second row from the outside. A short long-burn fuel rod 5, which is about 1/3 of the total length of the fuel rod, is arranged with the water rod at the center in a space created by a thinner water rod 6 located at the center of the fuel assembly.

また、上記燃料集合体は同図(d)に示すような燃料棒
から構成されている。すなわち、全長燃料棒21.22
.23は〜(d)の横断面図に示されるように、その上
部に2/24、下部に1/24の割合で天然ウラン相当
濃縮度Nを使用し、この天然ウランNを除いて上下に−
様な濃縮度であり、この全長燃料棒21.22.23の
順に濃縮度H,M、Lと低くなっている。濃縮度Mは集
合体の平均濃縮度とほぼ同程度である。全長燃料棒23
は同図(a)〜(C)に示すように4つのコーナ部、全
長燃料棒22は全長燃料棒23に隣接した8つの周辺位
置に配置されている。全長燃料棒21が40本、全長燃
料棒22が8本、全長燃料棒23が4本となっている。
Further, the fuel assembly is composed of fuel rods as shown in FIG. 2(d). That is, the full length fuel rod 21.22
.. 23 uses natural uranium equivalent enrichment N at the ratio of 2/24 in the upper part and 1/24 in the lower part, as shown in the cross-sectional view in ~(d), and except for this natural uranium N, the upper and lower parts are −
The enrichment of the full-length fuel rods 21, 22, and 23 decreases in the order of H, M, and L. The enrichment M is approximately the same as the average enrichment of the aggregate. Full length fuel rod 23
As shown in FIGS. 3A to 4C, the full-length fuel rods 22 are arranged at four corners, and the full-length fuel rods 22 are arranged at eight peripheral positions adjacent to the full-length fuel rods 23. There are 40 full-length fuel rods 21, 8 full-length fuel rods 22, and 4 full-length fuel rods 23.

長い部分長燃料棒24は全長燃料棒21と同一な最高の
濃縮度Hを使用し、短い部分長燃料棒25は全長燃料棒
23と同一な最低の濃縮度りを使用している。これらの
燃お1棒24.25はいずれもブランケットを使用して
おらず、下端部1/24長ざは燃料被覆管のみであり、
燃料ペレットの代りに核分裂生成物ガス吸着用ゲッター
が挿入されている。長い部分長燃料棒24は同図(b)
および(C)に示すように、外側から第2列に8本対称
位置に配置されている。
Long part length fuel rods 24 use the same highest enrichment H as full length fuel rods 21 and short part length fuel rods 25 use the same lowest enrichment as full length fuel rods 23. None of these burning rods 24.25 use a blanket, and the 1/24 length of the lower end is only a fuel cladding tube.
A getter for adsorbing fission product gases is inserted in place of the fuel pellets. The long partial length fuel rod 24 is shown in FIG.
As shown in (C), eight pieces are arranged in symmetrical positions in the second row from the outside.

可燃性汚物入り全長燃料棒26は濃縮度Mであり、可燃
性毒物の濃度はGとなっており、その上部に2/24、
下部に1/24の割合で天然ウラン相当濃縮度Nを使用
している。可燃性毒物入り全長燃料棒26は同図(a)
〜(C)に示すように互いに隣接しない対称位置に配置
されている。
The full-length fuel rod 26 containing combustible waste has an enrichment level M and a concentration of combustible poison G, and 2/24, 2/24,
Natural uranium equivalent enrichment N is used in the lower part at a ratio of 1/24. The full-length fuel rod 26 containing burnable poison is shown in the same figure (a).
As shown in ~(C), they are arranged at symmetrical positions that are not adjacent to each other.

本実施例は3次元解析プログラムにより平均取り出し燃
焼度38GWd/lないし45GWd/l、運転期間1
5ないし18ケ月を想定して検討した結果法に述べるよ
うな効果があることが確認されている。
This example has an average extraction burnup of 38 GWd/l to 45 GWd/l and an operation period of 1 using a three-dimensional analysis program.
As a result of the study assuming a period of 5 to 18 months, it has been confirmed that it has the effects described in the law.

すなわち、適切な上下濃縮度分布を実現していることか
ら第4図に示すように、大半の運転期間にわたって平坦
な上下方向の出力分布が実現されており、さらに局所出
力ビーキングは第7図に示すように十分低く、この結果
第5図に示すように、最大線出力密度は従来設計と比較
して十分低くできている。また、第6図に示すように可
燃性青物濃度を上下に均一としているにもかかわらず適
切な燃焼が実現でき、十分平坦な余剰反応度が実現され
ている。
In other words, by realizing an appropriate vertical enrichment distribution, a flat vertical power distribution is achieved over most of the operating period as shown in Figure 4, and local power peaking is shown in Figure 7. As a result, as shown in FIG. 5, the maximum linear power density is sufficiently low compared to the conventional design. Further, as shown in FIG. 6, although the concentration of flammable green matter is made uniform in the upper and lower portions, appropriate combustion can be achieved and a sufficiently flat surplus reactivity can be achieved.

このにうな特性を得るための濃縮度の種類は3種類のみ
であり、しかも全長にわたり一様な濃度を採用したこと
により、燃料棒の種類数も部分長燃料棒、可燃性毒物入
り燃料棒を合せて6種類のみで実現でき、このため製造
ライン上に少種類の濃縮度、燃料棒を準備するのみでよ
く、効率的な製造ができ、コストダウンが可能となる。
There are only three types of enrichment to obtain this unique characteristic, and by adopting a uniform concentration over the entire length, the number of types of fuel rods is also limited to partial length fuel rods, fuel rods containing burnable poison, etc. This can be achieved with only six types in total, and therefore only a small number of enrichments and fuel rods need to be prepared on the production line, allowing for efficient production and cost reduction.

濃縮度種類が少ないことは最大濃縮度と平均濃縮度の差
が小ざくできることを意味し、取り出し燃焼度45GW
d/l、平均濃縮度4.0W10程度の設計であっても
最大濃縮度制限の制約を受ける濃縮度5W10以下の範
囲で設計が可能であり、本設計でも最大濃縮度は4.9
W10以下である。
The small number of enrichment types means that the difference between the maximum enrichment and the average enrichment can be reduced, and the extraction burnup is 45 GW.
d/l, even if the average concentration is 4.0W10, it is possible to design within the range of 5W10 or less, which is subject to the maximum concentration limit, and even in this design, the maximum concentration is 4.9
W10 or less.

第2図は本発明の第2の実施例の燃料棒の配置図と上下
方向の核分裂性物質濃度と可燃性毒物の分布を示した図
である。なお、第2図(a)〜(C)は上記第1図(a
)〜(C)に相当する燃料棒の配置図である。
FIG. 2 is a diagram showing the arrangement of fuel rods and the distribution of fissile material concentration and burnable poison in the vertical direction, according to a second embodiment of the present invention. Note that Figures 2 (a) to (C) are similar to Figure 1 (a) above.
) to (C) are layout diagrams of fuel rods corresponding to FIG.

本実施例は第2図(d)に示すように、全長燃料棒の上
部に2/24、下部に1/24の割合で天然ウラン相当
濃縮度Nを使用し、全長燃料棒31.32゜33はこの
天然ウランNを除いて上下に−様な濃縮度であり、この
順に濃縮度が低くH,M、Lとなっており、濃縮度Mは
集合体の平均濃縮度とほぼ同一となっている。また、同
図(a)〜(C)に示すように全長燃料棒33が4つの
コーナ部、全長燃料棒32は全長燃料棒33に隣接した
8つの周辺位置に配置されている。長い部分長燃料棒3
4と短い部分長燃料棒35は燃料棒32と同一な中間の
濃縮度Mを使用している。
In this embodiment, as shown in FIG. 2(d), natural uranium equivalent enrichment N is used at the ratio of 2/24 in the upper part of the full-length fuel rod and 1/24 in the lower part, and the full-length fuel rod is 31.32°. Except for this natural uranium N, 33 has a vertically-like enrichment, with H, M, and L having the lowest enrichment in this order, and the enrichment M is almost the same as the average enrichment of the aggregate. ing. Further, as shown in FIGS. 3A to 3C, the full-length fuel rods 33 are arranged at four corners, and the full-length fuel rods 32 are arranged at eight peripheral positions adjacent to the full-length fuel rods 33. long part length fuel rod 3
Part length fuel rods 35 as short as 4 use the same intermediate enrichment M as fuel rods 32.

可燃性毒物は全長燃料棒36と短い部分長燃料棒37の
一部に含まれており、この燃料棒37に含まれる可燃性
毒物濃度は全長燃料棒36のものより1,0w101<
なっている。本実施例の燃料集合体は全長燃料棒31は
40本、全長撚11捧32が8本、全長燃料棒33が4
本、可燃性汚物入り燃料棒36が12木。
The burnable poison is contained in the full length fuel rod 36 and a part of the short partial length fuel rod 37, and the burnable poison concentration in the fuel rod 37 is 1.0w101<
It has become. In the fuel assembly of this embodiment, there are 40 full-length fuel rods 31, 8 full-length twisted 11 rods 32, and 4 full-length fuel rods 33.
Book, fuel rod 36 with combustible filth is 12 trees.

可燃性汚物入り部分長燃料棒37が2本から構成されて
いる。
Two part-length fuel rods 37 containing combustible filth are comprised.

本実施例は従来例のように燃料棒の中では濃縮度一定と
なっている例であり、従来例では可燃性毒物の濃度を燃
料棒について変えていたのに対し、より簡単な構造にで
きており第一の実施例と同様なすぐれた特性を得ること
ができる。
This example is an example in which the enrichment is constant within the fuel rod like in the conventional example, and unlike the conventional example in which the concentration of burnable poison was varied in the fuel rod, it is possible to use a simpler structure. Therefore, excellent characteristics similar to those of the first embodiment can be obtained.

第3図は本発明の第3の実施例の燃料棒の配置図と上下
方向の核分裂性物質濃度と可燃性毒物の分布を示した図
である。なお、第3図(a)〜(C)は上記第1図(a
)〜(C)に相当する燃料棒の配置図である。
FIG. 3 is a diagram showing the arrangement of fuel rods and the distribution of fissile material concentration and burnable poison in the vertical direction, according to a third embodiment of the present invention. Note that Figures 3 (a) to (C) are similar to Figure 1 (a) above.
) to (C) are layout diagrams of fuel rods corresponding to FIG.

本実施例は第3図(d)に示すように、全長燃料棒の上
部に2724、下部に1/24の割合で天然ウラン相当
濃縮度Nを使用し、全長燃料棒41.42゜43はこの
天然ウランNを除いて上下に−様な濃縮度であり、この
順に濃縮度が低くH,M、Lとなっており、濃縮度Mは
集合体の平均!!縮度とほぼ同一となっている。また、
同図(a)〜(C)に示すよう番こ全長燃料棒43が4
つのコーナ部、全長燃料棒42は全長燃料棒43に隣接
した8つの周辺位置に配置されている。
In this embodiment, as shown in Fig. 3(d), natural uranium equivalent enrichment N is used at the ratio of 2724 in the upper part of the full-length fuel rod and 1/24 in the lower part, and the full-length fuel rod is 41.42°43. Except for this natural uranium N, the enrichment levels are similar to those above and below, with the lowest enrichment levels being H, M, and L in this order, and the enrichment level M is the average of the aggregate! ! It is almost the same as the degree of contraction. Also,
As shown in (a) to (C) in the same figure, the total length fuel rods 43 are 4
Two corner, full-length fuel rods 42 are located at eight peripheral locations adjacent to full-length fuel rods 43.

第2の部分長燃料棒44の濃縮度は平均I!縮度相当の
中間濃縮度Mを使用している。また第1の部分長燃料棒
45の濃縮度は最低a縮度のLを使用、している。可燃
性毒物は全長燃料棒46と第2の部分長燃料棒47に含
まれており、この部分長燃料棒47に含まれる可燃性毒
物濃度は全長燃料棒46のものと同一である。
The second part-length fuel rod 44 has an average enrichment of I! An intermediate concentration M corresponding to the degree of condensation is used. Further, the enrichment degree of the first partial length fuel rod 45 is set to L, which is the lowest condensation degree. The burnable poison is contained in the full length fuel rod 46 and the second part length fuel rod 47, and the burnable poison concentration in the part length fuel rod 47 is the same as that in the full length fuel rod 46.

本実施例の燃料集合体は全長燃料棒41は40本、全長
燃料棒42が8本、仝艮燃料棒43が4本、部分長燃料
棒44が8本、部分長燃料棒45が4本、可燃性毒物入
り燃料棒46が12本、可燃性毒物入り部分長燃料棒4
7が2本から構成されている。
The fuel assembly of this embodiment includes 40 full-length fuel rods 41, 8 full-length fuel rods 42, 4 partial-length fuel rods 43, 8 partial-length fuel rods 44, and 4 partial-length fuel rods 45. , 12 fuel rods 46 filled with burnable poison, 4 part-length fuel rods filled with burnable poison
7 consists of two pieces.

本実施例は第一の実施例による濃縮度分布を2領域とし
、ざらに可燃性毒物の分イ[を付けた例であり、上記第
一実施例および第二実施例と同等の特性が得られる。
This example is an example in which the concentration distribution according to the first example is divided into two regions, and the burnable poison is roughly marked with "I", and the same characteristics as the above-mentioned first and second examples are obtained. It will be done.

なお、上記各実施例では9行9列燃利集合体について説
明したが、本発明は複数の燃料棒を1つのザブバンドル
とし、このサブバンドルを組合わせて構成した燃料集合
体にも適用できることは勿論でおる。
In each of the above embodiments, a fuel assembly with 9 rows and 9 columns has been described, but the present invention can also be applied to a fuel assembly constructed by combining a plurality of fuel rods into one subbundle. Of course.

[発明の効果] 以上説明したように、本発明によれば3種類以上の長さ
の異なる燃料棒を用いて、軸方向の濃縮度分布をつける
ことができるので、従来のように多種類の燃料棒を必要
とせず、また、局所出力ビーキングも十分低くできかつ
十分平坦な余剰反応度を備えた効率的な製造ができる沸
騰水型原子炉用燃料集合体を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to create an enrichment distribution in the axial direction by using three or more types of fuel rods of different lengths. It is possible to provide a fuel assembly for a boiling water reactor that does not require fuel rods, has sufficiently low local power peaking, has a sufficiently flat excess reactivity, and can be manufactured efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b) 、 (C)はそれぞれ同図
(e)のへ−A線、ト8線、 C−C線に沿った燃料集
合体内の燃料棒の配置図、同図(d)は本実施例に用い
られる各種燃料棒の上下方向の核分裂性物質濃度と可燃
性毒物の分布を示した図、同図(e)は本発明の一実施
例の概略側面図、第2図は本発明の第2実施例の燃料棒
の配置図と各種燃料棒の上下方向の核分裂性物質濃度と
可燃性汚物の分布図、第3図は本発明の第3実施例の燃
料棒の配置図と各種燃料棒の上下方向の核分裂性物質濃
度と可燃性毒物の分布図、第4図は本発明の燃料集合体
の運転期間と上下方向出力ビーキングとの関係を示す図
、第5図は本発明の燃料集合体の運転期間と最大線出力
密度との関係を示す図、第6図は本発明の燃料集合体の
運転期間と余剰反応度との関係を示す図、第7図は本発
明の燃料集合体の最大線出力密度発生時点の局所出力ビ
ーキングを示した図、第8図および第9図はそれぞれ従
来の燃料集合体の燃料棒の異なる配置図、第10図は本
発明の水素対ウラン原子数比を説明するための図、第1
1図は本発明の上下方向燃焼度分布図である。 35、45・・・短い部分長燃料棒 36、46・・・可燃性毒物入り全長燃料棒47・・・
可燃性毒物入り部分長燃料棒1・・・燃料集合体全体 2・・・燃料バンドル 3・・・全長燃料棒 4・・・長い部分長燃料棒 5・・・短い部分長燃料棒 6・・・ウォーターロッド 7・・・スペーサ 8・・・上部タイプレート 9・・・下部タイプレート
Figures 1 (a), (b), and (C) are arrangement diagrams of fuel rods in the fuel assembly taken along lines H-A, H-8, and C-C in Figure (e), respectively; (d) is a diagram showing the fissile material concentration and burnable poison distribution in the vertical direction of various fuel rods used in this example, and (e) is a schematic side view of one example of the present invention. Figure 2 shows the arrangement of fuel rods according to the second embodiment of the present invention, and the distribution diagram of fissile material concentration and combustible waste in the vertical direction of various fuel rods, and Figure 3 shows the fuel rods according to the third embodiment of the present invention. Fig. 4 is a diagram showing the relationship between the operating period of the fuel assembly of the present invention and the output peaking in the vertical direction; Figure 6 shows the relationship between the operating period and maximum linear power density of the fuel assembly of the present invention, Figure 6 shows the relationship between the operating period and excess reactivity of the fuel assembly of the present invention, and Figure 7 is a diagram showing the local power peaking at the time when the maximum linear power density occurs in the fuel assembly of the present invention, FIGS. Diagram for explaining the hydrogen to uranium atomic ratio of the invention, 1st
FIG. 1 is a vertical burnup distribution diagram of the present invention. 35, 45...Short partial length fuel rods 36, 46...Full length fuel rods containing burnable poison 47...
Part-length fuel rods containing burnable poison 1...Entire fuel assembly 2...Fuel bundle 3...Full-length fuel rods 4...Long part-length fuel rods 5...Short part-length fuel rods 6...・Water rod 7...Spacer 8...Upper tie plate 9...Lower tie plate

Claims (2)

【特許請求の範囲】[Claims] (1)燃料棒の長さが当該燃料集合体の長さと同程度の
全長燃料棒と、断面の面積が上部で大きく下部で小さい
ウォーターロッドと、前記ウォーターロッドの断面積の
小さい部分の長さと同程度かそれ以下の長さの第1の部
分長燃料棒と、前記第1の部分長燃料棒より長く前記全
長燃料棒より短い第2の部分長燃料棒とからなり、前記
各燃料棒の下端位置を一致させて構成された沸騰水型原
子炉用燃料集合体において、それぞれの部分長燃料棒の
核分裂性物質濃度を上下方向についてほぼ一定値とし、
前記第1の部分長燃料棒の核分裂性物質濃度を当該燃料
集合体の平均の濃度と同じかそれより低い核分裂性物質
濃度とし、前記第2の部分長燃料棒の核分裂性物質濃度
を当該燃料集合体の平均の濃度と同じか平均の濃度より
も高い核分裂性物質濃度とし、かつ前記第1及び第2の
部分長燃料棒の核分裂性物質濃度が同時に当該燃料集合
体の平均の核分裂性物質濃度と同じにならないようにす
るとともに前記全長燃料棒の一部に可燃性毒物を含有し
ていることを特徴とする沸騰水型原子炉用燃料集合体。
(1) A full-length fuel rod whose length is approximately the same as the length of the fuel assembly, a water rod whose cross-sectional area is large at the top and small at the bottom, and the length of the portion of the water rod where the cross-sectional area is small. a first part-length fuel rod having a length of the same or less length, and a second part-length fuel rod that is longer than the first part-length fuel rod and shorter than the full-length fuel rod; In a fuel assembly for a boiling water reactor configured with the lower end positions aligned, the fissile material concentration of each partial length fuel rod is set to a substantially constant value in the vertical direction,
The first part-length fuel rod has a fissile material concentration that is equal to or lower than the average concentration of the fuel assembly, and the second part-length fuel rod has a fissile material concentration that is equal to or lower than the average concentration of the fuel assembly. The fissile material concentration is the same as or higher than the average concentration of the fuel assembly, and the fissile material concentration of the first and second part-length fuel rods is simultaneously the average fissile material concentration of the fuel assembly. 1. A fuel assembly for a boiling water reactor, characterized in that the fuel rods contain a burnable poison in a part of the full-length fuel rods.
(2)第1の部分長燃料棒および第2の部分長燃料棒の
少なくとも一部の部分長燃料棒に可燃性毒物を含有して
いることを特徴とする特許請求の範囲第1項記載の沸騰
水型原子炉用燃料集合体。
(2) At least some of the first part-length fuel rods and the second part-length fuel rods contain a burnable poison. Fuel assembly for boiling water reactors.
JP63144705A 1987-08-27 1988-06-14 Fuel assembly for boiling water reactor Expired - Lifetime JP2723253B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63144705A JP2723253B2 (en) 1988-06-14 1988-06-14 Fuel assembly for boiling water reactor
DE3844595A DE3844595C2 (en) 1987-08-27 1988-08-23
DE3828616A DE3828616A1 (en) 1987-08-27 1988-08-23 FUEL ARRANGEMENT FOR CORE REACTORS
US07/235,629 US4968479A (en) 1987-08-27 1988-08-24 Fuel assembly for nuclear reactor
SE8803006A SE503596C2 (en) 1987-08-27 1988-08-29 Nuclear reactor fuel cartridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63144705A JP2723253B2 (en) 1988-06-14 1988-06-14 Fuel assembly for boiling water reactor

Publications (2)

Publication Number Publication Date
JPH022977A true JPH022977A (en) 1990-01-08
JP2723253B2 JP2723253B2 (en) 1998-03-09

Family

ID=15368370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144705A Expired - Lifetime JP2723253B2 (en) 1987-08-27 1988-06-14 Fuel assembly for boiling water reactor

Country Status (1)

Country Link
JP (1) JP2723253B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102384A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Fuel assembly and reactor core
US6061416A (en) * 1997-02-13 2000-05-09 Hitachi, Ltd. Fuel assembly
EP1551034A2 (en) * 2003-12-31 2005-07-06 Global Nuclear Fuel-Americas, LLC Axially segregated part-length fuel rods in a reactor fuel bundle
JP2009145203A (en) * 2007-12-14 2009-07-02 Global Nuclear Fuel-Japan Co Ltd Fuel assembly and core of boiling water reactor using it
JP2012141210A (en) * 2010-12-28 2012-07-26 Global Nuclear Fuel-Japan Co Ltd Initial core of boiling water reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211584A (en) * 1986-03-13 1987-09-17 原子燃料工業株式会社 Fuel aggregate for boiling water type reactor
JPS62259088A (en) * 1986-05-02 1987-11-11 株式会社東芝 Fuel aggregate
JPS63127190A (en) * 1986-11-17 1988-05-31 株式会社東芝 Nuclear reactor fuel aggregate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211584A (en) * 1986-03-13 1987-09-17 原子燃料工業株式会社 Fuel aggregate for boiling water type reactor
JPS62259088A (en) * 1986-05-02 1987-11-11 株式会社東芝 Fuel aggregate
JPS63127190A (en) * 1986-11-17 1988-05-31 株式会社東芝 Nuclear reactor fuel aggregate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335956B1 (en) 1988-02-12 2002-01-01 Hitachi, Ltd. Fuel assembly
JPH06102384A (en) * 1992-09-18 1994-04-15 Hitachi Ltd Fuel assembly and reactor core
US6061416A (en) * 1997-02-13 2000-05-09 Hitachi, Ltd. Fuel assembly
EP1551034A2 (en) * 2003-12-31 2005-07-06 Global Nuclear Fuel-Americas, LLC Axially segregated part-length fuel rods in a reactor fuel bundle
EP1551034A3 (en) * 2003-12-31 2008-06-18 Global Nuclear Fuel-Americas, LLC Axially segregated part-length fuel rods in a reactor fuel bundle
JP2009145203A (en) * 2007-12-14 2009-07-02 Global Nuclear Fuel-Japan Co Ltd Fuel assembly and core of boiling water reactor using it
JP2012141210A (en) * 2010-12-28 2012-07-26 Global Nuclear Fuel-Japan Co Ltd Initial core of boiling water reactor

Also Published As

Publication number Publication date
JP2723253B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
JP3531011B2 (en) Fuel assemblies and reactors
JPH0536757B2 (en)
JPH022977A (en) Boiling water reactor fuel assembly
JP4040888B2 (en) Fuel assembly
JP2007225624A (en) Reactor core
JPH07244184A (en) Reactor core, its operation method and fuel assembly
JP2001116875A (en) Fuel assembly and nuclear reactor
JP4046870B2 (en) MOX fuel assembly
JP3485999B2 (en) Fuel assemblies for boiling water reactors
JPH0636049B2 (en) Fuel assembly for boiling water reactor
JP2000028771A (en) Fuel assembly
JPH0555836B2 (en)
JPH10221474A (en) Fuel assembly
JP2966877B2 (en) Fuel assembly
JPH065320B2 (en) Fuel assembly for boiling water reactor
JP2577367B2 (en) Fuel assembly
JP3237922B2 (en) Fuel assemblies and cores for boiling water reactors
JP3164670B2 (en) Fuel assembly
JP2000009870A (en) Fuel assembly and core of reactor
JP3894784B2 (en) Fuel loading method for boiling water reactor
JP3171957B2 (en) Fuel assembly
JPH10206582A (en) Fuel assembly
JP2809626B2 (en) Fuel assembly
JPS61134691A (en) Nuclear fuel aggregate
JP2953789B2 (en) Nuclear fuel assembly

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11