JPH02296840A - Porous film and production thereof - Google Patents

Porous film and production thereof

Info

Publication number
JPH02296840A
JPH02296840A JP11513989A JP11513989A JPH02296840A JP H02296840 A JPH02296840 A JP H02296840A JP 11513989 A JP11513989 A JP 11513989A JP 11513989 A JP11513989 A JP 11513989A JP H02296840 A JPH02296840 A JP H02296840A
Authority
JP
Japan
Prior art keywords
layer
stretching
film
component
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11513989A
Other languages
Japanese (ja)
Inventor
Kazushige Tanaka
田中 多栄
Hideo Umezawa
梅沢 英雄
Hajime Mutsuka
六鹿 一
Takeshi Ito
健 伊藤
Junko Hayakawa
早川 淳子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP11513989A priority Critical patent/JPH02296840A/en
Publication of JPH02296840A publication Critical patent/JPH02296840A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a porous film of a large surface opening by forming two resin compositions by mixing a polyolefin with a filler in two specified mixing ratios, melt-molding these two compositions into films to form a multilayer film and stretching this film. CONSTITUTION:A resin composition (A) is obtained by mixing a polyolefin resin (a) of an MI of 0.05-20g/10min (e.g. linear low-density PE) with a filler (b) (e.g. barium sulfate) of a mean particle diameter of 0.01-20mum, optionally surface-treated so that formula I (wherein X is the volume of component (b), and Y is the volume of component (a)) may be satisfied. Separately, component (a) is mixed with component (b) to obtain a resin composition (B). Component A and component B are laid in such a way that component A is laid on at least one side of component B and melt-molded into a film by coextrusion to obtain a film of an at least bilayer structure. This film is monoaxially or biaxially orientated to obtain the title film of a ratio of the thickness of the layer comprising component A to that of the layer comprising component B of 3.00-0.03.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔質フィルムおよびその製造方法に関し、更
に詳しくは、多層構造を有する表面開孔率の大きい多孔
質フィルムおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a porous film and a method for producing the same, and more particularly to a porous film having a multilayer structure and a large surface porosity and a method for producing the same.

本発明による多孔質フィルムは、表面開孔率が従来の多
孔質フィルムと比較し、非常に大きいため、防水衣料、
包装材料、衛生材料等にも使用できるが、特に、大きな
iI!過面積を必要とする濾過材料、均一なイオン伝導
を必要とする電池セパレーターおよび電気二重層コンデ
ンサーセパレーター等に最適である。
The porous film according to the present invention has a much larger surface porosity than conventional porous films, so it can be used for waterproof clothing,
It can also be used for packaging materials, sanitary materials, etc., but especially large iI! Ideal for filtration materials that require a large area, battery separators that require uniform ion conduction, electric double layer capacitor separators, etc.

〔従来の技術〕[Conventional technology]

従来より、ポリオレフィン系樹脂に充填剤を配合した樹
脂組成物を溶融製膜し、その後延伸処理して、多孔質フ
ィルムを製造する方法が種々提案されている。例えば、
特開昭57−47334号公報では、ポリオレフィン系
樹脂に充填剤および液状ポリブタジェンを配合した樹脂
組成物を溶融製膜し、その後延伸処理を行う方法、特開
昭60−129240号公報では、ポリオレフィン系樹
脂に硫酸バリウムを配合した樹脂組成物を溶融製膜し、
その後延伸処理して、多孔質フィルムを製造する方法等
が挙げられる。
Conventionally, various methods have been proposed for producing porous films by melt-forming a resin composition containing a filler into a polyolefin resin and then subjecting it to stretching treatment. for example,
JP-A No. 57-47334 discloses a method in which a resin composition containing a filler and liquid polybutadiene is blended with a polyolefin resin is melt-formed into a film, and then stretched. A resin composition containing barium sulfate is melted into a film,
Examples include a method in which a porous film is produced by subsequent stretching treatment.

しかしながら、上記方法で得られた多孔質フィルムは、
表面にスキン層を形成してしまい、内部層は大きな空孔
率を有するものの、表面開孔率が小さいものとなってし
まう。ここで、表面開孔率とは、単位面積あたりに存在
する開孔部の面積比率である。(以下、単に表面開孔率
という。)表面開孔率が小さい場合には、孔が疎に開い
ており、濾過材では濾過効率が悪くなるし、電池セパレ
ーター、電気二重層コンデンサーセパレーターでは、局
所的にイオン電流が集中し、性能低下等の問題を発生し
てしまう。その他の包装材、衛生材においても、水蒸気
や空気等の流体の不均一の流れとなる原因となったり、
透過速度が不十分となる等の問題を発生する。
However, the porous film obtained by the above method is
A skin layer is formed on the surface, and although the inner layer has a large porosity, the surface porosity becomes small. Here, the surface porosity is the area ratio of the pores present per unit area. (Hereinafter, simply referred to as surface porosity.) If the surface porosity is small, the pores are sparsely opened, and the filtration efficiency of the filtration material decreases. However, the ion current concentrates, causing problems such as performance deterioration. Other packaging materials and sanitary materials may also cause uneven flow of fluids such as water vapor or air.
Problems such as insufficient permeation rate occur.

上記課題の解決のため、単に充填剤の量を多くしただけ
では、延伸性が低下し、延伸破れの頻度が多くなり、安
定して延伸処理できな(なるし、表面開孔率も十分では
ない。更に、充填剤や充填剤の表面処理剤によっても差
があるが、充填剤が体積比率で35%を越えると、樹脂
組成物の伸度が極端に小さくなってしまい、延伸性が極
端に低下してしまう。
In order to solve the above problems, simply increasing the amount of filler will reduce the stretchability, increase the frequency of stretch breakage, make it difficult to stably stretch (and the surface porosity will not be sufficient). Furthermore, although there are differences depending on the filler and the surface treatment agent for the filler, if the volume ratio of the filler exceeds 35%, the elongation of the resin composition will become extremely small, resulting in extremely poor stretchability. It will drop to .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記課題を解決した表面開孔の大きい
多孔質フィルムを提供することにある。
An object of the present invention is to provide a porous film with large surface pores that solves the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記課題点を解決するため、鋭意検討した
結果、遂に本発明に到達した。
In order to solve the above-mentioned problems, the present inventors conducted extensive studies and finally arrived at the present invention.

すなわち、本発明はポリオレフィン系樹脂に充填剤を配
合してなる樹脂組成物をi8融製膜し、その後延伸した
多孔質フィルムであって、下記に示す(11式および(
2)式を満足するA、Bの樹脂組成物より構成される二
層以上の多層構造であり、AllとBJiJの厚み比が
3.00〜0.03であり、且つ、B層の片面あるいは
両面にA層を形成したことを特徴とする多孔質フィルム
およびその製造方法である。
That is, the present invention is a porous film obtained by forming a resin composition formed by blending a filler into a polyolefin resin into an i8 film, and then stretching it, as shown below (formula 11 and (
2) It has a multilayer structure of two or more layers composed of resin compositions A and B that satisfy the formula, and the thickness ratio of All and BJiJ is 3.00 to 0.03, and one side of layer B or The present invention provides a porous film and a method for producing the same, characterized in that layers A are formed on both sides.

32≦X/ (X十Y)X100≦70(1)B層 10≦X/ (X+Y) X100 <32− (2)
(上式中、Xは充填剤の容積、Yはポリオレフィン系樹
脂の容積である。) 以下、X/ (X−1−Y)X100O値を配合比率と
記す。
32≦X/ (X0Y)X100≦70 (1) B layer 10≦X/ (X+Y) X100 <32- (2)
(In the above formula, X is the volume of the filler, and Y is the volume of the polyolefin resin.) Hereinafter, the value of X/(X-1-Y)X100O will be referred to as the blending ratio.

A層とB層の厚み比とは、A層を構成する樹脂組成物の
重量を、B層を構成する樹脂組成物の重量で割った値で
ある。(以下、単にA/B厚み比と記す。) 本発明において用いられるポリオレフィン系樹脂として
は、例えば高密度ポリエチレン、線状低密度ポリエチレ
ン、低密度ポリエチレン、プロピレンのホモ重合体、エ
チレンープロピレンン共重合体、エチレン−酢酸ビニル
共重合体、ポリブテン、ポリ−4−メチルペンテン−1
等が挙げられる。これらのポリオレフィン系樹脂は単独
あるいは二種以上の混合物であっても良く、延伸安定性
およびフィルム物性等の点から、線状低密度ポリエチレ
ン、高密度ポリエチレン、プロピレンのホモ重合体、エ
チレンーブロビレンン共重合体、ボIJ−4−メチルペ
ンテン−1が好ましい。
The thickness ratio between the A layer and the B layer is the value obtained by dividing the weight of the resin composition constituting the A layer by the weight of the resin composition constituting the B layer. (Hereinafter, simply referred to as A/B thickness ratio.) Examples of the polyolefin resin used in the present invention include high density polyethylene, linear low density polyethylene, low density polyethylene, propylene homopolymer, and ethylene-propylene. Polymer, ethylene-vinyl acetate copolymer, polybutene, poly-4-methylpentene-1
etc. These polyolefin resins may be used alone or as a mixture of two or more, and from the viewpoint of stretching stability and film properties, linear low-density polyethylene, high-density polyethylene, propylene homopolymers, ethylene-brobylene, etc. Preferred is the carbon copolymer IJ-4-methylpentene-1.

ここで、線状低密度ポリエチレンとは、エチレンとα−
オレフィンとの共重合体であって、αオレフィンとして
はブテン、ヘキセン−11オクテン−1,4−メチルペ
ンテン−1等を好ましく用いることができる。該ポリオ
レフィン系樹脂に公知の滑剤、分散剤、紫外線吸収剤、
染料、顔料等を添加してもよい。
Here, linear low density polyethylene refers to ethylene and α-
It is a copolymer with an olefin, and as the α-olefin, butene, hexene-11octene-1,4-methylpentene-1, etc. can be preferably used. A known lubricant, dispersant, ultraviolet absorber,
Dyes, pigments, etc. may also be added.

該ポリオレフィン系樹脂のメルトインデックスは成形加
工性、物性の点から、0.05〜20g/10ain。
The melt index of the polyolefin resin is 0.05 to 20 g/10 ain from the viewpoint of moldability and physical properties.

が好ましく、更に0.1〜8g/10m1n、が好まし
い。
is preferable, and 0.1 to 8 g/10 m1n is more preferable.

メルトインデックスが0.05g/10s+in、未満
の場合には溶融粘度が大きく、生産性が低下してしまう
し、20g/10m1n、を越えると溶融粘度が小さい
ため、製膜の作業性が悪くなるし、フィルムの機械強度
も小さいものとなってしまう。
If the melt index is less than 0.05 g/10 s+in, the melt viscosity will be large and productivity will decrease, and if it exceeds 20 g/10 m1n, the melt viscosity will be small and the workability of film forming will deteriorate. , the mechanical strength of the film also becomes low.

充填剤としては、無機および有機の充填剤を使用するこ
とができる。無機充填剤としては、硫酸バリウム、硫酸
カルシウム、硫酸マグネシウム、炭酸バリウム、炭酸カ
ルシウム、水酸化マグネシウム、水酸化アルミニウム、
酸化亜鉛、酸化マグネシウム、酸化チタン、シリカ、ア
ルミナ、タルク、ゼオライト、カオリン、ガラス粉等が
使用でき、特に、硫酸バリウム、炭酸カルシウム、水酸
化マグネシウム、酸化亜鉛、シリカが好ましく使用でき
る。有機充填剤としてはナイロン、ポリスチレン等が使
用できる。これらの無機および有機の充填剤は単独ある
いは二種以上の混合物で使用してもよい。
As fillers it is possible to use inorganic and organic fillers. Inorganic fillers include barium sulfate, calcium sulfate, magnesium sulfate, barium carbonate, calcium carbonate, magnesium hydroxide, aluminum hydroxide,
Zinc oxide, magnesium oxide, titanium oxide, silica, alumina, talc, zeolite, kaolin, glass powder, etc. can be used, and barium sulfate, calcium carbonate, magnesium hydroxide, zinc oxide, and silica are particularly preferably used. Nylon, polystyrene, etc. can be used as the organic filler. These inorganic and organic fillers may be used alone or in a mixture of two or more.

充填剤の平均粒径は0.01〜20μmが好ましく、更
に0.05〜5μmが好ましい、平均粒径が20μmを
越えると、延伸して得られた多孔質フィルムの孔径が大
きくなってしまうし、フィルムの厚みを薄くした場合は
、延伸破れが発生しやすくなり、延伸安定性が悪くなっ
てしまう、0.01//m未満の場合には、充填剤が二
次凝集し、樹脂への分散が悪く、延伸破れが発生しやす
くなり、延伸安定性が悪く、得られたフィルム中に充填
剤の凝集ブツができ、フィルムの品質が低下してしまう
The average particle size of the filler is preferably 0.01 to 20 μm, more preferably 0.05 to 5 μm; if the average particle size exceeds 20 μm, the pore size of the porous film obtained by stretching becomes large. If the film thickness is made thinner, stretching breaks will easily occur and the stretching stability will deteriorate.If the film thickness is less than 0.01//m, the filler will cause secondary agglomeration and the resin will be damaged. The dispersion is poor, stretching tearing is likely to occur, the stretching stability is poor, and agglomerated lumps of filler are formed in the obtained film, resulting in a decrease in film quality.

充填剤の樹脂中への分散を向上させるため、脂肪酸、脂
肪酸の金属石鹸、油脂、カップリング剤、界面活性剤等
で充填剤に表面処理を施すことは好ましく用いることが
できる。
In order to improve the dispersion of the filler into the resin, surface treatment of the filler with a fatty acid, a metal soap of a fatty acid, an oil or fat, a coupling agent, a surfactant, etc. can be preferably used.

ポリオレフィン系樹脂と充填剤の配合比率は、A層では
32〜70%であることが好ましく、更に35〜60%
が好ましい、A層での配合比率が32%未満では、表面
開孔率が十分でないし、70%を越えると、表面開孔率
は大きくなるものの、延伸性が低下してしまい、延伸破
れの発生する頻度が多くなり、安定して延伸処理するこ
とができない。
The blending ratio of polyolefin resin and filler is preferably 32 to 70% in layer A, and more preferably 35 to 60%.
is preferable. If the blending ratio in layer A is less than 32%, the surface porosity will not be sufficient, and if it exceeds 70%, the surface porosity will increase, but the stretchability will decrease and the problem of stretch breakage will occur. This occurs more frequently, making it impossible to stably perform the stretching process.

B層では10〜32%であることが好ましく、更に15
〜30%が好ましい、 BJiJでの配合比率が10%
未満では、連通孔がほとんどなく、流体の透過がほとん
ど無いものとなってしまうし、32%以上になると、延
伸性が低下してしまい、延伸破れの発生する頻度が多く
なり、安定して延伸処理することができなくなってしま
う。
In the B layer, it is preferably 10 to 32%, and further 15%.
~30% is preferable, the blending ratio in BJiJ is 10%
If it is less than 32%, there will be almost no communicating holes and there will be almost no fluid permeation, and if it is more than 32%, the stretchability will decrease and stretching breaks will occur more frequently, making it difficult to stretch stably. It becomes impossible to process.

A/B厚み比は3.00〜0.03が好ましく、更に2
゜00〜0.10が好ましい。A/B厚み比が3.00
を越えると、延伸性が低下してしまい、延伸破れの発生
する頻度が多くなり、安定して延伸処理することができ
ないし、A/B厚み比が0.03未満であると、A層が
均一に形成されず、部分的にA層が欠落したフィルムに
なってしまい、均一で表面開孔率の大きいフィルムを得
ることができななくなってしまう。
The A/B thickness ratio is preferably 3.00 to 0.03, and further 2
It is preferably from 0.00 to 0.10. A/B thickness ratio is 3.00
If the A/B thickness ratio is less than 0.03, the stretchability will decrease, the frequency of stretch breakage will increase, and the stretching process cannot be performed stably.If the A/B thickness ratio is less than 0.03, the A layer will The film is not formed uniformly and the layer A is partially missing, making it impossible to obtain a film that is uniform and has a large surface porosity.

ポリオレフィン系樹脂と充填剤および必要に応じて添加
する各種添加剤は、ヘンシェルミキサータンブラ−ミキ
サー、スーパーミキサー等の公知の方法で混合し、次い
で、該混合物を一軸押出機、二軸押出機、バンバリーミ
キサ−等の公知の方法で混練しペレット化するか、ある
いは混合物のまま製膜工程に供する。
The polyolefin resin, filler, and various additives added as necessary are mixed by a known method such as a Henschel mixer tumbler mixer or a super mixer, and then the mixture is transferred to a single screw extruder, twin screw extruder, or Banbury extruder. The mixture is kneaded and pelletized by a known method such as a mixer, or the mixture is subjected to a film forming process as it is.

製膜工程はT−グイ、インフレーシラン、カレンダー法
等の公知の方法を使用でき、A層とB層の多層構造の未
延伸フィルムを得る方法は、それぞれの層を製膜した後
に、熱ロールで熱接着しても良いし、予めA層あるいは
BiJを製膜した後に押出ラミネーションを行ってもよ
いが、眉間の接着強度、作業性、生産性の点から、共押
出法が最も適している。共押出はT−グイ法でもインフ
レーション法であっても良い。
The film forming process can use known methods such as T-Guy, inflation silane, and calendering.The method for obtaining an unstretched film with a multilayer structure of layer A and layer B is to heat the film after forming each layer. It may be thermally bonded with a roll, or extrusion lamination may be performed after forming the A layer or BiJ in advance, but coextrusion is the most suitable method in terms of glabella adhesive strength, workability, and productivity. There is. Coextrusion may be performed by the T-Gouy method or by the inflation method.

グイよりでた溶融樹脂組成物はチルロール、空気等で冷
却固化し、延伸工程に供する。
The molten resin composition released from the goo is cooled and solidified using a chill roll, air, etc., and then subjected to a stretching process.

上記方法で得られた多層構造の未延伸フィルムは、10
°C〜樹脂組成物の融点−10″Cの温度範囲で延伸処
理を施し、多孔質フィルムが得られる。延伸処理は一軸
延伸でも二軸延伸でもよく、二軸延伸の場合は、逐次二
輪延伸でも同時二軸延伸であっても良い、延伸方法はロ
ール延伸法、テンター延伸法、チューブラ−延伸法、マ
ンドレル延伸法等の公知の方法を用いることができる。
The unstretched film with a multilayer structure obtained by the above method has a weight of 10
A porous film is obtained by stretching in the temperature range from °C to the melting point of the resin composition -10"C.The stretching treatment may be uniaxial or biaxial stretching, and in the case of biaxial stretching, sequential two-wheel stretching is performed. However, simultaneous biaxial stretching may be used. As the stretching method, known methods such as roll stretching, tenter stretching, tubular stretching, and mandrel stretching can be used.

−軸延伸の場合の延伸倍率は、2.0〜9.0倍が好ま
しく、更に2.5〜7.0倍が好ましい。延伸倍率が2
.0倍未満の場合は、多孔質フィルムとなるものの、流
体の透過速度が小さく、表面開孔率も不十分であるし、
9.0倍を越える場合は、流体の透過速度も表面開花率
も大きいが、延伸破れの頻度が極度に増えてしまい、生
産性の悪いものとなってしまう。
- The stretching ratio in the case of axial stretching is preferably 2.0 to 9.0 times, more preferably 2.5 to 7.0 times. Stretching ratio is 2
.. If it is less than 0 times, the film will be porous, but the fluid permeation rate will be low and the surface porosity will be insufficient.
If it exceeds 9.0 times, the fluid permeation rate and surface flowering rate are high, but the frequency of stretching breakage increases extremely, resulting in poor productivity.

二輪延伸の場合の延伸倍率は、面積倍率で2.2〜18
.0倍が好ましい、ここで、面積倍率とは、縦の延伸倍
率と横の延伸倍率を乗じた値である0面積倍率が2.2
倍未満の場合は、多孔質フィルムさなるが、流体の透過
速度が小さく、表面開孔率も不十分であるし、18.0
倍を越える場合は、流体の透過速度も表面開花率も大き
いが、延伸破れの頻度が極度に増えてしまい、生産性の
悪いものとなってしまう。
The stretching ratio in the case of two-wheel stretching is 2.2 to 18 in terms of area ratio.
.. The area magnification is preferably 0 times, where the area magnification is the value obtained by multiplying the vertical stretching magnification by the horizontal stretching magnification.
If it is less than 18.0 times, it becomes a porous film, but the fluid permeation rate is low and the surface porosity is insufficient.
If it exceeds twice that, the fluid permeation rate and surface flowering rate will be high, but the frequency of stretch breakage will increase extremely, resulting in poor productivity.

延伸して得られた多孔質フィルムを、熱ロール、熱風炉
で熱固定することは、孔およびフィルムの寸法安定性を
向上するために好ましい。
It is preferable to heat set the porous film obtained by stretching with a hot roll or a hot air oven in order to improve the pores and the dimensional stability of the film.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明するが、本発明
はその趣旨を越えない限り、以下の実施例に限定される
ものではない。
Hereinafter, the present invention will be explained in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the spirit thereof.

実施例における評価は下記の方法によ、って行った。Evaluations in Examples were performed by the following method.

■厚み (μm) JIS  C231Bに準拠 ■A/B厚み比 (−) A樹脂組成物とB樹脂組成物の押出重量それぞれQAお
よびQ B (kg/hr、)を測定し、次ノ式で算出
した。
■Thickness (μm) Based on JIS C231B ■A/B thickness ratio (-) Measure the extrusion weights QA and QB (kg/hr,) of A resin composition and B resin composition, respectively, and calculate using the following formula. did.

■引張物性 JIS  P  8113に準拠し、試験条件は次の通
りであった。
■Tensile properties Based on JIS P 8113, the test conditions were as follows.

試験片サイズ  100+sm長さX 251111幅
測定温度    23゛C 引張速度    200a+m/分 破断強度 (g / 25I1m ) 試験片が破断したときの強度を、MD(機械方向)、T
D(MDに垂直な方向)についてそれぞれ測定する。
Test piece size 100+sm Length
D (direction perpendicular to MD) is measured.

破断伸度 (%) 試験片が破断したときの伸びをMD、TDについてそれ
ぞれ測定する。
Elongation at break (%) The elongation when the test piece breaks is measured in MD and TD, respectively.

■通気度 (秒/ 100 c c )JIS  P 
 8117に準拠 、■透湿度 (g/イ24h) ASTM  E  96−66に準拠 温度     32.2°C 相対湿度   50% 0表面開孔率 (%) 走査型電子顕微鏡での多孔質フィルム表面像より、単位
面積当たりの開孔面積より算出した。
■Air permeability (sec/100cc) JIS P
Based on 8117, ■ Moisture permeability (g/I 24h) Based on ASTM E 96-66 Temperature: 32.2°C Relative humidity: 50% 0Surface porosity (%) From a porous film surface image taken with a scanning electron microscope , calculated from the open pore area per unit area.

■延伸安定性 延伸安定性の評価は延伸加工時の観察より下記の評価を
行った。
■Stretching stability The stretching stability was evaluated as follows based on observation during stretching.

非常に良好である          l良好である 
           2若干不安定である     
    3延伸破れが発生する        4延伸
破れの頻度が極度に多い    5実施例1 密度0.920g/cc 、メルトインデンクス2゜0
g/10sin、の線状低密度ポリエチレンに、平均粒
径0.9μmの硫酸バリウムを、配合比率45%とした
配合物100重量部に対し、1重量部のステアリン酸カ
ルシウムを添加し、得られた配合物をヘンシェルミキサ
ーで混合し、その後二軸押出機で溶融混練し、ペレット
化した。該樹脂組成物のベレットをA樹脂組成物とした
very good lgood
2 Slightly unstable
3 Stretching breaks occur 4 Stretching breaks occur extremely frequently 5 Example 1 Density 0.920 g/cc, melt index 2°0
g/10 sin, 1 part by weight of calcium stearate was added to 100 parts by weight of a blend of barium sulfate with an average particle size of 0.9 μm at a blending ratio of 45%. The formulation was mixed in a Henschel mixer and then melt kneaded in a twin screw extruder and pelletized. The pellet of this resin composition was designated as A resin composition.

密度0.920g/cc 、メルトインデックス2゜0
g/10m1n、の線状低密度ポリエチレンに、平均粒
径0.9μmの硫酸バリウムを、配合比率25%とした
配合物100重景部に対し、1重量部のステアリン酸カ
ルシウムを添加し、得られた配合物をヘンシェルミキサ
ーで混合し、その後二軸押出機で溶融混練し、ペレット
化した。該樹脂組成物のベレットをB樹脂組成物とした
Density 0.920g/cc, melt index 2゜0
g/10m1n, barium sulfate with an average particle size of 0.9 μm was added to 100 parts by weight of a mixture with a blending ratio of 25%, and 1 part by weight of calcium stearate was added. The resulting mixture was mixed in a Henschel mixer, then melt-kneaded in a twin-screw extruder and pelletized. The pellet of this resin composition was designated as a B resin composition.

得られた樹脂組成物のベレフ)AおよびBを、口径65
−一のA/B/Aとなる二種三層のT−ダイ共押出機で
、AおよびBの樹脂組成物を溶融製膜し、4チルロール
で冷却固化した。得られた未延伸フィルムは、A層、B
層、A層の三層構造となっており、A/B厚み比を測定
したところ1.0であった。該未延伸フィルムをロール
延伸機を用い、予熱温度75゛Cで縦方向に6.0倍に
延伸し、次いで、95℃の熱ロールで熱固定した。得ら
れた多孔質フィルムの物性を第1表に示す。
Beref) A and B of the obtained resin composition were
- The resin compositions of A and B were melted and formed into a film using a two-type, three-layer T-die coextruder with A/B/A, and then cooled and solidified using a 4-chill roll. The obtained unstretched film has layer A, layer B
It has a three-layer structure of layer A and layer A, and the A/B thickness ratio was measured to be 1.0. The unstretched film was stretched 6.0 times in the machine direction using a roll stretching machine at a preheating temperature of 75°C, and then heat-set with a hot roll at 95°C. Table 1 shows the physical properties of the porous film obtained.

実施例2〜4 実施例1における樹脂組成物Aの線状低密度ポリエチレ
ンと硫酸バリウムを、第1表に示す配合比率にした以外
は、実施例1と同様にして、多孔質フィルムを得た。得
られた多孔質フィルムの物性を第1表に示す。
Examples 2 to 4 A porous film was obtained in the same manner as in Example 1, except that the linear low-density polyethylene and barium sulfate of resin composition A in Example 1 were adjusted to the blending ratio shown in Table 1. . Table 1 shows the physical properties of the porous film obtained.

樹脂組成物Aの充填剤の配合比率を大きくするにつれて
、通気度、透湿度、表面開孔率の物性が向上している。
As the blending ratio of the filler in resin composition A increases, the physical properties of air permeability, moisture permeability, and surface porosity improve.

比較例1 密度0.920g/cc 、メルトインデックス2゜0
g/login、の線状低密度ポリエチレンに、平均粒
径0.9μmの硫酸バリウムを、配合比率25%とした
配合物100重量部に対し、1重量部のステアリン酸カ
ルシウムを添加し、得られた配合物をヘンシェルミキサ
ーで混合し、その後二軸押出機で熔融混練し、ペレット
化した。該樹脂組成物のベレットをB樹脂組成物とした
Comparative example 1 Density 0.920g/cc, melt index 2°0
g/login, 1 part by weight of calcium stearate was added to 100 parts by weight of a mixture containing barium sulfate with an average particle size of 0.9 μm at a blending ratio of 25%. The formulation was mixed in a Henschel mixer, then melt kneaded in a twin screw extruder and pelletized. The pellet of this resin composition was designated as a B resin composition.

得られた樹脂組成物のベレフ)Bを、口径65−一のT
−グイ単層押出機で、Bの樹脂組成物を溶融製膜し、チ
ルロールで冷却固化した後、ロール延伸機を用い、予熱
温度75°Cで縦方向に6.0倍に延伸し、次いで、9
5°Cの熱ロールで熱固定した。得られた多孔質フィル
ムの物性は、第1表に示すとうり、表面開孔率が従来の
多孔質フィルムと同程度のものであった。
The resulting resin composition Beref) B was heated to a diameter of 65-1.
- Using a Gui single-layer extruder, the resin composition of B was melted and formed into a film, cooled and solidified using a chill roll, and then stretched 6.0 times in the longitudinal direction using a roll stretching machine at a preheating temperature of 75°C. ,9
Heat fixation was carried out using a heat roll at 5°C. As shown in Table 1, the physical properties of the obtained porous film were such that the surface porosity was comparable to that of conventional porous films.

比較例2 比較例1におけるB樹脂組成物の線状低密度ポリエチレ
ンと硫酸バリウムを、第1表に示す配合比率にした以外
は、比較例1と同様にして、延伸処理をおこなったが、
延伸破れが発生し、多孔質フィルムを得ることができな
かった。
Comparative Example 2 Stretching was performed in the same manner as in Comparative Example 1, except that the linear low density polyethylene and barium sulfate of the B resin composition in Comparative Example 1 were adjusted to the blending ratio shown in Table 1.
Stretching breakage occurred and a porous film could not be obtained.

比較例3.4 実施例1におけるA樹脂組成物の線状低密度ポリエチレ
ンと硫酸バリウムを、第1表に示す配合比率にした以外
は、実施例1と同様にして、延伸処理をおこなった。 
比較例3では、AMの充填剤配合率が大きいため、延伸
破れが発生し、多孔質フィルムを得ることができなかっ
た。比較例4では、A層の充填剤配合率が小さいため、
表面開孔率が従来の多孔質フィルムと同程度のものであ
った。
Comparative Example 3.4 Stretching was carried out in the same manner as in Example 1, except that the linear low density polyethylene and barium sulfate of resin composition A in Example 1 were mixed in the proportions shown in Table 1.
In Comparative Example 3, since the filler blending ratio of AM was high, stretching breakage occurred and a porous film could not be obtained. In Comparative Example 4, since the filler compounding ratio of layer A was small,
The surface porosity was comparable to that of conventional porous films.

実施例5.6 実施例1における延伸倍率を、第1表に示す倍率に、し
た以外は、実施例1と同様にして、多孔質フィルムを得
た。得られた多孔質フィルムの物性は第1表に示すとう
り、延伸倍率が大きくなるにつれて、通気度、透湿度、
表面開孔率の物性が向上している。
Example 5.6 A porous film was obtained in the same manner as in Example 1, except that the stretching ratio in Example 1 was changed to the ratio shown in Table 1. The physical properties of the obtained porous film are shown in Table 1, and as the stretching ratio increases, the air permeability, moisture permeability,
Physical properties of surface porosity are improved.

比較例5.6 実施例1における延伸倍率を、第1表に示す倍率にした
以外は、実施例1と同様にして、延伸処理を行った。比
較例5では、延伸倍率小さく通気性がほとんどないもの
であった。比較例6では、延伸倍率が大きすぎて、延伸
破れが発生し、多孔質フィルムを得ることができなかっ
た。
Comparative Example 5.6 Stretching was performed in the same manner as in Example 1, except that the stretching ratio in Example 1 was changed to the ratio shown in Table 1. In Comparative Example 5, the stretching ratio was small and there was almost no air permeability. In Comparative Example 6, the stretching ratio was too high and stretching breakage occurred, making it impossible to obtain a porous film.

実施例7〜9 実施例1におけるB樹脂組成物の線状低密度ポリエチレ
ンと硫酸バリウムを、第2表に示す配合比率にした以外
は、実施例1と同様にして、多孔質フィルムを得た。得
られた多孔質フィルムの物性は第2表に示すとうり、充
填剤の配合比率が大きくなるにつれて、透気度、透湿度
は向上するが、表面開孔率はA層の充填剤配合比率で決
定されるので、B層の充填剤配合率にほとんど関係なく
一定となった。
Examples 7 to 9 Porous films were obtained in the same manner as in Example 1, except that the linear low-density polyethylene and barium sulfate of the B resin composition in Example 1 were adjusted to the blending ratio shown in Table 2. . The physical properties of the obtained porous film are shown in Table 2. As the filler compounding ratio increases, the air permeability and moisture permeability improve, but the surface porosity increases depending on the filler compounding ratio of layer A. Since it is determined by , it is almost constant regardless of the filler blending ratio of the B layer.

比較例7.8 実施例1におけるB樹脂組成物の線状低密度ポリエチレ
ンと硫酸バリウムを、第2表に示す配合比率にした以外
は、実施例1と同様にして、延伸処理を行った。比較例
7では、充填剤の配合比率が大きく、延伸破れが発生し
、多孔質フィルムを得ることができなかった。比較例8
では、充填剤の配合比率が小さく、はとんど通気性のな
いフィルムとなった。
Comparative Example 7.8 Stretching was carried out in the same manner as in Example 1, except that the linear low density polyethylene and barium sulfate of the resin composition B in Example 1 were mixed in the proportions shown in Table 2. In Comparative Example 7, the blending ratio of the filler was large and stretching breakage occurred, making it impossible to obtain a porous film. Comparative example 8
In this case, the blending ratio of filler was small, resulting in a film with almost no air permeability.

実施例10〜12 実施例1における厚み比を、第2表に示す比率にした以
外は、実施例1と同様にして、延伸処理を行った。得ら
れた多孔質フィルムの物性を第2表に示すとうり、厚み
比が大きくなるにつれて、通気度、透湿度は向上してい
る。
Examples 10 to 12 Stretching was performed in the same manner as in Example 1, except that the thickness ratio in Example 1 was changed to the ratio shown in Table 2. The physical properties of the obtained porous film are shown in Table 2, and as the thickness ratio increases, the air permeability and moisture permeability improve.

比較例9.10 実施例1における厚み比を、第2表に示す比率にした以
外は、実施例1と同様にして、延伸処理を行った。比較
例9では、厚み比が大きすぎ、延伸破れが発生し、多孔
質フィルムを得ることができなかった。比較例10では
、厚み比が小さすぎ、均一なA層を形成しなかった。
Comparative Example 9.10 Stretching was performed in the same manner as in Example 1, except that the thickness ratio in Example 1 was changed to the ratio shown in Table 2. In Comparative Example 9, the thickness ratio was too large and stretching breakage occurred, making it impossible to obtain a porous film. In Comparative Example 10, the thickness ratio was too small and a uniform layer A was not formed.

実施例13 実施例1におけるA樹脂組成物の線状低密度ポリエチレ
ンを、メルトインデックス2.0g/10m1n、密度
0.959g/ccの高密度ポリエチレンにした以外は
、実施例1と同様にして、多孔質フィルムを得た。得ら
れた多孔質フィルムの物性を第3表に示す。
Example 13 The same procedure as in Example 1 was carried out, except that the linear low-density polyethylene of the A resin composition in Example 1 was changed to high-density polyethylene with a melt index of 2.0 g/10 m1n and a density of 0.959 g/cc. A porous film was obtained. Table 3 shows the physical properties of the porous film obtained.

実施例14 実施例1におけるAおよびB樹脂組成物の線状低密度ポ
リエチレンを、メルトインデックス2゜0g/10si
n、密度0.959g/ccの高密度ポリエチレンにし
た以外は、実施例1と同様にして、多孔質フィルムを得
た。得られた多孔質フィルムの物性を第3表に示す。
Example 14 The linear low density polyethylene of the resin compositions A and B in Example 1 was prepared with a melt index of 2°0g/10si
A porous film was obtained in the same manner as in Example 1, except that high-density polyethylene with a density of 0.959 g/cc was used. Table 3 shows the physical properties of the porous film obtained.

実施例15 実施例1におけるA樹脂組成物の線状低密度ポリエチレ
ンを、メルトインデックス2.0g/10m1n。
Example 15 The linear low density polyethylene of the resin composition A in Example 1 had a melt index of 2.0 g/10 m1n.

密度0.890g/ccのプロピレンのホモ重合体にし
た以外は、実施例1と同様にして、多孔質フィルムを得
た。得られた多孔質フィルムの物性を第3表に示す。
A porous film was obtained in the same manner as in Example 1, except that a propylene homopolymer having a density of 0.890 g/cc was used. Table 3 shows the physical properties of the porous film obtained.

実施例16 実施例1におけるAおよびB樹脂組成物の線状低密度ポ
リエチレンを、メルトインデックス2゜0g/10v+
in、密度0.890g/ccのプロピレンのホモ重合
体にした以外は、実施例1と同様にして、多孔質フィル
ムを得た。得られた多孔質フィルムの物性を第3表に示
す。
Example 16 The linear low-density polyethylene of resin compositions A and B in Example 1 was prepared with a melt index of 2°0 g/10v+
A porous film was obtained in the same manner as in Example 1, except that a propylene homopolymer having a density of 0.890 g/cc was used. Table 3 shows the physical properties of the porous film obtained.

実施例17 実施例1におけるAおよびB樹脂組成物の充填剤を、ス
テアリン酸で表面処理した平均粒径1.2μmの炭酸カ
ルシウムを用いた以外は、実施例1と同様にして多孔質
フィルムを得た。得られた多孔質フィルムの物性を第3
表に示す。
Example 17 A porous film was prepared in the same manner as in Example 1, except that calcium carbonate with an average particle size of 1.2 μm surface-treated with stearic acid was used as the filler in the resin compositions A and B in Example 1. Obtained. The physical properties of the obtained porous film were
Shown in the table.

実施例18 実施例1におけるAおよびB樹脂組成物の充填剤を、ス
テアリン酸で表面処理した平均粒径0.6μmの水酸化
マグネシウムを用いた以外は、実施例1と同様にして、
多孔質フィルムを得た。得られた多孔質フィルムの物性
を第3表に示す。
Example 18 The same procedure as in Example 1 was carried out, except that magnesium hydroxide having an average particle size of 0.6 μm and surface-treated with stearic acid was used as the filler in the resin compositions A and B in Example 1.
A porous film was obtained. Table 3 shows the physical properties of the porous film obtained.

実施例19 実施例1におけるA樹脂組成物の充填剤を、ステアリン
酸で表面処理した平均粒径0.6μmの水酸化マグネシ
ウムを用いた以外は、実施例1と同様にして多孔質フィ
ルムを得た。得られた多孔質フィルムの物性を第3表に
示す。
Example 19 A porous film was obtained in the same manner as in Example 1, except that magnesium hydroxide having an average particle size of 0.6 μm and surface-treated with stearic acid was used as the filler in the A resin composition in Example 1. Ta. Table 3 shows the physical properties of the porous film obtained.

実施例20 実施例1と同様にして得られた樹脂組成物のペレットA
およびBを、口径65m+mのA/Bとなる二種二層の
T−ダイ共押出機で、AおよびBの樹脂組成物を溶融製
膜し、チルロールで冷却固化した。
Example 20 Pellet A of resin composition obtained in the same manner as Example 1
The resin compositions of A and B were melted and formed into a film using a two-type, two-layer T-die coextruder (A/B) with a diameter of 65 m+m, and the resin compositions were cooled and solidified using a chill roll.

得られた未延伸フィルムは、A層、B[の二層構造とな
っており、A/B厚み比を測定したところ1.0であっ
た。該未延伸フィルムをロール延伸機を用い、予熱温度
75”Cで縦方向に6.0倍に延伸し、次いで、95°
Cの熱ロールで熱固定した。得られた多孔質フィルムの
物性を第3表に示す。
The obtained unstretched film had a two-layer structure of layer A and layer B, and the A/B thickness ratio was measured to be 1.0. The unstretched film was stretched 6.0 times in the machine direction using a roll stretching machine at a preheating temperature of 75"C, and then stretched at 95°
It was heat-fixed with a heat roll C. Table 3 shows the physical properties of the porous film obtained.

実施例21〜23 実施例1におけるAおよびB樹脂組成物を用い、口径6
5曽−のA/B/Aとなる二種三層のT−ダイ共押出機
で、AおよびBの樹脂組成物を溶融製膜し、チルロール
で冷却固化した。得られた未延伸フィルムは、A層、B
層、A層の三層構造となっており、A/B厚み比を測定
したところ1.0であった。該未延伸フィルムを第4表
に示す延伸倍率に逐次二輪延伸した。延伸条件は予熱温
度75℃でロール延伸機を用いて縦方向に延伸し、次い
で、テンター横延伸機を用い、予熱温度85℃で横方向
に延伸し、95°Cの熱ロールで熱固定した。得られた
多孔質フィルムの物性を第4表に示す。
Examples 21 to 23 Using the A and B resin compositions in Example 1, the caliber was 6.
The resin compositions A and B were melted and formed into a film using a two-type, three-layer T-die coextruder with A/B/A configuration, and the resin compositions were cooled and solidified using a chill roll. The obtained unstretched film has layer A, layer B
It has a three-layer structure of layer A and layer A, and the A/B thickness ratio was measured to be 1.0. The unstretched film was sequentially stretched with two wheels to the stretching ratios shown in Table 4. The stretching conditions were as follows: stretching in the longitudinal direction using a roll stretching machine at a preheating temperature of 75°C, then stretching in the transverse direction using a tenter transverse stretching machine at a preheating temperature of 85°C, and heat setting with a hot roll at 95°C. . Table 4 shows the physical properties of the porous film obtained.

比較例11.12 実施例21において、延伸倍率を第4表に示す倍率にし
た以外は、実施例20と同様にして、逐次二軸延伸処理
を行った。比較例11では、延伸倍率が小さすぎ、はと
んど通気性のないものとなった。
Comparative Example 11.12 In Example 21, sequential biaxial stretching treatment was performed in the same manner as in Example 20, except that the stretching ratio was changed to the ratio shown in Table 4. In Comparative Example 11, the stretching ratio was too small, resulting in almost no air permeability.

比較例12では、延伸倍率が大きすぎ、延伸破れが発生
し、多孔質フィルムを得ることができなかった。
In Comparative Example 12, the stretching ratio was too high and stretching breakage occurred, making it impossible to obtain a porous film.

〔発明の効果〕〔Effect of the invention〕

本発明による多孔質フィルムは、単に充填剤の量を増や
すだけでは得られない程の大きな表面開孔率を有するも
のであって、防水衣料、包装材料、衛生材料等にも使用
できるが、特に大きな濾過面積を必要とする濾過材料、
均一なイオン伝導を必要とする電池セパレーターおよび
電気二重層コンデンサーセパレーター等に最適である。
The porous film according to the present invention has a surface porosity so large that it cannot be obtained by simply increasing the amount of filler, and can be used for waterproof clothing, packaging materials, sanitary materials, etc. Filtration materials that require a large filtration area,
Ideal for battery separators and electric double layer capacitor separators that require uniform ion conduction.

Claims (1)

【特許請求の範囲】 1、ポリオレフィン系樹脂に充填剤を配合してなる樹脂
組成物を溶融製膜し、その後延伸した多孔質フィルムで
あって、下記に示す(1)式および(2)式を満足する
A、Bの樹脂組成物より構成される二層以上の多層構造
であり、A層とB層の厚み比が3.00〜0.03であ
り、且つ、B層の片面あるいは両面にA層を形成したこ
とを特徴とする多孔質フィルム。 A層 32≦X/(X+Y)×100≦70・・・(1) B層 10≦X/(X+Y)×100<32・・・(2) (上式中、Xは充填剤の容積、Yはポリオレフィン系樹
脂の容積である。) 2、ポリオレフィン系樹脂に充填剤を配合してなる樹脂
組成物を溶融製膜し、その後延伸して、多孔質フィルム
を製造する方法において、下記に示す(1)式および(
2)式を満足するA、Bの樹脂組成物より構成される二
層以上の多層構造であり、A層とB層の厚み比が3.0
0〜0.03であり、且つ、B層の片面あるいは両面に
A層を形成した未延伸フィルムを、延伸処理することを
特徴とする多孔質フィルムの製造方法。 A層 32≦X/(X+Y)×100≦70・・・(1) B層 10≦X/(X+Y)×100<32・・・(2) (上式中、Xは充填剤の容積、Yはポリオレフィン系樹
脂の容積である。)
[Claims] 1. A porous film obtained by melt-forming a resin composition formed by blending a filler with a polyolefin resin and then stretching the film, which has the following formulas (1) and (2): It has a multilayer structure of two or more layers composed of resin compositions A and B that satisfy the following, the thickness ratio of layer A and layer B is 3.00 to 0.03, and A porous film characterized by having a layer A formed thereon. A layer 32≦X/(X+Y)×100≦70...(1) B layer 10≦X/(X+Y)×100<32...(2) (In the above formula, X is the volume of the filler, (Y is the volume of the polyolefin resin.) 2. In the method of manufacturing a porous film by melting and forming a resin composition formed by blending a filler into a polyolefin resin and then stretching it, the following method is used: Equation (1) and (
2) It has a multilayer structure of two or more layers composed of resin compositions A and B that satisfy the formula, and the thickness ratio of layer A and layer B is 3.0.
0 to 0.03, and which comprises stretching an unstretched film in which layer A is formed on one or both sides of layer B. A layer 32≦X/(X+Y)×100≦70...(1) B layer 10≦X/(X+Y)×100<32...(2) (In the above formula, X is the volume of the filler, Y is the volume of the polyolefin resin.)
JP11513989A 1989-05-10 1989-05-10 Porous film and production thereof Pending JPH02296840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11513989A JPH02296840A (en) 1989-05-10 1989-05-10 Porous film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11513989A JPH02296840A (en) 1989-05-10 1989-05-10 Porous film and production thereof

Publications (1)

Publication Number Publication Date
JPH02296840A true JPH02296840A (en) 1990-12-07

Family

ID=14655254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11513989A Pending JPH02296840A (en) 1989-05-10 1989-05-10 Porous film and production thereof

Country Status (1)

Country Link
JP (1) JPH02296840A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108235A1 (en) * 2010-03-04 2011-09-09 パナソニック株式会社 Separator for battery, battery using same and method for producing battery
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
JP2016515957A (en) * 2013-03-15 2016-06-02 クロペイ・プラスティック・プロダクツ・カンパニー・インコーポレーテッド Polymer materials that provide improved infrared emissivity
WO2020189298A1 (en) * 2019-03-20 2020-09-24 株式会社エンビジョンAescエナジーデバイス Electrode, method for producing electrode, and battery
WO2023249024A1 (en) * 2022-06-24 2023-12-28 株式会社ユポ・コーポレーション Porous resin sheet and carrier tape

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455053B2 (en) 2007-07-06 2013-06-04 Sony Corporation Separator, battery using the same, and method for manufacturing separator
US9627669B2 (en) 2007-07-06 2017-04-18 Sony Corporation Separator including glass layer covering polyolefin resin layer having a three-dimensional mesh framework, and battery using the same
US10424772B2 (en) 2007-07-06 2019-09-24 Murata Manufacturing Co., Ltd. Separator, battery and electronic device
WO2011108235A1 (en) * 2010-03-04 2011-09-09 パナソニック株式会社 Separator for battery, battery using same and method for producing battery
JP5340408B2 (en) * 2010-03-04 2013-11-13 パナソニック株式会社 Battery separator, battery using the same, and battery manufacturing method
US8652671B2 (en) 2010-03-04 2014-02-18 Panasonic Corporation Separator for battery, and battery and method for producing battery including the same
JP2016515957A (en) * 2013-03-15 2016-06-02 クロペイ・プラスティック・プロダクツ・カンパニー・インコーポレーテッド Polymer materials that provide improved infrared emissivity
WO2020189298A1 (en) * 2019-03-20 2020-09-24 株式会社エンビジョンAescエナジーデバイス Electrode, method for producing electrode, and battery
JP2020155294A (en) * 2019-03-20 2020-09-24 株式会社エンビジョンAescエナジーデバイス Electrode, manufacturing method of the same, and battery
CN113614942A (en) * 2019-03-20 2021-11-05 远景Aesc日本有限公司 Electrode, method for producing electrode, and battery
WO2023249024A1 (en) * 2022-06-24 2023-12-28 株式会社ユポ・コーポレーション Porous resin sheet and carrier tape

Similar Documents

Publication Publication Date Title
US8431234B2 (en) Biaxially oriented polypropylene film with heat sealable matte layer
WO2010147149A1 (en) Porous polypropylene film
US6699418B2 (en) Method for producing biaxially stretched film made of ethylene-vinyl alcohol copolymer
AU734889B2 (en) Polymeric films
JPH0416330B2 (en)
JP3965954B2 (en) Porous film
JPH0362738B2 (en)
AU763905B2 (en) Bioriented polyethylene film with a high water vapor transmission rate
JP7372129B2 (en) Polypropylene multilayer sheet and its manufacturing method
JPH10292059A (en) Production of air-permeable film
JPH02296840A (en) Porous film and production thereof
JPS5926470B2 (en) Polypropylene biaxially stretched composite film
JPS5847412B2 (en) Translucent biaxially stretched laminated film
JP4540858B2 (en) Porous film and method for producing the same
JPH0577371A (en) Laminated film
TWI677435B (en) Matte synthetic paper
JP2006241276A (en) Polyethylene-based porous film
JPS58206647A (en) Resin composition for extrusion molding
JP7397642B2 (en) Polypropylene multilayer stretched film and its manufacturing method
JPH05125232A (en) Production of regrind
TW202106515A (en) Polyethylene-based-resin multilayer film, deposition-coated film including same, layered product, and package
JP2007016064A (en) Method for producing polyethylene-based porous film
KR101669206B1 (en) Breathable film composition improved printability and manufacturing method of breathable film including thereof
JP2001294717A (en) Polyolefin resin composition and polyolefin film obtained therefrom
JPH0723432B2 (en) Porous film