JPH0229746B2 - FUKUSUNOJOHATSUGENOSONAETAIONPUREETEINGUSOCHI - Google Patents

FUKUSUNOJOHATSUGENOSONAETAIONPUREETEINGUSOCHI

Info

Publication number
JPH0229746B2
JPH0229746B2 JP9820082A JP9820082A JPH0229746B2 JP H0229746 B2 JPH0229746 B2 JP H0229746B2 JP 9820082 A JP9820082 A JP 9820082A JP 9820082 A JP9820082 A JP 9820082A JP H0229746 B2 JPH0229746 B2 JP H0229746B2
Authority
JP
Japan
Prior art keywords
evaporation
evaporation source
downward
gold
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9820082A
Other languages
Japanese (ja)
Other versions
JPS58217674A (en
Inventor
Kyoju Sasanuma
Shotaro Shimizu
Mitsugi Enomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP9820082A priority Critical patent/JPH0229746B2/en
Publication of JPS58217674A publication Critical patent/JPS58217674A/en
Publication of JPH0229746B2 publication Critical patent/JPH0229746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は複数の蒸発源を備えたイオンプレーテ
イング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion plating apparatus equipped with multiple evaporation sources.

複数の元素からなる合金、化合物、混合物被膜
を形成する場合、これらの合金などを蒸発材料と
すると個々の元素の蒸気圧が異なるため成分の変
動が著しく、目的とする組成の被膜を得ることが
困難である。
When forming an alloy, compound, or mixture film consisting of multiple elements, if these alloys are used as evaporation materials, the vapor pressure of each element will differ, resulting in significant fluctuations in the composition, making it difficult to obtain a film with the desired composition. Have difficulty.

このような場合には、それぞれ異なる物質を蒸
発させる複数の蒸発源を並設してそれぞれの蒸発
量を調整している。
In such a case, a plurality of evaporation sources that evaporate different substances are arranged in parallel to adjust the amount of evaporation of each.

第1図は複数の蒸発源を備えた従来のイオンプ
レーテイング装置の構成を示す模式的断面図であ
り、真空室1の内部には蒸発源Aと蒸発源Bとが
並設されており、それぞれの駆動電源(図示せ
ず)により駆動され、その電位は接地電位となつ
ている。蒸発源の上方には、複数の基板2を保持
し蒸発源に対する個々の基板の相対位置が均等に
なるように基板2を回動させる基板ホルダー3が
配置されており、基板電源4により正の電位が印
加される。
FIG. 1 is a schematic cross-sectional view showing the configuration of a conventional ion plating apparatus equipped with a plurality of evaporation sources. Inside a vacuum chamber 1, an evaporation source A and an evaporation source B are arranged side by side. They are driven by respective drive power sources (not shown), and their potentials are the ground potential. Above the evaporation source, a substrate holder 3 is arranged that holds a plurality of substrates 2 and rotates the substrates 2 so that the relative positions of the individual substrates with respect to the evaporation source are even. A potential is applied.

カソード電源7により駆動され接地電位にある
熱電子放出フイラメント5と、アノード電源8に
より正電位が印加されるアノード6とが蒸発源
A,Bの近傍に対向配置されており、蒸発粒子お
よびガス導入口9から導入されるガスをイオン化
する手段を構成している。10は排気系である。
A thermionic filament 5 driven by a cathode power source 7 and at ground potential, and an anode 6 to which a positive potential is applied by an anode power source 8 are arranged facing each other near the evaporation sources A and B, and evaporated particles and gas are introduced. It constitutes a means for ionizing the gas introduced from the port 9. 10 is an exhaust system.

このような装置を用いて2種類の蒸発物質をそ
れぞれの蒸発源から蒸発させ、イオン化手段によ
りイオン化する場合、蒸発源およびイオン化空間
が近接しているため相互に干渉し、完全に独立し
た制御が困難であつた。
When using such a device to evaporate two types of evaporated substances from their respective evaporation sources and ionize them using the ionization means, the evaporation sources and ionization space are close to each other, so they interfere with each other, making it impossible to control them completely independently. It was difficult.

特に溶融温度、蒸気圧、イオン化の難易度など
が両蒸発物質間で極端に異なる場合には、以下に
述べるような不都合があつた。
In particular, when the melting temperature, vapor pressure, difficulty of ionization, etc. are extremely different between the two evaporated substances, there are disadvantages as described below.

例えば一方の蒸発源からチタンを蒸発させ、他
方の蒸発源から金を蒸発させる場合などがこれに
該当する。
For example, this is the case when titanium is evaporated from one evaporation source and gold is evaporated from the other evaporation source.

窒素を含むガス雰囲気中でチタンを蒸発させ、
反応性イオンプレーテイング法により窒化チタン
膜を形成する方法が耐摩耗性装飾部品の製造方法
として実用化されている。この場合、窒化チタン
の呈する黄褐色を黄金色に調色するために金を共
析させることが試みられている。
Evaporate titanium in a gas atmosphere containing nitrogen,
A method of forming a titanium nitride film by a reactive ion plating method has been put into practical use as a method for manufacturing wear-resistant decorative parts. In this case, attempts have been made to eutectoid gold in order to tone the yellow-brown color of titanium nitride to golden yellow.

このような共析膜を従来のイオンプレーテイン
グ装置により形成する場合、一方の蒸発源に存在
する金の溶湯表面に他方の蒸発源からのチタンが
被膜を形成し、そのために金が突沸現象を起して
飛沫飛散し、同時に金の蒸気圧が突発的に変動す
る。また、一方の蒸気量を変動させると放電の相
互干渉の結果として他方のイオン化率も変動する
という不都合がある。
When such a eutectoid film is formed using a conventional ion plating device, titanium from one evaporation source forms a film on the surface of the molten gold from the other evaporation source, which causes the gold to undergo a bumping phenomenon. At the same time, the vapor pressure of the gold suddenly fluctuates. Further, there is the disadvantage that if the amount of vapor in one is varied, the ionization rate in the other is also varied as a result of mutual interference of discharge.

このような現象のために被膜組成の制御が極め
て困難であつた。
Because of this phenomenon, it has been extremely difficult to control the coating composition.

そこで本発明の目的は、従来技術における上記
の欠点を排除することであり、そのために本発明
においては相互干渉の大きい複数の蒸発源を基板
ホルダーを介して上下に分散配置するようにし
た。
Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks in the prior art, and for this purpose, in the present invention, a plurality of evaporation sources that have large mutual interference are arranged vertically and vertically via a substrate holder.

(実施例) 第2図は本発明のイオンプレーテイング装置の
構成を示す模式的断面図である。第2図において
第1図と同一の番号は同一の部材を示す。
(Example) FIG. 2 is a schematic cross-sectional view showing the configuration of the ion plating apparatus of the present invention. In FIG. 2, the same numbers as in FIG. 1 indicate the same members.

回動式の基板ホルダー3の下方には、チタンを
蒸発材料とする上向き蒸発源Aが配置されてお
り、その近傍にはカソード電源71により駆動さ
れる熱電子放出フイラメント51と、アノード電
源81により正電位が印加されるアノード61と
がイオン化する手段として配置されている。
An upward evaporation source A made of titanium as the evaporation material is arranged below the rotary substrate holder 3, and near it, a thermionic emission filament 51 driven by a cathode power supply 71 and an anode power supply 81 are arranged. An anode 61 to which a positive potential is applied is arranged as an ionizing means.

一方、基板ホルダー3の上方には、金を蒸発材
料とする下向き蒸発源Cが配置されており、その
近傍にはカソード電源72により駆動される熱電
子放出フイラメント52と、アノード電源82に
より正電位が印加されるアノード62とがイオン
化する手段として配置されている。
On the other hand, above the substrate holder 3, a downward evaporation source C made of gold as an evaporation material is arranged, and near it, a thermionic emission filament 52 driven by a cathode power source 72 and a positive potential generated by an anode power source 82 are placed. An anode 62 to which is applied is arranged as an ionizing means.

イオン化する手段としては図示のものに限ら
ず、高周波励起方式など種々の方式を採用するこ
とができ、また単に蒸発源と基板との間に基板側
を正電位とする直流電圧を印加することのみでも
イオン化手段となり得る。
The means for ionization is not limited to the one shown in the figure, and various methods such as high frequency excitation methods can be adopted, and it is also possible to simply apply a DC voltage between the evaporation source and the substrate with the substrate side at a positive potential. However, it can also be used as a means of ionization.

第2図に示す実施例においては、ガス導入口が
2個設けられており、窒化チタンと金との共析膜
を形成する場合には、下方のガス導入口91から
窒素を含むガスが導入され、上方のガス導入口9
2からは不活性ガスが導入される。これによりチ
タン蒸気の窒化反応が促進され、金の蒸発量も安
定化する。ここで、窒化チタン(TiNx)95%、
金5%の組成からなる厚さ2ミクロンの共析膜を
形成する場合を例として、従来の装置と本発明の
装置との比較例を示す。
In the embodiment shown in FIG. 2, two gas inlets are provided, and when forming a eutectoid film of titanium nitride and gold, a gas containing nitrogen is introduced from the lower gas inlet 91. and the upper gas inlet 9
Inert gas is introduced from 2. This promotes the nitriding reaction of titanium vapor and stabilizes the amount of gold evaporated. Here, titanium nitride (TiNx) 95%,
A comparative example between a conventional apparatus and the apparatus of the present invention will be shown, taking as an example the case of forming a 2 micron thick eutectoid film having a composition of 5% gold.

第1図に示す従来の装置を用いて0.5時間当り
2ミクロンの成膜速度で共析膜を形成した場合、
膜の色調は白味がかつた金色であり、そのビツカ
ース厚さは約Hv=1300であつた。
When a eutectoid film is formed at a film formation rate of 2 microns per 0.5 hours using the conventional apparatus shown in Figure 1,
The color of the film was gold with a whitish tinge, and its Vickers thickness was about Hv=1300.

X線回折による格子定数の測定から求めた窒化
度はx≒0.6であつた。
The degree of nitridation determined from the measurement of the lattice constant by X-ray diffraction was x≈0.6.

一方、成膜速度を1.5時間当り2ミクロンと遅
くした場合には、鮮やかな黄金色が得られ、硬さ
Hv=2400、窒化度x≒0.9となつた。
On the other hand, when the deposition rate was slowed to 2 microns per 1.5 hours, a bright golden color was obtained and the hardness increased.
Hv=2400, degree of nitridation x≒0.9.

これらの処理においては、金の突沸が避けられ
ず、そのため外観品質の不良率が約30%であつ
た。
In these treatments, bumping of the gold was unavoidable, resulting in a defect rate of approximately 30% in appearance quality.

これに対して第2図に示す本発明の装置を用い
た場合、0.5時間当り2ミクロンの成膜速度でも
鮮やかな黄金色の共析膜が得られ、その硬さは
Hv=2300、窒化度x≒0.9であつた。
On the other hand, when the apparatus of the present invention shown in Fig. 2 is used, a bright golden-yellow eutectoid film can be obtained even at a film formation rate of 2 microns per 0.5 hours, and its hardness is
Hv=2300, degree of nitridation x≒0.9.

さらに1時間当り2ミクロンの速度で成膜した
場合には、Hv=2700の硬さが得られ、鮮やかな
黄金色で窒化度x≒0.9であつた。
Furthermore, when the film was formed at a rate of 2 microns per hour, a hardness of Hv=2700 was obtained, and the film was bright golden in color and had a degree of nitridation x≈0.9.

これらの処理においては金の突沸は認められ
ず、外観不良率は5%以下であつた。
No bumping of gold was observed in these treatments, and the appearance defect rate was 5% or less.

これらの結果から、本発明の装置を用いれば、
窒化反応が促進され、成膜速度が比較的速い場合
でも鮮やかな黄金色と高い硬度が得られることが
認められた。
From these results, if the device of the present invention is used,
It was observed that the nitriding reaction was accelerated and a bright golden color and high hardness were obtained even when the film formation rate was relatively high.

第3図ないし第6図はいずれも本発明の装置に
採用し得る下向き蒸発源の実施例を示す断面図で
あり、蒸発物質として金を想定した例を示してい
る。
3 to 6 are sectional views showing examples of downward evaporation sources that can be employed in the apparatus of the present invention, and show examples in which gold is assumed to be the evaporation substance.

第3図は高周波誘導加熱式の下向き蒸発源C1
を示す。ドーナツ形のセラミツクルツボ11の内
部には蒸発物質としての金12が装入されてお
り、セラミツクカバー13の下面にはタングステ
ン、タンタルなどの高融点金属板14が裏打ちさ
れている。高周波コイル15により誘導加熱され
て金12は溶融し、その蒸気はノズル16から下
方に噴出する。セラミツクカバー13下面の金属
板14は誘導加熱により高温に赤熱されているの
で、この部分に蒸発物質が凝着することが防止さ
れる。
Figure 3 shows a high-frequency induction heating type downward evaporation source C1.
shows. Gold 12 as an evaporative substance is charged inside a donut-shaped ceramic crucible 11, and the lower surface of a ceramic cover 13 is lined with a high melting point metal plate 14 such as tungsten or tantalum. The gold 12 is melted by induction heating by the high frequency coil 15, and its vapor is ejected downward from the nozzle 16. Since the metal plate 14 on the lower surface of the ceramic cover 13 is red-hot to a high temperature by induction heating, evaporated substances are prevented from adhering to this part.

第4図は抵抗加熱式の下向き蒸発源C2を示
す。
FIG. 4 shows a resistance heating type downward evaporation source C2.

中央部にノズル17、周囲に湯留り18を設け
たカバー付タングステンボート19に蒸発物質と
しての金12が装入され、ボートは通電により抵
抗加熱される。蒸発物質蒸気はノズル17から下
向きに噴出する。
Gold 12 as an evaporative substance is charged into a covered tungsten boat 19 having a nozzle 17 in the center and a molten metal basin 18 around the periphery, and the boat is resistance heated by electricity. Evaporated substance vapor is ejected downward from the nozzle 17.

第5図はマグネトロン方式のスパツタターゲツ
トにより構成される下向き蒸発源C3を示す。
FIG. 5 shows a downward evaporation source C3 constituted by a magnetron type sputter target.

上板20、側板21、下板22からなる非磁性
ステンレス鋼製の水冷容器の内部には、永久磁石
23と継鉄24とが図示のように多数組配置され
ており、その外部下面には蒸発物質としての金板
25が接着されている。このようなターゲツトを
陰極として不活性ガス中でスパツタ現象を起こさ
せると、周知のマグネトロン効果により金板の表
面から金蒸気が効率的に放出される。
Inside the water-cooled container made of non-magnetic stainless steel, which consists of an upper plate 20, a side plate 21, and a lower plate 22, many sets of permanent magnets 23 and yokes 24 are arranged as shown in the figure. A gold plate 25 as an evaporative substance is glued. When a sputtering phenomenon is caused in an inert gas using such a target as a cathode, gold vapor is efficiently released from the surface of the gold plate due to the well-known magnetron effect.

第6図は電子ビーム加熱方式の下向き蒸発源C
4を示す。
Figure 6 shows downward evaporation source C using electron beam heating.
4 is shown.

加熱電源26により加熱されるフイラメント2
7と、その外側に配置されフイラメント27と同
電位にあるリペラー28とからなるカソードが対
向配置されており、その中心部にリール29から
自動供給される金線30が垂下している。電源3
2を介して金線30に正の高電圧が印加される
と、フイラメント27から放射される電子ビーム
により金線30は加熱され、その先端部31から
金が蒸発する。
Filament 2 heated by heating power source 26
7 and a repeller 28 which is placed outside and has the same potential as the filament 27 are disposed facing each other, and a gold wire 30 automatically supplied from a reel 29 hangs down from the center of the cathode. power supply 3
When a positive high voltage is applied to the gold wire 30 via the filament 27, the gold wire 30 is heated by the electron beam emitted from the filament 27, and gold evaporates from its tip 31.

以上の実施例は窒化チタンと金の共析膜を形成
する場合を例示したものであるが、本発明の装置
は実施例に限らず、多元素膜の形成に広く利用で
きることは言うまでもない。
Although the above embodiments are illustrative of the case where a titanium nitride and gold eutectoid film is formed, it goes without saying that the apparatus of the present invention is not limited to the embodiments and can be widely used for forming multi-element films.

また、蒸発源の数は上下各1個に限らず、複数
個配置し得る。この場合、最も相互干渉の大きい
2個の蒸発源を上下に分散配置することにより本
発明の目的が達成される。
Further, the number of evaporation sources is not limited to one each on the upper and lower sides, but a plurality of evaporation sources may be arranged. In this case, the object of the present invention can be achieved by distributing two evaporation sources that have the greatest mutual interference above and below.

本発明の装置は以上に述べたように、複数の蒸
発源相互の干渉を排除し、安定した膜組成の制御
を可能ならしめるものであり、薄膜技術分野にお
いて価置の大なるものである。
As described above, the apparatus of the present invention eliminates mutual interference between a plurality of evaporation sources and enables stable control of film composition, and is highly valued in the field of thin film technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の複数の蒸発源を備えたイオンプ
レーテイング装置の構成を示す膜式的断面図、第
2図は本発明のイオンプレーテイング装置の構成
を示す模式的断面図、第3図ないし第6図はいず
れも本発明の実施例における下向き蒸発源の具体
例を示す断面図である。 1……真空室、2……基板、3……基板ホルダ
ー、9……ガス導入口、A,B……上向き蒸発
源、C,C1,C2,C3,C4……下向き蒸発
源。
FIG. 1 is a membrane-type sectional view showing the structure of a conventional ion plating apparatus equipped with a plurality of evaporation sources, FIG. 2 is a schematic sectional view showing the structure of the ion plating apparatus of the present invention, and FIG. 6 through 6 are sectional views showing specific examples of downward evaporation sources in embodiments of the present invention. 1... Vacuum chamber, 2... Substrate, 3... Substrate holder, 9... Gas inlet, A, B... Upward evaporation source, C, C1, C2, C3, C4... Downward evaporation source.

Claims (1)

【特許請求の範囲】 1 それぞれ異なる物質を蒸発させる複数の蒸発
源と、複数の基板を保持し蒸発源に対する個々の
基板の相対位置が均等になるように基板を回動さ
せる基板ホルダーと、ガス導入口と、導入ガスお
よび蒸発物質蒸気をイオン化する手段とを真空室
内に備えたイオンプレーテイング装置において、
蒸発源の少なくとも一つは基板ホルダーの下方に
配置されて蒸発物質を上向きに蒸発させる上向き
蒸発源であり、残りの蒸発源の少なくとも一つは
基板ホルダーの上方に配置されて蒸発物質を下向
きに蒸発させる下向き蒸発源であることを特徴と
する複数の蒸発源を備えたイオンプレーテイング
装置。 2 上向き蒸発源の蒸発物質がチタンであり、下
向き蒸発源の蒸発物質が金であることを特徴とす
る特許請求の範囲第1項に記載のイオンプレーテ
イング装置。 3 ガス導入口が上向き蒸発源の近傍に開口して
窒素を含有するガスを導入するガス導入口と、下
向き蒸発源の近傍に開口して不活性ガスを導入す
るガス導入口とであることを特徴とする特許請求
の範囲第2項に記載のイオンプレーテイング装
置。
[Claims] 1. A plurality of evaporation sources that evaporate different substances, a substrate holder that holds a plurality of substrates and rotates the substrates so that the relative positions of the individual substrates with respect to the evaporation source are equal, and a gas An ion plating apparatus comprising an inlet and a means for ionizing introduced gas and evaporated substance vapor in a vacuum chamber,
At least one of the evaporation sources is an upward evaporation source disposed below the substrate holder to evaporate the evaporation material upward, and at least one of the remaining evaporation sources is disposed above the substrate holder to direct the evaporation material downward. An ion plating device equipped with a plurality of evaporation sources, characterized in that they are downward evaporation sources. 2. The ion plating apparatus according to claim 1, wherein the evaporation material of the upward evaporation source is titanium, and the evaporation material of the downward evaporation source is gold. 3. The gas inlet opens near the upward evaporation source to introduce nitrogen-containing gas, and the gas inlet opens near the downward evaporation source to introduce inert gas. An ion plating apparatus according to claim 2, characterized in that:
JP9820082A 1982-06-08 1982-06-08 FUKUSUNOJOHATSUGENOSONAETAIONPUREETEINGUSOCHI Expired - Lifetime JPH0229746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9820082A JPH0229746B2 (en) 1982-06-08 1982-06-08 FUKUSUNOJOHATSUGENOSONAETAIONPUREETEINGUSOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9820082A JPH0229746B2 (en) 1982-06-08 1982-06-08 FUKUSUNOJOHATSUGENOSONAETAIONPUREETEINGUSOCHI

Publications (2)

Publication Number Publication Date
JPS58217674A JPS58217674A (en) 1983-12-17
JPH0229746B2 true JPH0229746B2 (en) 1990-07-02

Family

ID=14213357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9820082A Expired - Lifetime JPH0229746B2 (en) 1982-06-08 1982-06-08 FUKUSUNOJOHATSUGENOSONAETAIONPUREETEINGUSOCHI

Country Status (1)

Country Link
JP (1) JPH0229746B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450243U (en) * 1990-08-31 1992-04-28

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226858A (en) * 1985-07-26 1987-02-04 Stanley Electric Co Ltd Thin film transistor assembly having light shielding layer
CA1264025A (en) * 1987-05-29 1989-12-27 James A.E. Bell Apparatus and process for coloring objects by plasma coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450243U (en) * 1990-08-31 1992-04-28

Also Published As

Publication number Publication date
JPS58217674A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
US4403014A (en) Process of depositing a hard coating of a gold compound on a substrate for coating jewelry and the like
US6113752A (en) Method and device for coating substrate
US6702931B2 (en) Method for manufacturing a cathodic arc coated workpiece
JPH0751752B2 (en) Plasma energized magnetron sputter deposition method and apparatus
WO1989010429A1 (en) Target source for ion beam sputter deposition
JPH0153350B2 (en)
US4505798A (en) Magnetron sputtering apparatus
US20050148200A1 (en) Film forming apparatus, substrate for forming oxide thin film and production method thereof
JPH0122729B2 (en)
US4997673A (en) Method of forming aluminum nitride films by ion-assisted evaporation
JPH0229746B2 (en) FUKUSUNOJOHATSUGENOSONAETAIONPUREETEINGUSOCHI
JPH0372067A (en) Arc discharge type evaporator having a plurality of evaporating crucibles
JPH09176840A (en) Vacuum coating apparatus
JP3399570B2 (en) Continuous vacuum deposition equipment
JP2946387B2 (en) Ion plating equipment
JPH02111878A (en) Sputtering device
JP3439993B2 (en) Magnetron sputtering equipment
JPS63307272A (en) Ion beam sputtering device
JP2603919B2 (en) Method for producing boron nitride film containing cubic boron nitride crystal grains
JP2872773B2 (en) Compound vapor deposition method and apparatus
JPS6176662A (en) Method and device for forming thin film
JP2001115259A (en) Magnetron sputtering system
Golan et al. Modified magnetic controlled plasma sputtering method
JPS6053113B2 (en) Film formation method
JPH0372069A (en) Method for continuously vapor-depositing compound on metal strip