JPH0229615B2 - - Google Patents
Info
- Publication number
- JPH0229615B2 JPH0229615B2 JP56145010A JP14501081A JPH0229615B2 JP H0229615 B2 JPH0229615 B2 JP H0229615B2 JP 56145010 A JP56145010 A JP 56145010A JP 14501081 A JP14501081 A JP 14501081A JP H0229615 B2 JPH0229615 B2 JP H0229615B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- fibers
- silica
- ceramic
- alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 41
- 239000000377 silicon dioxide Substances 0.000 claims description 21
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000012784 inorganic fiber Substances 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 239000000835 fiber Substances 0.000 description 73
- 239000000919 ceramic Substances 0.000 description 31
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 14
- 229910044991 metal oxide Inorganic materials 0.000 description 13
- 150000004706 metal oxides Chemical class 0.000 description 13
- 239000002994 raw material Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 6
- 229910052863 mullite Inorganic materials 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 235000019504 cigarettes Nutrition 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000011651 chromium Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012210 heat-resistant fiber Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011222 crystalline ceramic Substances 0.000 description 1
- 229910002106 crystalline ceramic Inorganic materials 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Inorganic Fibers (AREA)
Description
この発明は耐熱性無機質繊維に関する。耐熱性
無機質繊維の最も一般的なものは通常セラミツク
フアイバーと称されるもので、アルミナとシリカ
より成りガラス質で平均約3μmの直径の繊維か
らなる。
近年、石油の節約の要請から各種工業窯炉にお
いても省エネルギー対策を講ずるようになつて来
て、炉壁へのセラミツクフアイバーの採用が急速
に普及しそれ相応の成果を挙げているが、一方で
はセラミツクフアイバーを用いた炉壁の層状剥
離、目地開きや亀裂の発生、炉壁や天井の部分的
或いは全面的な崩落などの事故の発生しているこ
とも事実である。これらの事故の原因を探つてみ
ると、使用したセラミツクフアイバー製品の耐熱
性が、その使用された環境条件で要求されている
水準に達していないこと、換言すれば使用条件が
セラミツクフアイバーにとつて厳しすぎること
が、多くの場合結論として指摘されてきた。セラ
ミツクフアイバーはガラス質材料であるから、加
熱されるとより安定な構造である結晶へ変態し、
これに伴つて繊維の収縮、強度の劣化が起り、こ
の繊維の集合体であるセラミツクフアイバー製品
の収縮、弾力性低下が生ずることになる。この現
象に関する発表や文献は多いが、その中の代表的
なものを示せば、Leonard E.Olds、Williom C.
Miller、John M.Pallo、“Hish Temperature
Alumina−Silicate Fibers Stabilized with
Cr2O3 Ceramic Bulletin、59、7、739−741
(1980)である。Oldsらはこの中で従来のアルミ
ナ−シリカ質セラミツクフアイバーとこれにクロ
ミアを3〜4%含有したセラミツクフアイバー
(クロミア安定化セラミツクフアイバー)との比
較を行つてセラミツクフアイバーの変質及びクロ
ミアの安定化作用とその効果を解明した。その結
果、クロミアの効果は、繊維の結晶化を遅延ない
し予防するものではなく、繊維間の接点で起る焼
結を防止するものであるとの注目すべき事実を発
見し、従来考えられていた結晶化が繊維及びその
集合体としてその製品の劣化をきたすという説を
覆した。しかしながら、Oldsらが試験に供した
クロミア含有アルミナ−シリカ質セラミツクフア
イバーも、その耐熱性が従来のアルミナ−シリカ
質のものより向上したとはいうものの、尚今日要
請されている厳しい使用条件に満足して適応でき
るものとは言に難いものである。そこで今日で
は、全く別の方法で造られた結晶質繊維が高価で
あるにも拘らず必要な個所に採用されざるを得な
い現状にある。この製品は微細結晶より構成され
ており、例えば英国のImperial Chemical
Industries Ltd.の「サフイル」と称されるアルミ
ナ質繊維、本出願人会社の「フアイバーマツク
ス」と称するムライト質繊維である。これらのク
ロミア含有セラミツクフアイバーB、ムライト質
結晶質繊維Cを、アルミナ−シリカ質セラミツク
フアイバーAと対比して、その熱膨張、収縮率
(繊維長線変化率)で示したのが第1図である。
この実験は、各フアイバー1本毎にその端部に錘
りをつりさげて垂直に保ち、これをいづれも昇温
速度3℃/minで昇温して各繊維の膨張或いは収
縮率を測定したものである。第1図からも明らか
なように、アルミナ−シリカ質セラミツクフアイ
バー、クロミア含有セラミツクフアイバーのいづ
れもが950℃附近で急激な繊維の収縮を起してい
る。これに対しムライト結晶質繊維の場合は1000
℃までほとんど膨張、収縮はなく、1400℃で約
3.3%の膨張をしている。アルミナ−シリカ質セ
ラミツクフアイバーにおける収縮の原因の究明の
ために、発明者らは外に多数の実験を行つたが、
その結果これはムライト結晶の晶出と深い関係の
あることが認められ、ムライトの晶出をもたらす
ような組成ではいづれも950℃における繊維の急
激な収縮を防止し得ないとの結論に達した。そこ
で発明者らは更に研究を重ねたが、まず石英ガラ
スが高温での粘性の低下が少なく、他の耐熱ガラ
スよりも安定であることに着目し、しかもそこで
のアルミナに代る添加物を各種の実験を重ねなが
ら探究していたところ、ここに、周期率表第4周
期の第5ないし第8族に属する金属の酸化物を前
記石英ガラスに配合した基本組成の原料から従来
と同等またはその以上の耐熱性繊維の得られるこ
とを見出した。しかも上記原料を用いると、在来
のセラミツクフアイバーの製造に用いられたと同
一な工程および装置の用いられることも確認さ
れ、最終的にこの発明を完成したものである。
即ちこの発明は、V、Fe、Co、Ni、Cr、Mn
の酸化物の1種または2種以上を4〜30モル%、
シリカを70〜90モル%、CaO、MgO、TiO2、
Al2O3の1種または2種以上を0〜26モル%含
み、全体が均一なガラス質であることを特徴とす
る耐熱性無機質繊維である。
以下にこの発明を説明する。
本発明の基本成分はシリカと周期律表の第4周
期の第族ないし第族に属する金属、即ちV、
Cr、Mn、Fe、Co及びNiの酸化物(以下、金属
酸化物という)である。シリカにこの金属酸化物
を4〜30モル%混合することにより、繊維の耐熱
性を大巾に向上させるとともに溶融状態にあるシ
リカに電気伝導性を与える。即ち、シリカは溶融
状態にでも大きな電気抵抗を有するが、これに上
記金属酸化物を配合することによつて電気伝導性
を与え電気炉での溶解を容易にすることが出来
る。シリカは70モル%未満となると金属酸化物及
び後述する第3成分の量を増大させ、逆にシリカ
の量が低減してガラスの安定性が低下し、金属酸
化物の結晶が晶出し易くなつてシヨツトが大量に
生成し繊維の収率が低下して来る。また耐熱性も
乏しくなる。一方シリカが90モル%を越えると融
液の粘性が大きくなつて電気炉より液を流出させ
ることが出来なくなる。本発明によつて得られた
繊維は、常温において或いはこれが加熱される以
前、大部分の金属酸化物はガラスの1成分を構成
し、或いは石英ガラス中に溶融した状態にあり、
固相として存在するものはごく僅かである。従つ
て、金属酸化物とシリカより成るガラスの耐熱性
を著るしく阻害することなく、かつこのガラスを
安定化させる働きをなす第3成分を更に原料に添
加することは一向に差支えない。かかる第3成分
としてはカルシア(CaO)、マグネシア(MgO)、
チタニア(TiO2)及びアルミナ(Al2O3)の1種
または2種以上の組合わせがあり、これらを金属
酸化物及びシリカの量を上記に規制した範囲とし
たうえで用いると相応の効果を発揮する。上記の
原料混合物は在来のセラミツクフアイバーの製造
の方式と全く同じ方法で繊維化される。即ち、原
料を米国特許属2686821号明細書に開示されてい
るような構造の電気炉で溶解し、湯出し口より流
出させた溶融物を、米国特許第3476324号明細書
で開示するノズルを用いて空気又は蒸気で吹き飛
ばし繊維化させるものである。
本発明の構成は以上の通りであるが、これによ
れば得られたセラミツクフアイバーは従来のアル
ミナ−シリカ質セラミツクフアイバー或いは米国
特許第3449137号に開示されたクロミアを原料中
に配合したアルミナ−シリカ質セラミツクフアイ
バーよりも明らかに耐熱性が改善したものとする
ことが出来た。
なお、本発明者がこの発明の効果の確認のため
用いた試験はシガレツトガスライターによる簡易
耐熱試験、繊維長変化率の測定、ブランケツトの
線収縮率試験などである。まずシガレツトガスラ
イターによる簡易耐熱試験は、シガレツトガスラ
イターの焔に耐熱性繊維を直接近かづけるもので
ある。この試験によつて従来のアルミナ−シリカ
質セラミツクフアイバーは全て端部から収縮して
見えなくなつてしまうので、この試験で本発明品
と従来品との優劣を簡単に判別することができ
る。次の繊維長の変化測定は、1本の繊維を昇温
加熱しながらその繊維の膨張、収縮を測定するも
のであるが、その場合繊維を吊り下げる支持棒と
して白金線を用い、繊維をほぼ垂直に保つために
繊維先端にシヨツト(shot)が附着したものを選
んでこのシヨツトを錘りとし、シヨツトのない繊
維にはセラミツクフアイバーの微粉末をコイルダ
ルシリカ液中に懸濁させてコーテイングセメント
の一滴を先端に付着させ、乾燥したものを用い
た。最後のブランケツト製品の線収縮率の測定で
は一部の繊維試料を水中で撹拌して大部分のシヨ
ツトを除去したのち、常法に従つてブランケツト
に形成し、その加熱線収縮率を測定した。以下に
実施例を示して本発明を更に説明する。
実施例 1
(金属酸化物としてクロミアを用いた場合)
原料として、シリカ源はオーストラリア産フリ
マントル珪砂、クロミアはPfzer−Quigley社製
のAecrox−R(商品名)、アルミナは住友化学社
製A−21(商品名)、その他は市販の工業薬品を用
いた。
上記原料を湯出し口幅25mmの電気炉で溶融し、
電気炉を傾斜させてここから徐々に溶融物を流出
させながら米国特許第3426324号に示されている
ノズルを用いて圧縮空気で吹き飛ばし繊維化し
た。圧縮空気は750Kg/cm2、容量10m3/minとし
た。繊維は金属で囲つた集綿室で集綿した。繊維
のシヨツト量は比較的少なく、X線回折分析の結
果結晶質の存在は認められなかつた。繊維の一部
をとり、これにシガレツトガスライターの焔を近
づけ、その際焔中でも肉眼的に収縮が認められな
いものを「優」とし、僅かな収縮が認められる
が、従来のセラミツクフアイバーよりもその程度
が大巾に少ないと認められるものを「良」とし
た。外に軟化温度、ブランケツト収縮率等につい
ても測定しその結果を第1表に示した。なお繊維
長変化率の測定結果は第2図A〜Kとして示し
た。
This invention relates to heat-resistant inorganic fibers. The most common type of heat-resistant inorganic fiber is what is usually called ceramic fiber, which is made of alumina and silica, has a glassy quality, and has an average diameter of about 3 μm. In recent years, energy saving measures have been taken in various industrial furnaces due to the need to save oil, and the adoption of ceramic fibers for furnace walls has rapidly become widespread and has achieved corresponding results. It is also true that accidents have occurred in furnace walls using ceramic fibers, such as delamination, opening of joints and cracks, and partial or complete collapse of furnace walls and ceilings. Looking into the cause of these accidents, we found that the heat resistance of the ceramic fiber products used did not reach the level required by the environmental conditions in which they were used; in other words, the usage conditions were not suitable for ceramic fibers. The conclusion has often been that it is too harsh. Ceramic fiber is a glassy material, so when heated, it transforms into a more stable crystal structure.
As a result, the fibers shrink and their strength deteriorates, causing shrinkage and a decrease in elasticity of the ceramic fiber product, which is an aggregate of these fibers. There are many publications and documents regarding this phenomenon, but the most representative ones are Leonard E. Olds and William C.
Miller, John M. Pallo, “Hish Temperature
Alumina−Silicate Fibers Stabilized with
Cr2O3 Ceramic Bulletin, 59 , 7, 739-741
(1980). Olds et al. conducted a comparison between a conventional alumina-siliceous ceramic fiber and a ceramic fiber containing 3 to 4% chromia (chromia stabilized ceramic fiber), and investigated the deterioration of the ceramic fiber and the stabilizing effect of chromia. and its effects were clarified. As a result, we discovered the remarkable fact that the effect of chromia is not to delay or prevent fiber crystallization, but to prevent sintering that occurs at the contact points between fibers, which was previously thought. The theory that crystallization causes the deterioration of fibers and their aggregates has been overturned. However, although the chromia-containing alumina-silica ceramic fiber tested by Olds et al. had better heat resistance than the conventional alumina-silica fiber, it still satisfies the severe usage conditions required today. It is difficult to say that it is something that can be adapted. Therefore, today, crystalline fibers made by a completely different method have no choice but to be used where necessary, even though they are expensive. This product is composed of microcrystals, such as those manufactured by Imperial Chemical of the UK.
Industries Ltd.'s alumina fiber called "Safil" and the applicant's company's mullite fiber called "Fibermux". Figure 1 shows the thermal expansion and contraction rates (fiber length line change rate) of these chromia-containing ceramic fiber B and mullite crystalline fiber C in comparison with alumina-siliceous ceramic fiber A. .
In this experiment, a weight was hung from the end of each fiber to keep it vertical, and the temperature was raised at a heating rate of 3°C/min to measure the expansion or contraction rate of each fiber. It is something. As is clear from FIG. 1, both the alumina-siliceous ceramic fiber and the chromia-containing ceramic fiber undergo rapid fiber shrinkage at around 950°C. In contrast, 1000 for mullite crystalline fiber.
℃, there is almost no expansion or contraction, and at 1400℃ it is approximately
It has expanded by 3.3%. In order to investigate the cause of shrinkage in alumina-siliceous ceramic fibers, the inventors conducted numerous experiments.
As a result, it was recognized that this is closely related to the crystallization of mullite crystals, and it was concluded that any composition that causes the crystallization of mullite would not be able to prevent the rapid shrinkage of fibers at 950℃. . Therefore, the inventors conducted further research, and first, they focused on the fact that silica glass has less decrease in viscosity at high temperatures and is more stable than other heat-resistant glasses. As a result of repeated experiments, we discovered that a raw material with a basic composition in which oxides of metals belonging to Groups 5 to 8 of the fourth period of the periodic table were blended with the quartz glass was equivalent to or better than the conventional one. It has been found that the above heat-resistant fibers can be obtained. Furthermore, it was confirmed that by using the above raw materials, the same process and equipment as used for manufacturing conventional ceramic fibers could be used, and this invention was finally completed. That is, this invention can be applied to V, Fe, Co, Ni, Cr, Mn.
4 to 30 mol% of one or more oxides of
70-90 mol% silica, CaO, MgO, TiO2 ,
It is a heat-resistant inorganic fiber containing 0 to 26 mol% of one or more types of Al 2 O 3 and having a uniform glassy appearance throughout. This invention will be explained below. The basic ingredients of the present invention are silica and a metal belonging to Group 4 or Group 4 of the periodic table, namely V,
These are oxides of Cr, Mn, Fe, Co, and Ni (hereinafter referred to as metal oxides). By mixing 4 to 30 mol% of this metal oxide with silica, the heat resistance of the fibers is greatly improved and the molten silica is given electrical conductivity. That is, silica has a large electrical resistance even in a molten state, but by blending the metal oxide with it, it can be imparted with electrical conductivity and can be easily melted in an electric furnace. When silica is less than 70 mol%, the amount of metal oxide and the third component described below increases, and conversely, the amount of silica decreases, resulting in a decrease in the stability of the glass and the tendency for metal oxide crystals to crystallize. As a result, a large amount of shots are produced and the yield of fibers is reduced. Also, heat resistance becomes poor. On the other hand, if the silica content exceeds 90 mol%, the viscosity of the melt increases and the melt cannot flow out from the electric furnace. In the fiber obtained by the present invention, at room temperature or before it is heated, most of the metal oxides constitute one component of glass or are in a state of being fused in quartz glass,
Only a small amount exists as a solid phase. Therefore, there is no problem in adding a third component to the raw material which serves to stabilize the glass without significantly impeding the heat resistance of the glass made of metal oxide and silica. Such third components include calcia (CaO), magnesia (MgO),
There are one type or a combination of two or more of titania (TiO 2 ) and alumina (Al 2 O 3 ), and when these are used with the amounts of metal oxide and silica within the above-regulated ranges, appropriate effects can be obtained. demonstrate. The above raw material mixture is made into fibers in exactly the same manner as in the production of conventional ceramic fibers. That is, raw materials are melted in an electric furnace having a structure as disclosed in U.S. Pat. The material is then blown away with air or steam to form fibers. The structure of the present invention is as described above, and the obtained ceramic fiber is either a conventional alumina-silica ceramic fiber or an alumina-silica fiber containing chromia as a raw material as disclosed in U.S. Pat. No. 3,449,137. The heat resistance was clearly improved compared to high-quality ceramic fiber. The tests used by the present inventor to confirm the effects of the present invention include a simple heat resistance test using a cigarette lighter, measurement of the fiber length change rate, and a blanket linear shrinkage test. First, a simple heat resistance test using a cigarette lighter involves bringing heat-resistant fibers directly close to the flame of a cigarette lighter. By this test, all the conventional alumina-silica ceramic fibers shrink from the ends and become invisible, so that the superiority or inferiority of the products of the present invention and the conventional products can be easily determined by this test. The next measurement of changes in fiber length involves measuring the expansion and contraction of a single fiber while heating it. In order to keep the fibers vertical, fibers with shots attached to their ends are selected and used as weights.Fibers without shots are coated with coating cement by suspending fine ceramic fiber powder in coiled silica liquid. A drop of was applied to the tip and dried. Finally, to measure the linear shrinkage rate of the blanket product, some of the fiber samples were stirred in water to remove most of the shots, and then formed into a blanket using a conventional method, and the linear shrinkage rate was measured. The present invention will be further explained by showing examples below. Example 1 (When chromia is used as the metal oxide) As raw materials, the silica source is Australian Fremantle silica sand, the chromia is Aecrox-R (trade name) manufactured by Pfzer-Quigley, and the alumina is A- manufactured by Sumitomo Chemical. 21 (trade name), and other commercially available industrial chemicals were used. The above raw materials are melted in an electric furnace with a tap width of 25 mm,
While the electric furnace was tilted and the melt gradually flowed out, it was blown away with compressed air using a nozzle shown in US Pat. No. 3,426,324 to form fibers. The compressed air was 750Kg/cm 2 and the capacity was 10m 3 /min. The fibers were collected in a collection room surrounded by metal. The amount of fiber shots was relatively small, and as a result of X-ray diffraction analysis, no crystalline material was observed. Take a part of the fiber and bring it close to the flame of a cigarette gas lighter.If there is no visible shrinkage even in the flame, it is rated as "excellent."Slight shrinkage is observed, but it is better than conventional ceramic fiber. However, those that were recognized to have a significantly lower level of severity were rated "good." In addition, the softening temperature, blanket shrinkage rate, etc. were also measured and the results are shown in Table 1. The measurement results of the rate of change in fiber length are shown in FIGS. 2A to 2K.
【表】【table】
【表】
実施例 2
(金属酸化物がクロミアと酸化鉄である場合)
金属酸化物としてインド産クロム鉱石を用い
た。その化学分析値は次の通りであつた。[Table] Example 2 (When the metal oxides are chromia and iron oxide) Chromium ore from India was used as the metal oxide. The chemical analysis values were as follows.
【表】
これ以外は実施例1と同様にして繊維を造り、
実施例1と同様に試験した。結果を次表に示す。[Table] Other than this, fibers were made in the same manner as in Example 1.
The test was conducted in the same manner as in Example 1. The results are shown in the table below.
【表】
なお繊維長変化率の測定結果を第3図a〜hと
して示した。
実施例 4
(その他の金属の酸化物の場合)
酸化コバルト、五酸化バナジウム、酸化ニツケ
ル、酸化鉄を金属酸化物として用い実施例1、2
と同様の実験をした。結果を第4表に示した。な
お、No.5、No.6はシリカが本発明の範囲内にない
もので比較例として示した。またこれらの繊維長
変化率は第4図イ〜ヌで示した。[Table] The measurement results of the fiber length change rate are shown in Figure 3 a to h. Example 4 (In the case of other metal oxides) Examples 1 and 2 using cobalt oxide, vanadium pentoxide, nickel oxide, and iron oxide as metal oxides
conducted a similar experiment. The results are shown in Table 4. Incidentally, No. 5 and No. 6 contained silica which was not within the scope of the present invention and were shown as comparative examples. Moreover, these fiber length change rates are shown in FIG.
第1図はアルミナ−シリカ質セラミツクフアイ
バーA、クロミア安定化セラミツクフアイバー
B、ムライト質結晶質セラミツクフアイバーCの
温度変化に対する繊維長変化率(%)を示す線
図、第2図A〜K及び第3図a〜hは、いづれも
この発明になるセラミツクフアイバーの温度変化
に対する繊維長変化率(%)を示す線図、第4図
イ〜ヌはホ,ヘを除き、いづれもこの発明になる
セラミツクフアイバーの温度変化に対する繊維長
変化率%を示す線図である。上記ホ,ヘは本発明
の比較例として示したセラミツクフアイバーの温
度変化に対する繊維長変化率を示す線図。
Figure 1 is a diagram showing the rate of change in fiber length (%) with respect to temperature change for alumina-siliceous ceramic fiber A, chromia stabilized ceramic fiber B, and mullite crystalline ceramic fiber C; Figures 2 A to K; Figures 3 a to h are graphs showing the fiber length change rate (%) with respect to temperature changes for ceramic fibers according to the present invention. FIG. 2 is a diagram showing the percentage change in fiber length with respect to temperature change of ceramic fiber. The above E and F are diagrams showing the fiber length change rate with respect to temperature change of the ceramic fiber shown as a comparative example of the present invention.
Claims (1)
または2種以上を4〜30モル%、シリカを70〜90
モル%、CaO、MgO、TiO2、Al2O3の1種また
は2種以上を0〜26モル%含み、全体が均一なガ
ラス質であることを特徴とする耐熱性無機質繊
維。1 4 to 30 mol% of one or more oxides of V, Fe, Co, Ni, Cr, Mn, 70 to 90% of silica
1. A heat-resistant inorganic fiber containing 0 to 26 mol % of one or more of CaO, MgO, TiO 2 , and Al 2 O 3 by mol %, and having a uniform glassy appearance as a whole.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14501081A JPS5846121A (en) | 1981-09-14 | 1981-09-14 | Heat-resistant inorganic fiber |
CA000411260A CA1189091A (en) | 1981-09-14 | 1982-09-13 | Heat-resistant inorganic fiber |
DE8282108434T DE3269411D1 (en) | 1981-09-14 | 1982-09-13 | Heat resistant inorganic fiber |
EP19820108434 EP0074655B1 (en) | 1981-09-14 | 1982-09-13 | Heat resistant inorganic fiber |
AU88370/82A AU540095B2 (en) | 1981-09-14 | 1982-09-14 | Silica based fibres |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14501081A JPS5846121A (en) | 1981-09-14 | 1981-09-14 | Heat-resistant inorganic fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5846121A JPS5846121A (en) | 1983-03-17 |
JPH0229615B2 true JPH0229615B2 (en) | 1990-07-02 |
Family
ID=15375353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14501081A Granted JPS5846121A (en) | 1981-09-14 | 1981-09-14 | Heat-resistant inorganic fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5846121A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102212976B1 (en) | 2013-03-15 | 2021-02-04 | 유니프랙스 아이 엘엘씨 | Inorganic fiber |
MX2017000670A (en) | 2014-07-16 | 2017-06-29 | Unifrax I Llc | Inorganic fiber with improved shrinkage and strength. |
CA3076663C (en) | 2017-10-10 | 2023-12-05 | Unifrax I Llc | Crystalline silica free low biopersistence inorganic fiber |
US10882779B2 (en) | 2018-05-25 | 2021-01-05 | Unifrax I Llc | Inorganic fiber |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5331711A (en) * | 1976-09-06 | 1978-03-25 | Kansai Hoon Kogyo Kk | Manufacture of inorganic porous mold products |
JPS53115711A (en) * | 1977-03-19 | 1978-10-09 | Kyushu Refractories | Silicaachrome base refractories |
JPS5626081A (en) * | 1979-08-03 | 1981-03-13 | Kuraray Co | Leather like sheet with good hydrolysis resistance and folded crepe and production |
-
1981
- 1981-09-14 JP JP14501081A patent/JPS5846121A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5331711A (en) * | 1976-09-06 | 1978-03-25 | Kansai Hoon Kogyo Kk | Manufacture of inorganic porous mold products |
JPS53115711A (en) * | 1977-03-19 | 1978-10-09 | Kyushu Refractories | Silicaachrome base refractories |
JPS5626081A (en) * | 1979-08-03 | 1981-03-13 | Kuraray Co | Leather like sheet with good hydrolysis resistance and folded crepe and production |
Also Published As
Publication number | Publication date |
---|---|
JPS5846121A (en) | 1983-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5270913B2 (en) | High electrical resistance high zirconia cast refractory | |
US5466643A (en) | High zirconia fused cast refractories | |
JP4658870B2 (en) | High electrical resistance high zirconia cast refractory | |
CN103496992B (en) | Chromium zirconium mullite refractory material and preparation method thereof | |
US3348956A (en) | Refractory fiber composition | |
US3007806A (en) | High silica refractory wools | |
CN107555971B (en) | High-resistivity electric-melting AZS brick at high temperature and preparation method thereof | |
FI79086B (en) | FOERFARANDE FOER UTNYTTJANDE AV SLAGG MED HOEG JAERNOXIDHALT FRAON METALLFRAMSTAELLNING. | |
CN104010989A (en) | Refractory product having a high content of zirconia | |
EP0074655B1 (en) | Heat resistant inorganic fiber | |
US2289211A (en) | Titanium oxide composition | |
JPH0229615B2 (en) | ||
JP3682888B2 (en) | High zirconia electroformed brick | |
US2674539A (en) | High temperature refractory products | |
US4483930A (en) | Ceramic fiber composition | |
Sheldon | Forming fibres from basalt rock | |
JPH0138073B2 (en) | ||
US2252981A (en) | Resistor and method of making same | |
DE2310618A1 (en) | FIRE-RESISTANT ALUMINUM SILICATE FIBER | |
US4751205A (en) | Thermally bonded fibrous product | |
JPS5913646A (en) | Inorganic fiber | |
TW202035334A (en) | High-alumina melt-casted refractory and method for manufacturing same | |
JPS5934150B2 (en) | Rod-shaped reinforcement material for monolithic refractories and its manufacturing method | |
JPH0444624B2 (en) | ||
JPH02502372A (en) | How to mix ferrochrome slag to produce fire-resistant and chemical-resistant fibers |