JP7397642B2 - Polypropylene multilayer stretched film and its manufacturing method - Google Patents

Polypropylene multilayer stretched film and its manufacturing method Download PDF

Info

Publication number
JP7397642B2
JP7397642B2 JP2019221654A JP2019221654A JP7397642B2 JP 7397642 B2 JP7397642 B2 JP 7397642B2 JP 2019221654 A JP2019221654 A JP 2019221654A JP 2019221654 A JP2019221654 A JP 2019221654A JP 7397642 B2 JP7397642 B2 JP 7397642B2
Authority
JP
Japan
Prior art keywords
layer
component
stretched film
weight
biaxially stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019221654A
Other languages
Japanese (ja)
Other versions
JP2021091115A (en
Inventor
稔 栗山
武 中島
隆二 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunAllomer Ltd
Original Assignee
SunAllomer Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunAllomer Ltd filed Critical SunAllomer Ltd
Priority to JP2019221654A priority Critical patent/JP7397642B2/en
Publication of JP2021091115A publication Critical patent/JP2021091115A/en
Application granted granted Critical
Publication of JP7397642B2 publication Critical patent/JP7397642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、ポリプロピレン系多層延伸フィルムおよびその製造方法に関する。 The present invention relates to a polypropylene multilayer stretched film and a method for producing the same.

ポリプロピレン系樹脂は幅広い分野に使用されているが、食品容器等の用途においてより剛性を高めたいという要求がある。例えば特許文献1には剛性を高めるために安息香酸塩等の特定の造核剤を添加したポリプロピレン系樹脂組成物を特定の条件で成形する方法が開示されている。 Although polypropylene resins are used in a wide range of fields, there is a demand for higher rigidity in applications such as food containers. For example, Patent Document 1 discloses a method of molding a polypropylene resin composition to which a specific nucleating agent such as a benzoate is added under specific conditions in order to increase rigidity.

特開2000-334823号公報Japanese Patent Application Publication No. 2000-334823

一般に、無機充填材を含有するポリプロピレン系樹脂組成物は高い剛性を有することが知られている。当該樹脂組成物は射出成形用途においては極めて有用であるが、延伸フィルム(一軸延伸フィルム、二軸延伸フィルム)とすることはできなかった。延伸時に無機充填材を起点としてフィルムが破断するからである。したがって、無機充填材を含有する樹脂組成物を延伸フィルムとすることはこれまで検討されて来なかった。無機充填材を含有するポリプロピレン系樹脂組成物から延伸フィルムを得ることができれば、従来にない優れたフィルムとなる。かかる事情を鑑み、本発明はポリプロピレン系樹脂と無機充填材を含有する多層延伸フィルム(一軸延伸フィルム、二軸延伸フィルム)を提供することを課題とする。 It is generally known that polypropylene resin compositions containing inorganic fillers have high rigidity. Although the resin composition is extremely useful in injection molding applications, it could not be made into stretched films (uniaxially stretched films, biaxially stretched films). This is because the film breaks starting from the inorganic filler during stretching. Therefore, it has not been considered to make a stretched film from a resin composition containing an inorganic filler. If a stretched film can be obtained from a polypropylene resin composition containing an inorganic filler, it will be an excellent film that has never existed before. In view of such circumstances, an object of the present invention is to provide a multilayer stretched film (uniaxially stretched film, biaxially stretched film) containing a polypropylene resin and an inorganic filler.

発明者らは、特定の層構造とし、かつ製造条件を最適化することで前記課題が解決できることを見出した。すなわち、前記課題は以下の本発明によって解決される。
[1]層Fと層Nとを含む多層延伸フィルムであって、
前記層Fは成分(A)と(B)とを含む樹脂組成物から形成され、
前記成分(A)は、成分(A1)および任意の成分(A2)からなるポリプロピレン系樹脂であり、
成分(A1)はエチレン、C4~C10-α-オレフィン、およびこれらの組合せからなる群より選択されるコモノマー由来単位を0~1重量%含むプロピレン(共)重合体100~60重量%、
成分(A2)はエチレン由来単位を10~90重量%含むエチレン-α-オレフィン共重合体0~40重量%であり、
成分(A)のMFR(230℃、荷重2.16kg)が0.1~15g/10分であり、
成分(B)は無機充填材であり、
前記層Fにおける成分(B)/[成分(A)+成分(B)]の重量比が0.5~60重量%であり、
前記層Nは熱可塑性樹脂と任意に前記成分(B)とを含む樹脂組成物から形成され、
成分(B)/[熱可塑性樹脂+成分(B)]の重量比が0~10重量%であり、
前記多層延伸フィルムの前駆体である原反シートにおける層Fに相当する層(層f)および層Nの相当する層(層n)の融点をそれぞれTmfおよびTmnとするとき、
Tmf-Tmn≦60℃の関係を満たす、多層延伸フィルム。
[2]前記熱可塑性樹脂がポリプロピレン系樹脂である、[1]に記載の多層延伸フィルム。
[3]多層二軸延伸フィルムである[1]または[2]に記載の多層延伸フィルム。
[4]前記無機充填材が板状無機充填材である、[1]~[3]のいずれかに記載の多層延伸フィルム。
[5]前記板状無機充填材がタルクである、[4]に記載の多層延伸フィルム。
[6]前記層Fにおける成分(B)/[成分(A)+成分(B)]の重量比が20~55重量%である、[1]~[5]のいずれかに記載の多層延伸フィルム。
[7]層N/層F/層Nの構造を備え、
当該構造における厚さ比が(0.05~1.2)/1/(0.05~1.2)である、請求項1~6のいずれかに記載の多層延伸フィルム。
[8]層N/層Fの構造を備え、
当該構造における厚さ比が1/(1~10)である、[1]~[6]のいずれかに記載の多層延伸フィルム。
[9]層F/層N/層Fの構造を備え、
当該構造における厚さ比が(1~5)/1/(1~5)である、[1]~[6]のいずれかに記載の多層延伸フィルム。
[10]層Nの総厚さ/[層Nの総厚さ+層Fの総厚さ]の比が0.01~0.6である、[1]~[9]のいずれかに記載の多層延伸フィルム。
[11]前記[1]~[10]のいずれかに記載の多層延伸フィルムの製造方法であって、
原反シートとして、前記層fと、前記層nとを含む共押出シートを調製する工程1、および
前記原反シートを、以下を満たす温度T(℃)で一軸または二軸延伸する工程2
-3≦T-Tmf≦3
(Tmfは原反シートにおける層fの融点(℃)である)
を備える、製造方法。
[12]前記工程1が、成分(A)と(B)とを多軸機溶融混練することを含む、[11]に記載の製造方法。
[13]前記[11]または[12]に記載の方法で製造された、多層延伸フィルム。
The inventors have found that the above problem can be solved by using a specific layer structure and optimizing manufacturing conditions. That is, the above-mentioned problem is solved by the present invention described below.
[1] A multilayer stretched film including layer F and layer N,
The layer F is formed from a resin composition containing components (A) and (B),
The component (A) is a polypropylene resin consisting of component (A1) and optional component (A2),
Component (A1) is 100 to 60% by weight of a propylene (co)polymer containing 0 to 1% by weight of units derived from comonomers selected from the group consisting of ethylene, C4 to C10-α-olefins, and combinations thereof;
Component (A2) is 0 to 40% by weight of an ethylene-α-olefin copolymer containing 10 to 90% by weight of ethylene-derived units,
The MFR (230°C, load 2.16 kg) of component (A) is 0.1 to 15 g/10 minutes,
Component (B) is an inorganic filler,
The weight ratio of component (B)/[component (A) + component (B)] in the layer F is 0.5 to 60% by weight,
The layer N is formed from a resin composition containing a thermoplastic resin and optionally the component (B),
The weight ratio of component (B)/[thermoplastic resin + component (B)] is 0 to 10% by weight,
When the melting points of a layer corresponding to layer F (layer f) and a layer corresponding to layer N (layer n) in the raw sheet that is the precursor of the multilayer stretched film are Tmf and Tmn, respectively,
A multilayer stretched film that satisfies the relationship Tmf-Tmn≦60°C.
[2] The multilayer stretched film according to [1], wherein the thermoplastic resin is a polypropylene resin.
[3] The multilayer stretched film according to [1] or [2], which is a multilayer biaxially stretched film.
[4] The multilayer stretched film according to any one of [1] to [3], wherein the inorganic filler is a plate-shaped inorganic filler.
[5] The multilayer stretched film according to [4], wherein the plate-shaped inorganic filler is talc.
[6] The multilayer stretching according to any one of [1] to [5], wherein the weight ratio of component (B)/[component (A) + component (B)] in the layer F is 20 to 55% by weight. film.
[7] Comprising a layer N/layer F/layer N structure,
The multilayer stretched film according to any one of claims 1 to 6, wherein the thickness ratio in the structure is (0.05 to 1.2)/1/(0.05 to 1.2).
[8] Comprising a layer N/layer F structure,
The multilayer stretched film according to any one of [1] to [6], wherein the thickness ratio in the structure is 1/(1 to 10).
[9] Comprising a layer F/layer N/layer F structure,
The multilayer stretched film according to any one of [1] to [6], wherein the thickness ratio in the structure is (1 to 5)/1/(1 to 5).
[10] Any one of [1] to [9], wherein the ratio of total thickness of layer N/[total thickness of layer N + total thickness of layer F] is 0.01 to 0.6. multilayer stretched film.
[11] The method for producing a multilayer stretched film according to any one of [1] to [10] above, comprising:
Step 1 of preparing a coextrusion sheet containing the layer f and the layer n as a raw sheet, and Step 2 of uniaxially or biaxially stretching the raw sheet at a temperature T (° C.) that satisfies the following:
-3≦T-Tmf≦3
(Tmf is the melting point (°C) of layer f in the original sheet)
A manufacturing method comprising:
[12] The manufacturing method according to [11], wherein the step 1 includes melt-kneading components (A) and (B) in a multi-shaft machine.
[13] A multilayer stretched film produced by the method described in [11] or [12] above.

本発明によってポリプロピレン系樹脂と無機充填材を含有する多層延伸フィルム(一軸延伸フィルム、二軸延伸フィルム)を提供できる。 The present invention can provide a multilayer stretched film (uniaxially stretched film, biaxially stretched film) containing a polypropylene resin and an inorganic filler.

本発明において、フィルムとは薄い板状または膜状の部材をいう。フィルムの厚さは限定されないが、好ましくは150μm未満である。厚さが150μm以上の前記部材をシートと記載することがある。また、「X~Y」は、両端の値すなわちXとYとを含む。 In the present invention, a film refers to a thin plate-like or membrane-like member. The thickness of the film is not limited, but is preferably less than 150 μm. The member having a thickness of 150 μm or more may be referred to as a sheet. Furthermore, “X to Y” includes values at both ends, that is, X and Y.

1.多層延伸フィルム
多層延伸フィルム(一軸延伸フィルム、二軸延伸フィルム)は、層Fと層Nとを備える。層Fは、ポリプロピレン系樹脂(成分(A))と比較的多量の無機充填材(成分(B))とを含む樹脂組成物から形成される。層Nは熱可塑性樹脂と比較的少量の無機充填材(成分(B))を含む樹脂組成物、または熱可塑性樹脂を含むが成分(B)を含まない樹脂組成物から形成される。便宜上、層Fを「フィラー層F」、層Nを「ニート層N」ともいう。
1. Multilayer Stretched Film A multilayer stretched film (uniaxially stretched film, biaxially stretched film) includes a layer F and a layer N. Layer F is formed from a resin composition containing a polypropylene resin (component (A)) and a relatively large amount of inorganic filler (component (B)). Layer N is formed from a resin composition containing a thermoplastic resin and a relatively small amount of inorganic filler (component (B)), or a resin composition containing a thermoplastic resin but not containing component (B). For convenience, layer F is also referred to as "filler layer F" and layer N as "neat layer N."

(1)ポリプロピレン系樹脂(成分(A))
ポリプロピレン系樹脂とはポリプロピレンを主成分とする樹脂である。本発明の多層延伸フィルムを構成するポリプロピレン系樹脂は100~60重量%の成分(A1)および0~40重量%の成分(A2)からなる。成分(A2)が0重量%超である場合、成分(A)は、成分(A1)を重合し、当該成分の存在下で成分(A2)を重合して得られる、いわゆるヘテロ相共重合体(HECO)であってもよいし、別個に重合して調製した成分(A1)と成分(A2)をブレンドしたものであってもよいが、より少ない製造工程で成分(A)が得られる点においてHECOであることが好ましい。
(1) Polypropylene resin (component (A))
Polypropylene resin is a resin whose main component is polypropylene. The polypropylene resin constituting the multilayer stretched film of the present invention consists of 100 to 60% by weight of component (A1) and 0 to 40% by weight of component (A2). When component (A2) is more than 0% by weight, component (A) is a so-called heterophase copolymer obtained by polymerizing component (A1) and polymerizing component (A2) in the presence of the component. (HECO) or a blend of component (A1) and component (A2) prepared by separate polymerization, but the point is that component (A) can be obtained with fewer manufacturing steps. In this case, HECO is preferred.

[成分(A1)]
成分(A1)はエチレン、C4~C10-α-オレフィン、およびこれらの組合せからなる群より選択されるコモノマー由来単位を0~1重量%含むプロピレン(共)重合体である。コモノマーを含む場合は経済性の観点からエチレンが好ましい。当該コモノマー由来単位の量が上限を超えるとフィルムの剛性が低下することがある。この観点から、成分(A1)はコモノマー由来単位を含まないこと、すなわち、プロピレン単独重合体であることが好ましい。あるいは成分(A1)がコモノマー由来単位を含む場合、その量は0重量%を超え0.5重量%以下であることが好ましい。
[Component (A1)]
Component (A1) is a propylene (co)polymer containing 0 to 1% by weight of units derived from comonomers selected from the group consisting of ethylene, C4-C10-α-olefins, and combinations thereof. When a comonomer is included, ethylene is preferred from the economic point of view. If the amount of the units derived from the comonomer exceeds the upper limit, the rigidity of the film may decrease. From this point of view, it is preferable that component (A1) does not contain any comonomer-derived units, that is, it is a propylene homopolymer. Alternatively, when component (A1) contains a unit derived from a comonomer, the amount thereof is preferably more than 0% by weight and not more than 0.5% by weight.

ポリプロピレン系樹脂中、成分(A1)の含有量は60~100重量%である。成分(A1)の含有量が少ないとポリプロピレン系樹脂の製造が困難になりうる。よって、成分(A1)の前記含有量は好ましくは70~100重量%であり、さらに好ましくは75~100重量%である。 The content of component (A1) in the polypropylene resin is 60 to 100% by weight. If the content of component (A1) is low, it may be difficult to produce a polypropylene resin. Therefore, the content of component (A1) is preferably 70 to 100% by weight, more preferably 75 to 100% by weight.

成分(A)のMFR(230℃、荷重2.16kg)は0.1~15g/10分である。MFRが上限値を超えると前記多層延伸フィルムの前駆体である原反シートの延伸が困難となり、また下限値未満であると成分(A)の製造が困難となる。この観点から、前記MFRの下限値は、好ましくは1g/10分以上であり、より好ましくは2g/10分以上であり、その上限値は、好ましくは10g/10分以下であり、より好ましくは8g/10分以下である。 The MFR (230° C., load 2.16 kg) of component (A) is 0.1 to 15 g/10 minutes. If the MFR exceeds the upper limit, it will be difficult to stretch the raw sheet that is the precursor of the multilayer stretched film, and if it is less than the lower limit, it will be difficult to produce component (A). From this point of view, the lower limit of the MFR is preferably 1 g/10 minutes or more, more preferably 2 g/10 minutes or more, and the upper limit thereof is preferably 10 g/10 minutes or less, more preferably It is 8g/10 minutes or less.

[成分(A2)]
成分(A2)は、10~90重量%のエチレン由来単位を含むエチレン-α-オレフィン共重合体である。エチレン由来単位が下限値未満または上限値を超える場合は、耐寒衝撃性が低下する。この観点から、エチレン由来単位の含有量は好ましくは15~85重量%であり、より好ましくは20~80重量%である。α-オレフィンは、エチレン以外であれば限定されないが、好ましくはプロピレン、1-ブテン、1-ヘキセン、1-オクテンであり、より好ましくはプロピレン、1-ブテンであり、さらに好ましくはプロピレンである。
[Component (A2)]
Component (A2) is an ethylene-α-olefin copolymer containing 10 to 90% by weight of ethylene-derived units. If the ethylene-derived unit is less than the lower limit or exceeds the upper limit, cold impact resistance will decrease. From this point of view, the content of ethylene-derived units is preferably 15 to 85% by weight, more preferably 20 to 80% by weight. The α-olefin is not limited as long as it is other than ethylene, but propylene, 1-butene, 1-hexene, and 1-octene are preferred, propylene and 1-butene are more preferred, and propylene is even more preferred.

ポリプロピレン系樹脂中、成分(A2)の含有量は0~40重量%である。成分(A2)の含有量が過度に多いとポリプロピレン系樹脂の製造が困難になりうる。よって、成分(A2)の前記含有量は好ましくは0~35重量%であり、さらに好ましくは0~30重量%である。 The content of component (A2) in the polypropylene resin is 0 to 40% by weight. If the content of component (A2) is too high, it may become difficult to produce a polypropylene resin. Therefore, the content of component (A2) is preferably 0 to 35% by weight, more preferably 0 to 30% by weight.

(2)無機充填材(成分(B))
無機充填材は主に材料の剛性を向上する目的で添加される。無機充填材としては物質の観点から、例えば、以下のものが挙げられる。
タルク、カオリナイト、クレー、バイロフィライト、セリナイト、ウォラストナイト、マイカ等の天然珪酸または珪酸塩;含水珪酸カルシウム、含水珪酸アルミニウム、含水珪酸、無水珪酸等の合成珪酸または珪酸塩;沈降性炭酸カルシウム、重質炭酸カルシウム、炭酸マグネシウム等の炭酸塩;水酸化アルミニウム、水酸化マグネシウム等の水酸化物;酸化亜鉛、酸化マグネシウム等の酸化物。
(2) Inorganic filler (component (B))
Inorganic fillers are added mainly for the purpose of improving the rigidity of the material. Examples of inorganic fillers include the following from the viewpoint of substances.
Natural silicic acid or silicates such as talc, kaolinite, clay, birophyllite, selinite, wollastonite, and mica; Synthetic silicic acid or silicates such as hydrated calcium silicate, hydrated aluminum silicate, hydrated silicic acid, and anhydrous silicic acid; Precipitated carbonic acid Carbonates such as calcium, heavy calcium carbonate and magnesium carbonate; hydroxides such as aluminum hydroxide and magnesium hydroxide; oxides such as zinc oxide and magnesium oxide.

また、無機充填材としては形状の観点から、例えば、以下のものが挙げられる。
含水珪酸カルシウム、含水珪酸アルミニウム、含水珪酸、無水珪酸等の合成珪酸または珪酸塩等の粉末状充填材;タルク、カオリナイト、クレー、マイカ等の板状充填材;塩基性硫酸マグネシウムウィスカー、チタン酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー、セピオライト、PMF(Processed Mineral Filler)、ゾノトライト、チタン酸カリウム、およびエレスタダイト等のウィスカー状充填材;ガラスバルン、フライアッシュバルン等のバルン状充填材;ガラスファイバー等の繊維状充填剤。
Further, from the viewpoint of shape, examples of the inorganic filler include the following.
Powdered fillers such as synthetic silicic acids or silicates such as hydrated calcium silicate, hydrated aluminum silicate, hydrated silicic acid, and anhydrous silicic acid; Platy fillers such as talc, kaolinite, clay, and mica; Basic magnesium sulfate whiskers, titanic acid Whisker-like fillers such as calcium whiskers, aluminum borate whiskers, sepiolite, PMF (Processed Mineral Filler), xonotlite, potassium titanate, and elastadite; Ball-like fillers such as glass balloons and fly ash balloons; Fibrous fillers such as glass fibers filler.

当該無機充填材として1種を用いてもよいし、2種以上を併用してもよい。これらの充填材の分散性を向上させるため、必要に応じて無機充填材の表面処理を行ってもよい。本発明に用いる無機充填材は限定されないが、延伸フィルムにおけるポリプロピレン結晶のフィルム面に沿った方向の配向を促進することにより剛性および耐衝撃性を高める観点から、板状無機充填材が好ましい。板状無機充填材としてはタルク、カオリナイト、クレー、マイカ等の公知のものを使用できるが、ポリプロピレン系樹脂との親和性や原料としての調達容易性や経済性等を考慮すると、好ましくはタルク、マイカであり、さらに好ましくはタルクである。板状無機充填材の体積平均粒子径は、好ましくは1~10μm、より好ましくは2~7μmである。体積平均粒子径が前記下限値未満の場合、延伸フィルムの剛性が低くなることがある。体積平均粒子径が前記上限値を超える場合、二次加工性に劣り原反シートを延伸する際に破断しやすくなる。前記体積平均粒子径は、レーザ回折法(JIS R1629に基づく)によって体積基準の積算分率における50%径として測定できる。 One kind may be used as the inorganic filler, or two or more kinds may be used in combination. In order to improve the dispersibility of these fillers, the inorganic fillers may be surface-treated as necessary. Although the inorganic filler used in the present invention is not limited, a plate-shaped inorganic filler is preferable from the viewpoint of increasing rigidity and impact resistance by promoting orientation of polypropylene crystals in the stretched film in the direction along the film plane. Known materials such as talc, kaolinite, clay, and mica can be used as the plate-shaped inorganic filler, but talc is preferable in consideration of its affinity with polypropylene resin, ease of procurement as a raw material, and economic efficiency. , mica, and more preferably talc. The volume average particle diameter of the plate-shaped inorganic filler is preferably 1 to 10 μm, more preferably 2 to 7 μm. If the volume average particle diameter is less than the lower limit, the stretched film may have low rigidity. When the volume average particle diameter exceeds the upper limit, the secondary processability is poor and the raw sheet is easily broken when stretched. The volume average particle diameter can be measured as a 50% diameter in a volume-based integrated fraction by a laser diffraction method (based on JIS R1629).

(3)熱可塑性樹脂
層Nに使用される熱可塑性樹脂としては公知のものを使用できるが、原反シートにおける層Fおよび層Nに相当する層fおよび層nの融点をそれぞれTmfおよびTmnとするとき、Tf-Tmn≦60℃の関係を満たすように選択される。融点の差が上限を超えるとベタツキ等のハンドリング面で多層フィルムの製造が困難となる。この観点から、当該融点の差は、好ましくは40℃以下、より好ましくは30℃以下、さらに好ましくは20℃以下である。当該融点の差の下限は好ましくは0℃以上である。融点はJIS K7271に従いDSCを用いて室温(23℃)から融解温度(230℃)まで10℃/分の条件で加熱した際に観測される、最も高温側にあるピークトップ温度である。
(3) Thermoplastic resin Although known thermoplastic resins can be used for layer N, the melting points of layer f and layer n corresponding to layer F and layer N in the raw sheet are Tmf and Tmn, respectively. When doing so, the temperature is selected so as to satisfy the relationship Tf-Tmn≦60°C. If the difference in melting point exceeds the upper limit, it will be difficult to produce a multilayer film due to handling issues such as stickiness. From this point of view, the difference in melting point is preferably 40°C or less, more preferably 30°C or less, even more preferably 20°C or less. The lower limit of the difference in melting point is preferably 0°C or higher. The melting point is the peak top temperature on the highest temperature side observed when heating from room temperature (23°C) to melting temperature (230°C) at 10°C/min using DSC according to JIS K7271.

層Fとの親和性の観点から、熱可塑性樹脂としてはポリオレフィンが好ましい。ポリオレフィンとしては、ポリプロピレン、ポリエチレン、エチレン・プロピレン共重合体、エチレン・プロピレン・共役ジエン共重合体、エチレン・1-ブテン共重合体、エチレン・1-ヘキセン共重合体、エチレン・1-オクテン共重合体、プロピレン・1-ブテン共重合体、プロピレン・1-ヘキセン共重合体、プロピレン・1-オクテン共重合体等が挙げられる。ポリプロピレンは、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレンのいずれであってもよい。ポリエチレンは、超低密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレンのいずれであってもよい。ポリオレフィンは1種を単独で使用してもよいし、2種以上を併用してもよい。ポリオレフィンの中でも、層Fとの相性の観点から、ポリプロピレン系樹脂が好ましい。特に、フィラー層Fとの密着性を鑑みると、熱可塑性樹脂は、0~10重量%未満のエチレン、C4~C10-α-オレフィン、およびこれらの組合せからなる群より選択されるコモノマー由来単位を含むプロピレン(共)重合体100~60重量%と、10~90重量%のエチレン由来単位を含むエチレン-α-オレフィン共重合体0~40重量%(任意成分)からなるポリプロピレン系樹脂であることがより好ましい。 From the viewpoint of affinity with layer F, polyolefin is preferable as the thermoplastic resin. Examples of polyolefins include polypropylene, polyethylene, ethylene/propylene copolymer, ethylene/propylene/conjugated diene copolymer, ethylene/1-butene copolymer, ethylene/1-hexene copolymer, and ethylene/1-octene copolymer. Examples include propylene/1-butene copolymer, propylene/1-hexene copolymer, propylene/1-octene copolymer, and the like. Polypropylene may be homopolypropylene, block polypropylene, or random polypropylene. The polyethylene may be any of ultra low density polyethylene, low density polyethylene, linear low density polyethylene, medium density polyethylene, and high density polyethylene. One type of polyolefin may be used alone, or two or more types may be used in combination. Among polyolefins, polypropylene resins are preferred from the viewpoint of compatibility with layer F. In particular, in view of the adhesion with the filler layer F, the thermoplastic resin contains 0 to less than 10% by weight of units derived from comonomers selected from the group consisting of ethylene, C4 to C10-α-olefins, and combinations thereof. It must be a polypropylene resin consisting of 100 to 60% by weight of a propylene (co)polymer and 0 to 40% by weight (optional component) of an ethylene-α-olefin copolymer containing 10 to 90% by weight of ethylene-derived units. is more preferable.

(4)フィラー層F
フィラー層Fにおける成分(A)と(B)の重量比は、以下のとおりである。
成分(B)/[成分(A)+成分(B)]=0.5~60重量%
成分(B)の量が少ないと多層延伸フィルムの剛性が十分でなく、成分(B)の量が多いと多層延伸フィルムの製造が困難となりうる。この観点から、前記重量比は、好ましくは5~55重量%であり、より好ましくは10~55重量%であり、さらに好ましくは20~55重量%である。
(4) Filler layer F
The weight ratio of components (A) and (B) in filler layer F is as follows.
Component (B)/[Component (A) + Component (B)] = 0.5 to 60% by weight
If the amount of component (B) is small, the rigidity of the multilayer stretched film will not be sufficient, and if the amount of component (B) is large, it may be difficult to produce the multilayer stretched film. From this point of view, the weight ratio is preferably 5 to 55% by weight, more preferably 10 to 55% by weight, and even more preferably 20 to 55% by weight.

(5)ニート層N
ニート層Nにおける熱可塑性樹脂と(B)の重量比は、以下のとおりである。
成分(B)/[熱可塑性樹脂+成分(B)]=0~10重量%
また、前述のとおり熱可塑性樹脂はポリプロピレン系樹脂であることが好ましいので、重量比は以下であることが好ましい。
成分(B)/[ポリプロピレン系樹脂+成分(B)]=0~10重量%
成分(B)の量が多いと多層延伸フィルムの製造が困難となるので、前記重量比は5重量%以下が好ましい。より好ましくは5重量%未満、さらに好ましく1重量%以下、特に好ましくは0.5重量%以下、最も好ましくは0重量%である。ただし、ニート層Nにおける前記重量比は、フィラー層Fにおける前記重量比よりも小さい。
(5) NEET layer N
The weight ratio of the thermoplastic resin and (B) in the neat layer N is as follows.
Component (B)/[thermoplastic resin + component (B)] = 0 to 10% by weight
Furthermore, as mentioned above, the thermoplastic resin is preferably a polypropylene resin, so the weight ratio is preferably as follows.
Component (B)/[polypropylene resin + component (B)] = 0 to 10% by weight
If the amount of component (B) is large, it will be difficult to produce a multilayer stretched film, so the weight ratio is preferably 5% by weight or less. More preferably less than 5% by weight, even more preferably 1% by weight or less, particularly preferably 0.5% by weight or less, and most preferably 0% by weight. However, the weight ratio in the neat layer N is smaller than the weight ratio in the filler layer F.

(6)厚さ比
多層延伸フィルムは、一態様において層N/層F/層Nの構造を備える。層Nが厚くなると剛性が低下する場合があり、層Fが厚くなると多層延伸フィルムの製造が困難となりうる。この観点から、前記構造の厚さ比は、好ましくは(0.05~1.2)/1/(0.05~1.2)であり、より好ましくは(0.06~0.4)/1/(0.06~0.4)、さらに好ましくは(0.07~0.2)/1/(0.07~0.2)である。本態様の多層延伸フィルムは、層N/層F/層Nの構造に加えて、層N、層F、または他の層を含んでいてもよいし含んでいなくてもよいが、層N/層F/層Nからなる二種三層フィルムであることが好ましい。
(6) Thickness Ratio In one embodiment, the multilayer stretched film has a layer N/layer F/layer N structure. If layer N becomes thicker, the stiffness may decrease, and if layer F becomes thicker, it may become difficult to produce a multilayer stretched film. From this point of view, the thickness ratio of the structure is preferably (0.05-1.2)/1/(0.05-1.2), more preferably (0.06-0.4). /1/(0.06-0.4), more preferably (0.07-0.2)/1/(0.07-0.2). In addition to the layer N/layer F/layer N structure, the multilayer stretched film of this embodiment may or may not include layer N, layer F, or other layers, but layer N A two-type, three-layer film consisting of /layer F/layer N is preferable.

多層延伸フィルムは、別態様において層N/層Fの構造を備える。前述の理由から、当該構造の厚さ比は、好ましくは1/(1~10)であり、より好ましくは1/(2~9)、さらに好ましくは1/(3~8)である。本態様における多層延伸フィルムは、層N/層Fの構造の他に層N、層F、または他の層を含んでいてもよいし含んでいなくでもよいが、層N/層Fからなる二種二層フィルムであることが好ましい。 The multilayer stretched film has a layer N/layer F structure in another embodiment. For the aforementioned reasons, the thickness ratio of the structure is preferably 1/(1-10), more preferably 1/(2-9), even more preferably 1/(3-8). The multilayer stretched film in this embodiment may or may not include layer N, layer F, or other layers in addition to the layer N/layer F structure, but is composed of layer N/layer F. Preferably, it is a two-layer film.

多層延伸フィルムは、さらなる別態様において層F/層N/層Fの構造を備える。前述の理由から、当該構造の厚さ比は、好ましくは(1~5)/1/(1~5)であり、より好ましくは(1.5~4.5)/1/(1.5~4.5)である。本態様の多層延伸フィルムは、層F/層N/層Fの構造の他に層N、層F、または他の層を含んでいてもよいし含んでいなくでもよいが、層F/層N/層Fからなる二種三層フィルムであることが好ましい。 The multilayer stretched film has a layer F/layer N/layer F structure in a further alternative embodiment. For the aforementioned reasons, the thickness ratio of the structure is preferably (1-5)/1/(1-5), more preferably (1.5-4.5)/1/(1.5). ~4.5). The multilayer stretched film of this embodiment may or may not include layer N, layer F, or other layers in addition to the structure of layer F/layer N/layer F, but layer F/layer A two-type, three-layer film consisting of N/layer F is preferable.

前述の理由から、すべての態様において、層Nの総厚さ/[層Nの総厚さ+層Fの総厚さ]の比は、好ましくは0.01~0.6である。さらに好ましくは0.1~0.6であり、0.1~0.4であることがより好ましく、0.12~0.3であることが特に好ましい。層Nの総厚さとは、多層フィルムにおける層Nの厚さの総和である。層Fについても同様である。 For the aforementioned reasons, in all embodiments the ratio of total thickness of layer N/[total thickness of layer N+total thickness of layer F] is preferably between 0.01 and 0.6. More preferably, it is 0.1 to 0.6, more preferably 0.1 to 0.4, and particularly preferably 0.12 to 0.3. The total thickness of layer N is the sum of the thicknesses of layers N in the multilayer film. The same applies to layer F.

(7)原反シートの特性
原反シートの厚さは最終的に得る多層延伸フィルムの厚さに依存するが、好ましくは0.15~4mmであり、さらに好ましくは0.2~3.5mmである。原反シートは、フィラー層Fとニート層Nの原料を共押出して製造することもできるし、フィラー層Fとニート層Nの前駆体をそれぞれ準備してこれらを熱圧着することによっても製造できるが、前者が好ましい。
(7) Characteristics of raw sheet The thickness of the raw sheet depends on the thickness of the multilayer stretched film finally obtained, but is preferably 0.15 to 4 mm, more preferably 0.2 to 3.5 mm. It is. The raw sheet can be manufactured by coextruding the raw materials for the filler layer F and the neat layer N, or by preparing precursors for the filler layer F and neat layer N, respectively, and bonding them by thermocompression. However, the former is preferred.

(8)多層延伸フィルムの特性
[厚さ]
製造容易性の観点から、多層延伸フィルム厚さの上限は、好ましくは150μm未満であり、より好ましくは100μm以下であり、その下限は、好ましくは5μm以上であり、より好ましくは10μmであり、さらに好ましくは15μm以上である。
(8) Characteristics of multilayer stretched film [thickness]
From the viewpoint of ease of production, the upper limit of the multilayer stretched film thickness is preferably less than 150 μm, more preferably 100 μm or less, and the lower limit is preferably 5 μm or more, more preferably 10 μm, and Preferably it is 15 μm or more.

[剛性]
本発明の多層延伸フィルムの引張弾性率(JIS K7161-2)は、好ましくは2500MPa以上、より好ましくは3500MPa以上、さらに好ましくは5000MPa以上である。
[rigidity]
The tensile modulus (JIS K7161-2) of the multilayer stretched film of the present invention is preferably 2500 MPa or more, more preferably 3500 MPa or more, and still more preferably 5000 MPa or more.

[耐寒衝撃性]
本発明の多層延伸フィルムは、-30℃において、好ましくは0.1J以上、より好ましくは0.2J以上、さらに好ましくは0.5J以上の面衝撃強度(JIS K7211-2)を有する。
[Cold impact resistance]
The multilayer stretched film of the present invention has a surface impact strength (JIS K7211-2) of preferably 0.1 J or more, more preferably 0.2 J or more, and still more preferably 0.5 J or more at -30°C.

(9)他の成分
本発明の多層延伸フィルムには、本発明の効果を損なわない範囲で、酸化防止剤、塩素吸収剤、熱安定剤、光安定剤、紫外線吸収剤、内部滑剤、外部滑剤、アンチブロッキング剤、帯電防止剤、防曇剤、結晶核剤、難燃剤、分散剤、銅害防止剤、中和剤、可塑剤、気泡防止剤、架橋剤、過酸化物、油展および他の顔料等の当該分野で通常用いられる慣用の添加剤を添加してもよい。各添加剤の添加量は公知の量としてよい。また、本発明の効果を損なわない範囲で、ポリプロピレン以外の合成樹脂または合成ゴムを含有してもよい。当該合成樹脂または合成ゴムは1種でもよいし2種以上でもよい。
(9) Other components The multilayer stretched film of the present invention contains antioxidants, chlorine absorbers, heat stabilizers, light stabilizers, ultraviolet absorbers, internal lubricants, and external lubricants within the range that does not impair the effects of the present invention. , anti-blocking agent, anti-static agent, anti-fog agent, crystal nucleating agent, flame retardant, dispersant, copper inhibitor, neutralizing agent, plasticizer, anti-bubble agent, cross-linking agent, peroxide, oil extender and others. Conventional additives commonly used in the art, such as pigments, may also be added. The amount of each additive added may be a known amount. Furthermore, synthetic resins or synthetic rubbers other than polypropylene may be contained within a range that does not impair the effects of the present invention. The synthetic resin or synthetic rubber may be one type or two or more types.

2.製造方法
本発明の多層延伸フィルムは、以下の工程を備える方法で製造されることが好ましい。
原反シートとして、前記層Fの前駆体である層fと、前記層Nとの前駆体である層nとを含む共押出シートを調製する工程1。
前記原反シートを、以下を満たす温度T(℃)で一軸または二軸延伸する工程2。
Tmfは原反シートにおける層fの融点(℃)であり、-3≦T-Tmf≦3を満たす。
2. Manufacturing method The multilayer stretched film of the present invention is preferably manufactured by a method comprising the following steps.
Step 1 of preparing a coextrusion sheet containing a layer f, which is a precursor of the layer F, and a layer n, which is a precursor of the layer N, as a raw sheet.
Step 2 of uniaxially or biaxially stretching the raw sheet at a temperature T (° C.) that satisfies the following.
Tmf is the melting point (°C) of layer f in the original sheet, and satisfies -3≦T-Tmf≦3.

(1)工程1
当該工程は公知の方法で実施できる。例えば、ポリプロピレン系樹脂(成分(A))と無機充填材(成分(B))と必要に応じて他の成分を準備して、予めドライブレンドする、または溶融混練することにより層f用の樹脂組成物を調製することができる。また、熱可塑性樹脂(好ましくは成分(A))をそのまま層nの原料としてもよいし、熱可塑性樹脂(好ましくは成分(A))に加えて、必要に応じて無機充填材(成分(B))と他の成分を準備し、同様にして層n用の樹脂組成物を調製することができる。前記樹脂組成物または原料を調製するにあたり、溶融混練しペレット状にする工程を設けることが好ましい。溶融混練時の条件は公知のとおりとしてよいが、混練効率を高めるために多軸押出機にて混練(多軸機溶融混練)を行うことが好ましい。この際、作業性や動力等経済性の観点から、二軸押出機にて行うことがより好ましい。
(1) Process 1
This step can be carried out by a known method. For example, by preparing a polypropylene resin (component (A)), an inorganic filler (component (B)), and other components as necessary, dry blending or melt-kneading the resin for layer f. A composition can be prepared. Further, the thermoplastic resin (preferably component (A)) may be used as a raw material for layer n as it is, or in addition to the thermoplastic resin (preferably component (A)), an inorganic filler (component (B) )) and other components, and a resin composition for layer n can be prepared in the same manner. In preparing the resin composition or raw material, it is preferable to provide a step of melt-kneading and pelletizing. The conditions during melt-kneading may be as known, but in order to improve the kneading efficiency, it is preferable to perform the kneading in a multi-screw extruder (multi-screw melt kneading). At this time, from the viewpoint of economy such as workability and power, it is more preferable to use a twin-screw extruder.

得られた樹脂組成物は、Tダイ等を用いた共押出成形によって原反シートとされる。原反シートとは二次加工前、すなわち一軸または二軸延伸を行う前のシート(前駆体)である。共押出成形において樹脂組成物を可塑化する際に、スクリュー構成として通常の単軸機を装着した押出成形機の他に、二軸機等の多軸機を装着した溶融混練を行うこともできる。原反シートの調製に際しては、多軸機溶融混練工程を含むことが好ましい。 The obtained resin composition is made into a raw sheet by coextrusion molding using a T-die or the like. The raw sheet is a sheet (precursor) before secondary processing, that is, before uniaxial or biaxial stretching. When plasticizing a resin composition in coextrusion molding, in addition to an extrusion molding machine equipped with a normal single-screw machine as a screw configuration, melt kneading can also be performed using a multi-screw machine such as a twin-screw machine. . When preparing the raw sheet, it is preferable to include a multi-axis machine melt-kneading process.

(2)工程2
本工程では、原反シートを温度Tにおいて二次加工、すなわち一軸または二軸延伸する。延伸温度Tは-3≦T-Tmf≦3を満たす。すなわち、延伸温度Tは、前記における層fの融点Tmfを中心として±3℃の温度範囲から選択される。この温度範囲において延伸することで、原反シートが破断することなく多層延伸フィルムを得ることができる。この理由は限定されないが、無機充填材表面において部分的に溶融したポリプロピレンがエピタキシャルな結晶を形成するため両者の親和性が向上し、さらに前記Tの温度領域では形成された結晶が保持される結果、この親和性が損なわれないためであると推察される。
(2) Process 2
In this step, the raw sheet is subjected to secondary processing at temperature T, that is, uniaxially or biaxially stretched. The stretching temperature T satisfies -3≦T−Tmf≦3. That is, the stretching temperature T is selected from a temperature range of ±3° C. centered on the melting point Tmf of the layer f mentioned above. By stretching in this temperature range, a multilayer stretched film can be obtained without breaking the raw sheet. Although the reason for this is not limited, the partially melted polypropylene forms epitaxial crystals on the surface of the inorganic filler, improving the affinity between the two, and furthermore, the formed crystals are retained in the temperature range of T. , it is presumed that this is because this affinity is not impaired.

融点Tmfは、JIS K7271に従いDSCを用いて室温(23℃)から融解温度(230℃)まで10℃/分の条件で加熱した際に観測される、最も高温側にあるピークトップ温度である。 The melting point Tmf is the peak top temperature on the highest temperature side observed when heating from room temperature (23°C) to melting temperature (230°C) at 10°C/min using DSC according to JIS K7271.

二次加工としての延伸(一軸延伸、二軸延伸)は公知の方法によって行うことができる。すなわち、一軸延伸の方法としては、Tダイにより得られた原反シートをオーブン等で加熱して、延伸ロールや巻き取り器で延伸する方法等が挙げられる。また、二軸延伸の方法としては、熱板成形、延伸成形、圧伸成形、絞り加工成形、圧接成形、融着成形、真空成形、圧空成形、真空圧空成形、インフレーション成形等が挙げられる。さらには、縦方向と横方向の延伸工程を同時に実施する同時二軸延伸と、縦方向の延伸工程を実施した後に横方法の延伸工程を実施する逐次二軸延伸が挙げられるが、本発明ではいずれを採用してもよい。逐次二軸延伸においては、縦方向および横方向のいずれが先であってもよい。また、加飾性や表面改質等の目的で、特殊フィルムを本発明の多層延伸フィルムの表面に貼り付けてもよい。貼り付けるフィルムとしては、例えば、防曇フィルム、低温シールフィルム、接着性フィルム、印刷フィルム、エンボス加工フィルム、レトルトフィルム等が挙げられる。最表面のフィルムの厚さは特に制限されない。しかし、厚くなりすぎると多層延伸フィルムの特性を損なう可能性があり、また、特殊フィルムは一般的にコストが高く経済的にも好ましくないことから、薄いことが好ましい。本発明の多層延伸フィルムは、一軸延伸フィルム、二軸延伸フィルムのいずれでもよいが、フィルムの特性において異方性が小さいとの観点から、二軸延伸フィルムが好ましい。 Stretching as secondary processing (uniaxial stretching, biaxial stretching) can be performed by a known method. That is, examples of the uniaxial stretching method include a method in which a raw sheet obtained by a T-die is heated in an oven or the like, and then stretched with a stretching roll or a winder. In addition, examples of the biaxial stretching method include hot plate forming, stretch forming, drawing forming, drawing forming, pressure forming, fusion forming, vacuum forming, pressure forming, vacuum pressure forming, inflation forming, and the like. Further examples include simultaneous biaxial stretching in which stretching steps are carried out in the longitudinal and transverse directions at the same time, and sequential biaxial stretching in which a stretching step in the transverse direction is carried out after carrying out the stretching step in the longitudinal direction. Either one may be adopted. In the sequential biaxial stretching, either the longitudinal direction or the transverse direction may be carried out first. Further, a special film may be attached to the surface of the multilayer stretched film of the present invention for the purpose of decoration, surface modification, etc. Examples of the film to be pasted include an antifogging film, a low-temperature sealing film, an adhesive film, a printing film, an embossed film, and a retort film. The thickness of the outermost film is not particularly limited. However, if it becomes too thick, the properties of the multilayer stretched film may be impaired, and special films are generally expensive and economically undesirable, so thinner films are preferable. The multilayer stretched film of the present invention may be either a uniaxially stretched film or a biaxially stretched film, but a biaxially stretched film is preferred from the viewpoint of low anisotropy in film properties.

このようにして得られる多層延伸フィルムは、軽量でありながら従来にない高い剛性を有し、かつ耐寒衝撃性やバリア性に優れる。よって、本発明の多層延伸フィルムは、延伸テープ、包装用バンド、装飾用リボン、食品・飲料包装容器、化粧用包装容器、電池包装用容器をはじめとする包装部材、工業資材、農業資材、建築建設資材、医療用資材、物流用資材として、あるいは日用品、レジャー用品、自動車内外装部品、電機電子機器筐体・部品、玩具、雑貨、衣料用品、鞄類、靴類等の幅広い分野に適用できる。特に、障子・襖・壁紙等の建築内装部材、菓子等の食品用の包装袋として好ましく適用できる。 The multilayer stretched film obtained in this manner is lightweight yet has unprecedentedly high rigidity, and has excellent cold impact resistance and barrier properties. Therefore, the multilayer stretched film of the present invention can be used for packaging members such as stretched tapes, packaging bands, decorative ribbons, food and beverage packaging containers, cosmetic packaging containers, and battery packaging containers, industrial materials, agricultural materials, and construction materials. Can be applied to a wide range of fields such as construction materials, medical materials, logistics materials, daily necessities, leisure goods, automobile interior and exterior parts, electrical and electronic equipment casings and parts, toys, miscellaneous goods, clothing supplies, bags, shoes, etc. . In particular, it can be preferably applied to architectural interior materials such as shoji screens, sliding doors, and wallpaper, and packaging bags for foods such as confectionery.

以下に示す材料を用いた。
(1)成分(A)
[重合体a]
重合に用いる固体触媒を、欧州特許第674991号公報の実施例1に記載された方法により調製した。当該固体触媒は、MgCl上にTiと内部ドナーとしてのジイソブチルフタレートを上記の特許公報に記載された方法で担持させたものである。当該固体触媒と、トリエチルアルミニウム(TEAL)およびジシクロペンチルジメトキシシラン(DCPMS)を、固体触媒に対するTEALの重量比が11、TEAL/DCPMSの重量比が10となるような量で、-5℃で5分間接触させた。得られた触媒系を、液体プロピレン中において懸濁状態で20℃において5分間保持することによって予重合を行った。得られた予重合物を重合反応器に導入した後、水素とプロピレンをフィードし、重合温度、水素濃度を、それぞれ75℃、0.23モル%とし、圧力を調整することよって、MFRが7.0g/10分のプロピレン単独重合体aを製造した。
The materials shown below were used.
(1) Component (A)
[Polymer a]
A solid catalyst used for polymerization was prepared by the method described in Example 1 of European Patent No. 674,991. The solid catalyst has Ti and diisobutyl phthalate as an internal donor supported on MgCl 2 by the method described in the above patent publication. The solid catalyst, triethylaluminum (TEAL) and dicyclopentyldimethoxysilane (DCPMS) were mixed at -5°C in amounts such that the weight ratio of TEAL to the solid catalyst was 11 and the weight ratio of TEAL/DCPMS was 10. The contact was made for a minute. Prepolymerization was carried out by holding the resulting catalyst system in suspension in liquid propylene at 20° C. for 5 minutes. After introducing the obtained prepolymerized product into a polymerization reactor, hydrogen and propylene were fed, the polymerization temperature and hydrogen concentration were set to 75°C and 0.23 mol%, respectively, and the pressure was adjusted to achieve an MFR of 7. .0 g/10 min of propylene homopolymer a was produced.

[重合体b]
重合体aの重合反応器において、水素濃度を0.11モル%に変更して、MFRが3.2g/10分のプロピレン単独重合体bを製造した。
[重合体c]
重合体aの重合反応器において、水素濃度を0.08モル%に変更して、MFRが2.5g/10分のプロピレン単独重合体cを製造した。
[Polymer b]
In the polymerization reactor for polymer a, the hydrogen concentration was changed to 0.11 mol % to produce propylene homopolymer b having an MFR of 3.2 g/10 min.
[Polymer c]
In the polymerization reactor for polymer a, the hydrogen concentration was changed to 0.08 mol % to produce propylene homopolymer c having an MFR of 2.5 g/10 min.

[重合体d]
重合体aの重合反応器において、水素濃度を0.07モル%に変更して、MFRが2.2g/10分のプロピレン単独重合体dを製造した。
[重合体e]
重合体aの重合反応器において、水素とプロピレンに加えエチレンをフィードするとともに、エチレン濃度を0.10モル%、水素濃度を0.09モル%として、MFRが2.5g/10分、0.4重量%のエチレン由来単位を含むプロピレン共重合体eを製造した。
[Polymer d]
In the polymerization reactor for polymer a, the hydrogen concentration was changed to 0.07 mol % to produce propylene homopolymer d having an MFR of 2.2 g/10 min.
[Polymer e]
In the polymerization reactor for polymer a, ethylene was fed in addition to hydrogen and propylene, and the ethylene concentration was 0.10 mol% and the hydrogen concentration was 0.09 mol%, and the MFR was 2.5 g/10 min. A propylene copolymer e containing 4% by weight of ethylene-derived units was produced.

[重合体f]
重合体aの製造過程で得られた予重合物を、二段の重合反応器を直列に備える重合装置の一段目の重合反応器に導入し、液相状態のプロピレンをフィードして成分(A1)であるプロピレン単独重合体を製造し、二段目の気相重合反応器で成分(A2)であるエチレン-プロピレン共重合体を製造し、成分(A1)と成分(A2)からなる重合混合物であるMFRが7.0g/10分の重合体fを得た。重合中は、温度と圧力を調整し、水素を分子量調整剤として用いた。重合温度と反応物の比率は、一段目の重合反応器では、重合温度、水素濃度がそれぞれ75℃、0.42モル%、二段目の重合反応器では、重合温度、水素濃度、C2/(C2+C3)が、それぞれ75℃、1.44モル%、0.53モル比であった。なお、成分(A2)の含有割合が20重量%となるように一段目と二段目の滞留時間分布を調整した。得られた重合体fにおける成分(A2)のエチレン由来単位含有割合とキシレン可溶分の極限粘度(XSIV)は、それぞれ55重量%と2.7dl/gであった。
[Polymer f]
The prepolymerized product obtained in the process of producing polymer a is introduced into the first stage polymerization reactor of a polymerization apparatus equipped with two stages of polymerization reactors in series, and propylene in a liquid phase is fed to the component (A1 ) is produced, and an ethylene-propylene copolymer which is component (A2) is produced in a second stage gas phase polymerization reactor, and a polymerization mixture consisting of component (A1) and component (A2) is produced. A polymer f having an MFR of 7.0 g/10 minutes was obtained. During the polymerization, temperature and pressure were adjusted and hydrogen was used as a molecular weight regulator. The polymerization temperature and the ratio of reactants are as follows: In the first stage polymerization reactor, the polymerization temperature and hydrogen concentration are 75°C and 0.42 mol%, respectively, and in the second stage polymerization reactor, the polymerization temperature, hydrogen concentration, and C2/ (C2+C3) were 75°C, 1.44 mol%, and 0.53 mol ratio, respectively. The residence time distributions in the first and second stages were adjusted so that the content of component (A2) was 20% by weight. The ethylene-derived unit content of component (A2) in the obtained polymer f and the intrinsic viscosity (XSIV) of the xylene-soluble component were 55% by weight and 2.7 dl/g, respectively.

[重合体g]
重合体aの重合反応器において、水素濃度を0.31モル%に変更して、MFRが10g/10分のプロピレン単独重合体gを製造した。
[重合体h]
重合体eの製造過程において、エチレン濃度を1.30モル%、水素濃度を0.40モル%として、MFRが5.0g/10分、5.3重量%のエチレン由来単位を含むプロピレン共重合体hを製造した。重合体の特性を表1にまとめた。
[Polymer g]
In the polymerization reactor for polymer a, the hydrogen concentration was changed to 0.31 mol % to produce propylene homopolymer g having an MFR of 10 g/10 min.
[Polymer h]
In the manufacturing process of polymer e, a propylene copolymer containing ethylene-derived units with an MFR of 5.0 g/10 min and 5.3 wt%, with an ethylene concentration of 1.30 mol% and a hydrogen concentration of 0.40 mol%. Combined h was produced. The properties of the polymer are summarized in Table 1.

(2)成分(B)
タルク(ネオライト興産株式会社製ネオタルクUNI05(レーザ回折法によって測定した体積平均粒子径:5μm)を用いた。
(2) Component (B)
Talc (Neotalc UNI05 manufactured by Neolite Kosan Co., Ltd. (volume average particle diameter measured by laser diffraction method: 5 μm) was used.

[実施例1]
50重量部の重合体a、50重量部のタルク、酸化防止剤として0.1重量部のBASF社製B225、および中和剤として0.05重量部の淡南化学工業株式会社製カルシウムステアレートをヘンシェルミキサーで1分間撹拌して混合物を得た。次いで、当該混合物をスクリュー温度230℃に設定した押出機(株式会社日本製鋼所製、TEX-30α同方向二軸押出機)に供して溶融混練した。さらに、溶融混合物を押出機から吐出し、冷却してストランドを形成し、そのストランドを裁断して、フィラー層F用のペレット状の樹脂組成物を得た。タルクを用いずに重合体aを100重量部用い、同様にしてニート層N用のペレット状の樹脂組成物を得た。次いで、これらの樹脂組成物をスクリュー温度230℃に設定した25mmφ3種3層フィルム・シート成形機(サーモ・プラステイックス工業株式会社製)に供して溶融混練(二軸機溶融混練)して、原反シートとして厚さ2.7mmの層n/層f/層nの二種三層共押出シートを得た。
[Example 1]
50 parts by weight of polymer a, 50 parts by weight of talc, 0.1 parts by weight of BASF B225 as an antioxidant, and 0.05 parts by weight of calcium stearate manufactured by Tannan Kagaku Kogyo Co., Ltd. as a neutralizing agent. were stirred for 1 minute using a Henschel mixer to obtain a mixture. Next, the mixture was melt-kneaded in an extruder (TEX-30α co-directional twin-screw extruder manufactured by Japan Steel Works, Ltd.) with a screw temperature of 230°C. Furthermore, the molten mixture was discharged from an extruder, cooled to form a strand, and the strand was cut to obtain a pellet-shaped resin composition for the filler layer F. A pellet-shaped resin composition for neat layer N was obtained in the same manner using 100 parts by weight of polymer a without using talc. Next, these resin compositions were melt-kneaded (twin-screw melt-kneading) in a 25 mm diameter three-type, three-layer film/sheet molding machine (manufactured by Thermo Plastics Industries Co., Ltd.) set at a screw temperature of 230°C. A two-type, three-layer coextruded sheet of layer n/layer f/layer n and having a thickness of 2.7 mm was obtained as a countersheet.

原反シートの層fの融点Tmfは167℃であった。Bruckner社製フィルム延伸装置(KARO)を用いて、当該原反シートを165℃で120秒間加熱した後、50mm/secの速度で6倍×6倍で同時二軸延伸し、厚さ80μmの三層二軸延伸フィルムを得た。すなわち、二軸延伸温度(T)は165℃であり、T-Tmfは-2℃であった。ここで、融点は、JIS K7271に従いDSCを用いて室温(23℃)から融解温度(230℃)まで10℃/分の条件で加熱した際に観測される、最も高温側にあるピークトップ温度である。原反シートの層nの融点Tmnは166℃であった。また得られた多層フィルムの融点(Tmh)は174℃であった。Tmhは前述の方法で測定され、多層フィルムおける各層の融点のうち最も高い融点に相当する。 The melting point Tmf of layer f of the original fabric sheet was 167°C. Using a Bruckner film stretching device (KARO), the raw sheet was heated at 165°C for 120 seconds, and then simultaneously biaxially stretched 6 times x 6 times at a speed of 50 mm/sec to form a three-dimensional film with a thickness of 80 μm. A layered biaxially stretched film was obtained. That is, the biaxial stretching temperature (T) was 165°C, and T-Tmf was -2°C. Here, the melting point is the peak top temperature on the highest temperature side observed when heating from room temperature (23°C) to melting temperature (230°C) at 10°C/min using DSC according to JIS K7271. be. The melting point Tmn of layer n of the original fabric sheet was 166°C. Moreover, the melting point (Tmh) of the obtained multilayer film was 174°C. Tmh is measured by the method described above and corresponds to the highest melting point among the melting points of each layer in the multilayer film.

[実施例2]
タルク配合量およびT-Tmfを変更した以外は、実施例1と同じ方法で二軸延伸を行って三層二軸延伸フィルムを製造し、評価した。
[Example 2]
A three-layer biaxially stretched film was produced and evaluated by performing biaxial stretching in the same manner as in Example 1, except that the talc content and T-Tmf were changed.

[実施例3、4]
原反シートの厚さを変更した以外は、実施例2と同じ方法で二軸延伸を行い厚さ25μm、15μm三層二軸延伸フィルムをそれぞれ製造し、評価した。
[Examples 3 and 4]
Except for changing the thickness of the original sheet, biaxial stretching was performed in the same manner as in Example 2 to produce three-layer biaxially stretched films with thicknesses of 25 μm and 15 μm, respectively, and evaluated.

[実施例5]
タルク配合量を変更した以外は、実施例2と同じ方法で二軸延伸を行い、三層二軸延伸フィルムを製造し、評価した。
[Example 5]
Biaxial stretching was performed in the same manner as in Example 2, except that the amount of talc was changed, and a three-layer biaxially stretched film was produced and evaluated.

[実施例6]
重合体bを用い、タルク配合量を変更した以外は、実施例2と同じ方法で二軸延伸を行い、三層二軸延伸フィルムを製造し、評価した。
[Example 6]
Biaxial stretching was performed in the same manner as in Example 2, except that Polymer b was used and the amount of talc was changed, and a three-layer biaxially stretched film was produced and evaluated.

[実施例7]
重合体cを用い、タルク配合量を変更した以外は、実施例1と同じ方法で二軸延伸を行い、三層二軸延伸フィルムを製造し、評価した。
[Example 7]
Biaxial stretching was performed in the same manner as in Example 1, except that Polymer c was used and the amount of talc was changed, and a three-layer biaxially stretched film was produced and evaluated.

[実施例8]
重合体dを用い、タルク配合量、T-Tmfを変更した以外は、実施例1と同じ方法で二軸延伸を行い、三層二軸延伸フィルムを製造し、評価した。
[Example 8]
Biaxial stretching was performed in the same manner as in Example 1 except that Polymer d was used and the talc content and T-Tmf were changed to produce a three-layer biaxially stretched film and evaluated.

[実施例9]
重合体eを用い、タルク配合量を変更した以外は、実施例8と同じ方法で二軸延伸を行い、三層二軸延伸フィルムを製造し、評価した。
[Example 9]
Biaxial stretching was performed in the same manner as in Example 8, except that Polymer e was used and the amount of talc was changed, and a three-layer biaxially stretched film was produced and evaluated.

[実施例10]
重合体fを用いた以外は、実施例6と同じ方法で二軸延伸を行い、三層二軸延伸フィルムを製造し、評価した。
[Example 10]
Biaxial stretching was performed in the same manner as in Example 6, except that polymer f was used, and a three-layer biaxially stretched film was produced and evaluated.

[実施例11]
ニート層Nに重合体hを用いた以外は、実施例2と同じ方法で二軸延伸を行い、三層二軸延伸フィルムを製造し、評価した。
[Example 11]
Biaxial stretching was performed in the same manner as in Example 2, except that polymer h was used for the neat layer N, and a three-layer biaxially stretched film was produced and evaluated.

[実施例12]
60重量部の重合体a、40重量部のタルク、酸化防止剤として0.1重量部のBASF社製B225、および中和剤として0.05重量部の淡南化学工業株式会社製カルシウムステアレートをヘンシェルミキサーで1分間撹拌して混合物を得た。次いで、当該混合物をスクリュー温度230℃に設定した押出機(株式会社日本製鋼所製、TEX-30α同方向二軸押出機)に供して溶融混練した。さらに、溶融混合物を押出機から吐出し、冷却してストランドを形成し、そのストランドを裁断して、フィラー層F用のペレット状の樹脂組成物を得た。タルクを用いずに重合体aを100重量部用い、同様にしてニート層N用のペレット状の樹脂組成物を得た。次いで、これらの樹脂組成物をスクリュー温度230℃に設定した25mmφ3種3層フィルム・シート成形機(サーモ・プラステイックス工業株式会社製)に供して溶融混練(二軸機溶融混練)して、原反シートとして厚さ1.0mmの層n/層fの二種二層共押出シートを得た。
[Example 12]
60 parts by weight of polymer a, 40 parts by weight of talc, 0.1 parts by weight of BASF B225 as an antioxidant, and 0.05 parts by weight of calcium stearate manufactured by Tannan Kagaku Kogyo Co., Ltd. as a neutralizing agent. were stirred for 1 minute using a Henschel mixer to obtain a mixture. Next, the mixture was melt-kneaded in an extruder (TEX-30α co-directional twin-screw extruder manufactured by Japan Steel Works, Ltd.) with a screw temperature of 230°C. Furthermore, the molten mixture was discharged from an extruder, cooled to form a strand, and the strand was cut to obtain a pellet-shaped resin composition for the filler layer F. A pellet-shaped resin composition for neat layer N was obtained in the same manner using 100 parts by weight of polymer a without using talc. Next, these resin compositions were melt-kneaded (twin-screw melt-kneading) in a 25 mm diameter three-type, three-layer film/sheet molding machine (manufactured by Thermo Plastics Industries Co., Ltd.) set at a screw temperature of 230°C. A two-layer coextruded sheet of layer n/layer f and having a thickness of 1.0 mm was obtained as a countersheet.

原反シートの層fの融点Tmfは166℃であった。Bruckner社製フィルム延伸装置(KARO)を用いて、当該原反シートを165℃で120秒間加熱した後、50mm/secの速度で6倍×6倍で同時二軸延伸し、厚さ25μmの三層二軸延伸フィルムを得た。すなわち、二軸延伸温度(T)は165℃であり、T-Tmfは-1℃であった。得られた二層二軸延伸フィルムのTmhは173℃であった。 The melting point Tmf of layer f of the raw sheet was 166°C. Using a Bruckner film stretching device (KARO), the raw sheet was heated at 165°C for 120 seconds, and then simultaneously biaxially stretched 6 times x 6 times at a speed of 50 mm/sec to form a 25 μm thick three-dimensional sheet. A layered biaxially stretched film was obtained. That is, the biaxial stretching temperature (T) was 165°C, and T-Tmf was -1°C. The Tmh of the obtained two-layer biaxially stretched film was 173°C.

[実施例13]
原反シートの層構造を層f/層n/層fとし、厚さを表2に示すように変更した以外は、実施例2と同じ方法で三層二軸延伸フィルムを得て、評価した。
[Example 13]
A three-layer biaxially stretched film was obtained and evaluated in the same manner as in Example 2, except that the layer structure of the original sheet was layer f/layer n/layer f, and the thickness was changed as shown in Table 2. .

[実施例14、15]
厚さ比を表2に示す値に変更した以外は、実施例2と同じ方法で三層二軸延伸フィルムを得て、評価した。
[Example 14, 15]
A three-layer biaxially stretched film was obtained and evaluated in the same manner as in Example 2, except that the thickness ratio was changed to the value shown in Table 2.

[参考例1および2]
T-Tmfを変更した以外は、実施例2と同じ方法で三層二軸延伸フィルムの製造を試みたが、製造できなかった。
[Reference Examples 1 and 2]
Although an attempt was made to manufacture a three-layer biaxially stretched film in the same manner as in Example 2 except for changing T-Tmf, it was not possible to manufacture it.

[比較例1]
100重量部の重合体g、酸化防止剤として0.1重量部のBASF社製B225、および中和剤として0.05重量部の淡南化学工業株式会社製カルシウムステアレートをヘンシェルミキサーで1分間撹拌して混合物を得た。次いで、当該混合物をスクリュー温度230℃に設定した押出機(株式会社日本製鋼所製、TEX-30α同方向二軸押出機)に供して溶融混練した。さらに、溶融混合物を押出機から吐出し、冷却してストランドを形成し、そのストランドを裁断して、ペレット状の樹脂組成物を得た。次いで、当該樹脂組成物をスクリュー温度230℃に設定した25mmφ3種3層フィルム・シート成形機(サーモ・プラステイックス工業株式会社製)に供して溶融混練(二軸機溶融混練)して、原反シートとして厚さ0.5mmの一種三層共押出シートを得た。
[Comparative example 1]
100 parts by weight of polymer g, 0.1 parts by weight of B225 manufactured by BASF as an antioxidant, and 0.05 parts by weight of calcium stearate manufactured by Tannan Kagaku Kogyo Co., Ltd. as a neutralizing agent were mixed in a Henschel mixer for 1 minute. A mixture was obtained by stirring. Next, the mixture was melt-kneaded in an extruder (TEX-30α co-directional twin-screw extruder manufactured by Japan Steel Works, Ltd.) with a screw temperature of 230°C. Further, the molten mixture was discharged from an extruder, cooled to form a strand, and the strand was cut to obtain a pellet-shaped resin composition. Next, the resin composition was melt-kneaded (twin-screw melt-kneading) in a 25 mm diameter three-type, three-layer film/sheet molding machine (manufactured by Thermo Plastics Industries Co., Ltd.) set at a screw temperature of 230°C to form a raw fabric. A three-layer coextruded sheet having a thickness of 0.5 mm was obtained as a sheet.

原反シートの層fの融点Tmfは166℃であった。Bruckner社製フィルム延伸装置(KARO)を用いて、当該原反シートを165℃で120秒間加熱した後、50mm/secの速度で6倍×6倍で同時二軸延伸し、厚さ15μmの三層二軸延伸フィルムを得た。すなわち、二軸延伸温度(T)は165℃であり、T-Tmfは-1℃であった。当該フィルムを評価した。 The melting point Tmf of layer f of the raw sheet was 166°C. Using a Bruckner film stretching device (KARO), the raw sheet was heated at 165°C for 120 seconds, and then simultaneously biaxially stretched 6 times x 6 times at a speed of 50 mm/sec to form a 15 μm thick three-dimensional sheet. A layered biaxially stretched film was obtained. That is, the biaxial stretching temperature (T) was 165°C, and T-Tmf was -1°C. The film was evaluated.

[比較例2]
重合体hを用い、二軸延伸温度を変更した以外は、実施例9と同じ方法で三層二軸延伸フィルムを製造し、評価した。
[Comparative example 2]
A three-layer biaxially stretched film was produced and evaluated in the same manner as in Example 9, except that polymer h was used and the biaxially stretched temperature was changed.

これらの結果を表2に示す。本発明の多層二軸延伸フィルムは剛性をはじめとして優れた機械的特性を有する。 These results are shown in Table 2. The multilayer biaxially stretched film of the present invention has excellent mechanical properties including rigidity.

Figure 0007397642000001
Figure 0007397642000001

Figure 0007397642000002
Figure 0007397642000002

Figure 0007397642000003
Figure 0007397642000003

評価は以下のように行った。
[二次加工性]
○. 二次加工できた(多層二軸延伸フィルムを作製できた)
×. 二次加工できなかった(二軸延伸の途中で破断した)
The evaluation was performed as follows.
[Secondary workability]
○. Secondary processing was possible (multilayer biaxially stretched film was created)
×. Secondary processing could not be performed (it broke during biaxial stretching)

[DSCによる融点(Tmn、Tmf、Tmh)]
原反シートの層n、層f、および二軸延伸フィルムより、各々約5mgを電子天秤で秤量し、DSC用試料として採取した。示差熱分析計(DSC)(TA Instruments社製 Q-200)を用いて、30℃で5分間保持した後、10℃/分の昇温速度で230℃まで加熱して融解曲線を得た。融解曲線の最も高温側にあるピークトップ温度を融点とした。
[Melting point (Tmn, Tmf, Tmh) by DSC]
Approximately 5 mg of each of layer n, layer f, and biaxially stretched film of the original sheet was weighed using an electronic balance and collected as samples for DSC. Using a differential thermal analyzer (DSC) (TA Instruments Q-200), the mixture was held at 30°C for 5 minutes and then heated to 230°C at a heating rate of 10°C/min to obtain a melting curve. The peak top temperature on the highest temperature side of the melting curve was defined as the melting point.

[剛性(引張弾性率)]
得られたシートから成形体としてJIS K7139に規定するタイプA2の多目的試験片を機械加工し、JIS K7161-2に従い、株式会社島津製作所製精密万能試験機(オートグラフAG-X 10kN)を用い、温度23℃、相対湿度50%、試験速度1mm/分の条件で引張弾性率を測定した。
[Stiffness (tensile modulus)]
From the obtained sheet, a multipurpose test piece of type A2 specified in JIS K7139 was machined as a molded body, and according to JIS K7161-2, using a precision universal testing machine (Autograph AG-X 10kN) manufactured by Shimadzu Corporation, The tensile modulus was measured at a temperature of 23° C., a relative humidity of 50%, and a test speed of 1 mm/min.

[耐寒衝撃性(面衝撃強度、-30℃)]
得られたシートについて、JIS K7211-2に従い、株式会社島津製作所製ハイドロショットHITS-P10を用い、-30℃に調整した槽内で、内径40mmφの穴の開いた支持台に測定用試験片を置き、内径76mmφの試料押さえを用いて固定した後、半球状の打撃面を持つ直径12.7mmφのストライカーで、1m/秒の衝撃速度で試験片を打撃しパンクチャーエネルギー(J)を求めた。4個の測定用試験片各々のパンクチャーエネルギーの平均値を面衝撃強度とした。
[MFR]
ポリプロピレン系重合体のパウダーに関しては、試料5gに対し本州化学工業株式会社製H-BHTを0.05g添加し、ドライブレンドにより均一化した後、JIS K7210-1に従い、温度230℃、荷重2.16kgの条件で測定した。ポリプロピレン系樹脂組成物のペレットについては、JIS K 7210-1に準じ温度230℃、荷重2.16kgの条件下で測定した。
[Cold impact resistance (surface impact strength, -30°C)]
Regarding the obtained sheet, a test piece for measurement was placed on a support stand with a hole with an inner diameter of 40 mm in a tank adjusted to -30°C using Hydroshot HITS-P10 manufactured by Shimadzu Corporation in accordance with JIS K7211-2. After placing the sample and fixing it using a sample holder with an inner diameter of 76 mmφ, the test piece was struck at an impact speed of 1 m/sec with a striker with a diameter of 12.7 mmφ and a hemispherical striking surface to determine the puncture energy (J). . The average value of the puncture energy of each of the four measurement test pieces was defined as the surface impact strength.
[MFR]
Regarding the polypropylene polymer powder, 0.05 g of H-BHT manufactured by Honshu Kagaku Kogyo Co., Ltd. was added to 5 g of the sample, and after homogenization by dry blending, the powder was heated at 230°C and under a load of 2. Measurement was carried out under the condition of 16 kg. The pellets of the polypropylene resin composition were measured at a temperature of 230° C. and a load of 2.16 kg in accordance with JIS K 7210-1.

<成分(A1)または成分(A2)におけるコポリマー中のエチレン由来単位の含有量、および成分(A1)と成分(A2)からなる重合混合物における成分(A2)のコポリマーの含有割合>
1,2,4-トリクロロベンゼン/重水素化ベンゼンの混合溶媒に溶解した試料について、Bruker社製AVANCEIII HD400(13C共鳴周波数100MHz)を用い、測定温度120℃、フリップ角45度、パルス間隔7秒、試料回転数20Hz、積算回数5000回の条件で13C-NMRのスペクトルを得た。
<Content of ethylene-derived units in the copolymer of component (A1) or component (A2), and content ratio of the copolymer of component (A2) in the polymerization mixture consisting of component (A1) and component (A2)>
A sample dissolved in a mixed solvent of 1,2,4-trichlorobenzene/deuterated benzene was measured using Bruker's AVANCE III HD400 (13C resonance frequency 100 MHz) at a measurement temperature of 120°C, a flip angle of 45 degrees, and a pulse interval of 7 seconds. A 13 C-NMR spectrum was obtained under the conditions of a sample rotation rate of 20 Hz, and an integration count of 5000 times.

<成分(A1)または、成分(A1)と成分(A2)からなる重合混合物中の総エチレン量>
上記で得られたスペクトルを用いて、Kakugo,Y.Naito、K.Mizunuma and T.Miyatake、Macromolecules、15、1150-1152(1982)の文献に記載された方法により、試料の総エチレン量(重量%)を求めた。成分(A1)を試料として測定する場合、上記の総エチレン量が成分(A1)のエチレン由来単位の含有量となる。
<Total amount of ethylene in component (A1) or the polymerization mixture consisting of component (A1) and component (A2)>
Using the spectrum obtained above, the total ethylene content (weight %) was calculated. When measuring component (A1) as a sample, the above-mentioned total ethylene amount is the content of ethylene-derived units in component (A1).

<成分(A2)のコポリマー中のエチレン由来単位の含有量>
上記で得られたTββの積分強度の替わりに下記式で求めた積分強度を使用した以外は、総エチレン量と同様の方法で計算を行い、コポリマー中のエチレン由来単位の含有量を求めた。
T’ββ= 0.98×Sαγ×A/(1-0.98×A)
ここで、A= Sαγ/(Sαγ+Sαδ)
<Content of ethylene-derived units in the copolymer of component (A2)>
The content of ethylene-derived units in the copolymer was determined by calculating in the same manner as the total ethylene amount, except that the integrated intensity determined by the following formula was used instead of the integrated intensity of Tββ obtained above.
T'ββ= 0.98×Sαγ×A/(1-0.98×A)
Here, A= Sαγ/(Sαγ+Sαδ)

<成分(A1)と成分(A2)からなる重合混合物における成分(A2)のコポリマーの含有割合>
以下の式で求めた。
コポリマーの含有割合(重量%)=重合混合物の総エチレン量/(コポリマー中のエチレン由来単位の含有量/100)
<Content ratio of copolymer of component (A2) in the polymerization mixture consisting of component (A1) and component (A2)>
It was calculated using the following formula.
Copolymer content (wt%) = total ethylene content of polymerization mixture/(content of ethylene-derived units in copolymer/100)

<重合混合物のキシレン可溶分の極限粘度(XSIV)>
以下の方法によって重合混合物のキシレン可溶分を得て、キシレン可溶分の極限粘度(XSIV)を測定した。
重合混合物100質量部と、酸化防止剤(BASF社製B225)0.1質量部と、中和剤(淡南化学工業株式会社製カルシウムステアレート)0.05質量部とを混合して溶融混練用混合物を得た後、押出機により溶融混練して均一化した試料を得た。得られた試料2.5gを、o-キシレン(溶媒)を250mL入れたフラスコに入れ、ホットプレートおよび還流装置を用いて、135℃で、窒素パージを行いながら、30分間撹拌し、樹脂組成物を完全溶解させた後、25℃で1時間、冷却した。これにより得られた溶液を、濾紙を用いて濾過した。濾過後の濾液を100mL採取し、アルミニウムカップ等に移し、窒素パージを行いながら、140℃で蒸発乾固を行い、室温で30分間静置して、キシレン可溶分を得た。極限粘度は、テトラヒドロナフタレン中、135℃において毛細管自動粘度測定装置(SS-780-H1、株式会社柴山科学器械製作所製)を用いて測定した。
<Intrinsic viscosity (XSIV) of the xylene soluble portion of the polymerization mixture>
A xylene soluble component of the polymerization mixture was obtained by the following method, and the intrinsic viscosity (XSIV) of the xylene soluble component was measured.
100 parts by mass of the polymerization mixture, 0.1 part by mass of an antioxidant (B225 manufactured by BASF), and 0.05 parts by mass of a neutralizing agent (calcium stearate manufactured by Tannan Kagaku Kogyo Co., Ltd.) were mixed and melt-kneaded. After obtaining the mixture, it was melt-kneaded using an extruder to obtain a homogenized sample. 2.5 g of the obtained sample was placed in a flask containing 250 mL of o-xylene (solvent), and stirred for 30 minutes at 135°C using a hot plate and a reflux device while purging with nitrogen. After completely dissolving, the mixture was cooled at 25° C. for 1 hour. The resulting solution was filtered using filter paper. 100 mL of the filtrate after filtration was collected, transferred to an aluminum cup, etc., and evaporated to dryness at 140°C while purging with nitrogen, and left standing at room temperature for 30 minutes to obtain a xylene soluble content. The intrinsic viscosity was measured in tetrahydronaphthalene at 135° C. using an automatic capillary viscosity measuring device (SS-780-H1, manufactured by Shibayama Scientific Instruments Co., Ltd.).

Claims (12)

層Fと層Nとを含む多層二軸延伸フィルムであって、
前記層Fは成分(A)と(B)とを含む樹脂組成物から形成され、
前記成分(A)は、成分(A1)および任意の成分(A2)からなるポリプロピレン系樹脂であり、
成分(A1)はエチレン、C4~C10-α-オレフィン、およびこれらの組合せからなる群より選択されるコモノマー由来単位を0~1重量%含むプロピレン(共)重合体100~60重量%、
成分(A2)はエチレン由来単位を10~90重量%含むエチレン-α-オレフィン共重合体0~40重量%であり、
成分(A)のMFR(230℃、荷重2.16kg)が0.1~15g/10分であり、
成分(B)は無機充填材であり、
前記層Fにおける成分(B)/[成分(A)+成分(B)]の重量比が0.5~60重量%であり、
前記層Nは熱可塑性樹脂と任意に前記成分(B)とを含む樹脂組成物から形成され、
成分(B)/[熱可塑性樹脂+成分(B)]の重量比が0~10重量%であり、
前記多層二軸延伸フィルムの前駆体である原反シートにおける層Fに相当する層(層f)および層Nに相当する層(層n)の融点をそれぞれTmfおよびTmnとするとき、
Tmf-Tmn≦60℃の関係を満たす、
多層二軸延伸フィルム。
A multilayer biaxially stretched film comprising layer F and layer N,
The layer F is formed from a resin composition containing components (A) and (B),
The component (A) is a polypropylene resin consisting of component (A1) and optional component (A2),
Component (A1) is 100 to 60% by weight of a propylene (co)polymer containing 0 to 1% by weight of units derived from comonomers selected from the group consisting of ethylene, C4 to C10-α-olefins, and combinations thereof;
Component (A2) is 0 to 40% by weight of an ethylene-α-olefin copolymer containing 10 to 90% by weight of ethylene-derived units,
The MFR (230°C, load 2.16 kg) of component (A) is 0.1 to 15 g/10 minutes,
Component (B) is an inorganic filler,
The weight ratio of component (B)/[component (A) + component (B)] in the layer F is 0.5 to 60% by weight,
The layer N is formed from a resin composition containing a thermoplastic resin and optionally the component (B),
The weight ratio of component (B)/[thermoplastic resin + component (B)] is 0 to 10% by weight,
When the melting points of a layer corresponding to layer F (layer f) and a layer corresponding to layer N (layer n) in the raw sheet that is the precursor of the multilayer biaxially stretched film are Tmf and Tmn, respectively,
Satisfying the relationship Tmf-Tmn≦60°C,
Multilayer biaxially stretched film.
前記熱可塑性樹脂がポリプロピレン系樹脂である、請求項1に記載の多層二軸延伸フィルム。 The multilayer biaxially stretched film according to claim 1, wherein the thermoplastic resin is a polypropylene resin. 前記無機充填材が板状無機充填材である、請求項1または2に記載の多層二軸延伸フィルム。 The multilayer biaxially stretched film according to claim 1 or 2 , wherein the inorganic filler is a plate-shaped inorganic filler. 前記板状無機充填材がタルクである、請求項に記載の多層二軸延伸フィルム。 The multilayer biaxially stretched film according to claim 3 , wherein the plate-like inorganic filler is talc. 前記層Fにおける成分(B)/[成分(A)+成分(B)]の重量比が20~55重量%である、請求項1~のいずれかに記載の多層二軸延伸フィルム。 The multilayer biaxially stretched film according to any one of claims 1 to 4 , wherein the weight ratio of component (B)/[component (A) + component (B)] in the layer F is 20 to 55% by weight. 層N/層F/層Nの構造を備え、
当該構造における厚さ比が(0.05~1.2)/1/(0.05~1.2)である、
請求項1~のいずれかに記載の多層二軸延伸フィルム。
Comprising a layer N/layer F/layer N structure,
The thickness ratio in the structure is (0.05 to 1.2)/1/(0.05 to 1.2),
The multilayer biaxially stretched film according to any one of claims 1 to 5 .
層N/層Fの構造を備え、
当該構造における厚さ比が1/(1~10)である、請求項1~のいずれかに記載の多層二軸延伸フィルム。
having a structure of layer N/layer F,
The multilayer biaxially stretched film according to any one of claims 1 to 5 , wherein the thickness ratio in the structure is 1/(1 to 10).
層F/層N/層Fの構造を備え、
当該構造における厚さ比が(1~5)/1/(1~5)である、請求項1~のいずれかに記載の多層二軸延伸フィルム。
Comprising a layer F/layer N/layer F structure,
The multilayer biaxially stretched film according to any one of claims 1 to 5, wherein the thickness ratio in the structure is (1 to 5)/1/(1 to 5 ).
層Nの総厚さ/[層Nの総厚さ+層Fの総厚さ]の比が0.01~0.6である、請求項1~のいずれかに記載の多層二軸延伸フィルム。 The multilayer biaxial stretching according to any one of claims 1 to 8 , wherein the ratio of total thickness of layer N/[total thickness of layer N + total thickness of layer F] is 0.01 to 0.6. film. 請求項1~のいずれかに記載の多層二軸延伸フィルムの製造方法であって、
原反シートとして、前記層fと、前記層nとを含む共押出シートを調製する工程1、および
前記原反シートを、以下を満たす温度T(℃)で二軸延伸する工程2
-3≦T-Tmf≦3
(Tmfは原反シートにおける層fの融点(℃)である)
を備える、製造方法。
A method for producing a multilayer biaxially stretched film according to any one of claims 1 to 9 , comprising:
Step 1 of preparing a coextrusion sheet containing the layer f and the layer n as a raw sheet, and Step 2 of biaxially stretching the raw sheet at a temperature T (° C.) that satisfies the following:
-3≦T-Tmf≦3
(Tmf is the melting point (°C) of layer f in the original sheet)
A manufacturing method comprising:
前記工程1が、成分(A)と(B)とを多軸機溶融混練することを含む、請求項10に記載の製造方法。 The manufacturing method according to claim 10 , wherein the step 1 includes melt-kneading components (A) and (B) in a multi-shaft machine. 請求項10または11に記載の方法で製造された、多層二軸延伸フィルム。 A multilayer biaxially stretched film produced by the method according to claim 10 or 11 .
JP2019221654A 2019-12-06 2019-12-06 Polypropylene multilayer stretched film and its manufacturing method Active JP7397642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019221654A JP7397642B2 (en) 2019-12-06 2019-12-06 Polypropylene multilayer stretched film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019221654A JP7397642B2 (en) 2019-12-06 2019-12-06 Polypropylene multilayer stretched film and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021091115A JP2021091115A (en) 2021-06-17
JP7397642B2 true JP7397642B2 (en) 2023-12-13

Family

ID=76311402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019221654A Active JP7397642B2 (en) 2019-12-06 2019-12-06 Polypropylene multilayer stretched film and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7397642B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204293A1 (en) * 2022-04-21 2023-10-26 サンアロマー株式会社 Polymer molded body comprising base part and surface layer part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191410A (en) 2001-12-28 2003-07-08 Tohcello Co Ltd Biaxially oriented laminated polypropylene film
JP2006095954A (en) 2004-09-30 2006-04-13 Sumitomo Chemical Co Ltd Polypropylene based oriented film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195837A (en) * 1985-02-25 1986-08-30 三菱油化株式会社 Laminated polypropylene film
JP2659765B2 (en) * 1988-08-22 1997-09-30 王子油化合成紙株式会社 Multi-layer resin film
JP2753066B2 (en) * 1989-08-31 1998-05-18 王子油化合成紙株式会社 Synthetic paper made of multilayer resin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191410A (en) 2001-12-28 2003-07-08 Tohcello Co Ltd Biaxially oriented laminated polypropylene film
JP2006095954A (en) 2004-09-30 2006-04-13 Sumitomo Chemical Co Ltd Polypropylene based oriented film

Also Published As

Publication number Publication date
JP2021091115A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
KR101687329B1 (en) Compatibilized polypropylene and polylactic acid blends and methods of making and using same
JP7372129B2 (en) Polypropylene multilayer sheet and its manufacturing method
JP7397642B2 (en) Polypropylene multilayer stretched film and its manufacturing method
KR20080089611A (en) Monolayer polypropylene film and use thereof
JP2012229303A (en) Propylenic resin composition, and injection molding thereof
JP4495602B2 (en) Biaxially oriented polypropylene multilayer film
JP7329153B2 (en) Polypropylene multilayer sheet
JP7497152B2 (en) Polypropylene-based monolayer stretched film and its manufacturing method
JP7329154B2 (en) Polypropylene multilayer sheet
JP6942530B2 (en) Multi-layer biaxially stretched film and transfer film
JP2017105174A (en) Multilayer film
WO2023127973A1 (en) Sheet for easily peelable layers
JP4507807B2 (en) Polypropylene resin composition and film comprising the same
JP2021161381A (en) Biaxially stretched film, multilayer film, packaging bag, and manufacturing method of biaxially stretched film
JP2017165928A (en) Thermoplastic resin composition and molded body obtained from the same
WO2023127972A1 (en) Polypropylene multi-layer sheet
WO2023204293A1 (en) Polymer molded body comprising base part and surface layer part
JP4239067B2 (en) Laminated polypropylene resin film and package using the same
JP4457594B2 (en) Polypropylene composition and film comprising the same
WO1999057195A9 (en) Molded polypropylene
WO2023132306A1 (en) Non-oriented film, sealant film, and multilayered sealant film
BR112023009062B1 (en) MULTILAYER POLYPROPYLENE FILM, METHOD FOR PRODUCING MULTILAYER POLYPROPYLENE FILM, CONFORMED ARTICLE AND PRECURSOR OF MULTILAYER POLYPROPYLENE FILM
JPH06218892A (en) Laminated film
JP2000218745A (en) Polyethylene laminated film
WO2024116962A1 (en) Resin composition, multilayer body and packaging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231201

R150 Certificate of patent or registration of utility model

Ref document number: 7397642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150