JPH0229615B2 - - Google Patents

Info

Publication number
JPH0229615B2
JPH0229615B2 JP56145010A JP14501081A JPH0229615B2 JP H0229615 B2 JPH0229615 B2 JP H0229615B2 JP 56145010 A JP56145010 A JP 56145010A JP 14501081 A JP14501081 A JP 14501081A JP H0229615 B2 JPH0229615 B2 JP H0229615B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
silica
ceramic
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56145010A
Other languages
Japanese (ja)
Other versions
JPS5846121A (en
Inventor
Yasuo Misu
Kimio Hirata
Shigeo Endo
Kenji Arai
Akira Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP14501081A priority Critical patent/JPS5846121A/en
Priority to CA000411260A priority patent/CA1189091A/en
Priority to DE8282108434T priority patent/DE3269411D1/en
Priority to EP19820108434 priority patent/EP0074655B1/en
Priority to AU88370/82A priority patent/AU540095B2/en
Publication of JPS5846121A publication Critical patent/JPS5846121A/en
Publication of JPH0229615B2 publication Critical patent/JPH0229615B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は耐熱性無機質繊維に関する。耐熱性
無機質繊維の最も一般的なものは通常セラミツク
フアイバーと称されるもので、アルミナとシリカ
より成りガラス質で平均約3μmの直径の繊維か
らなる。 近年、石油の節約の要請から各種工業窯炉にお
いても省エネルギー対策を講ずるようになつて来
て、炉壁へのセラミツクフアイバーの採用が急速
に普及しそれ相応の成果を挙げているが、一方で
はセラミツクフアイバーを用いた炉壁の層状剥
離、目地開きや亀裂の発生、炉壁や天井の部分的
或いは全面的な崩落などの事故の発生しているこ
とも事実である。これらの事故の原因を探つてみ
ると、使用したセラミツクフアイバー製品の耐熱
性が、その使用された環境条件で要求されている
水準に達していないこと、換言すれば使用条件が
セラミツクフアイバーにとつて厳しすぎること
が、多くの場合結論として指摘されてきた。セラ
ミツクフアイバーはガラス質材料であるから、加
熱されるとより安定な構造である結晶へ変態し、
これに伴つて繊維の収縮、強度の劣化が起り、こ
の繊維の集合体であるセラミツクフアイバー製品
の収縮、弾力性低下が生ずることになる。この現
象に関する発表や文献は多いが、その中の代表的
なものを示せば、Leonard E.Olds、Williom C.
Miller、John M.Pallo、“Hish Temperature
Alumina−Silicate Fibers Stabilized with
Cr2O3 Ceramic Bulletin、59、7、739−741
(1980)である。Oldsらはこの中で従来のアルミ
ナ−シリカ質セラミツクフアイバーとこれにクロ
ミアを3〜4%含有したセラミツクフアイバー
(クロミア安定化セラミツクフアイバー)との比
較を行つてセラミツクフアイバーの変質及びクロ
ミアの安定化作用とその効果を解明した。その結
果、クロミアの効果は、繊維の結晶化を遅延ない
し予防するものではなく、繊維間の接点で起る焼
結を防止するものであるとの注目すべき事実を発
見し、従来考えられていた結晶化が繊維及びその
集合体としてその製品の劣化をきたすという説を
覆した。しかしながら、Oldsらが試験に供した
クロミア含有アルミナ−シリカ質セラミツクフア
イバーも、その耐熱性が従来のアルミナ−シリカ
質のものより向上したとはいうものの、尚今日要
請されている厳しい使用条件に満足して適応でき
るものとは言に難いものである。そこで今日で
は、全く別の方法で造られた結晶質繊維が高価で
あるにも拘らず必要な個所に採用されざるを得な
い現状にある。この製品は微細結晶より構成され
ており、例えば英国のImperial Chemical
Industries Ltd.の「サフイル」と称されるアルミ
ナ質繊維、本出願人会社の「フアイバーマツク
ス」と称するムライト質繊維である。これらのク
ロミア含有セラミツクフアイバーB、ムライト質
結晶質繊維Cを、アルミナ−シリカ質セラミツク
フアイバーAと対比して、その熱膨張、収縮率
(繊維長線変化率)で示したのが第1図である。
この実験は、各フアイバー1本毎にその端部に錘
りをつりさげて垂直に保ち、これをいづれも昇温
速度3℃/minで昇温して各繊維の膨張或いは収
縮率を測定したものである。第1図からも明らか
なように、アルミナ−シリカ質セラミツクフアイ
バー、クロミア含有セラミツクフアイバーのいづ
れもが950℃附近で急激な繊維の収縮を起してい
る。これに対しムライト結晶質繊維の場合は1000
℃までほとんど膨張、収縮はなく、1400℃で約
3.3%の膨張をしている。アルミナ−シリカ質セ
ラミツクフアイバーにおける収縮の原因の究明の
ために、発明者らは外に多数の実験を行つたが、
その結果これはムライト結晶の晶出と深い関係の
あることが認められ、ムライトの晶出をもたらす
ような組成ではいづれも950℃における繊維の急
激な収縮を防止し得ないとの結論に達した。そこ
で発明者らは更に研究を重ねたが、まず石英ガラ
スが高温での粘性の低下が少なく、他の耐熱ガラ
スよりも安定であることに着目し、しかもそこで
のアルミナに代る添加物を各種の実験を重ねなが
ら探究していたところ、ここに、周期率表第4周
期の第5ないし第8族に属する金属の酸化物を前
記石英ガラスに配合した基本組成の原料から従来
と同等またはその以上の耐熱性繊維の得られるこ
とを見出した。しかも上記原料を用いると、在来
のセラミツクフアイバーの製造に用いられたと同
一な工程および装置の用いられることも確認さ
れ、最終的にこの発明を完成したものである。 即ちこの発明は、V、Fe、Co、Ni、Cr、Mn
の酸化物の1種または2種以上を4〜30モル%、
シリカを70〜90モル%、CaO、MgO、TiO2
Al2O3の1種または2種以上を0〜26モル%含
み、全体が均一なガラス質であることを特徴とす
る耐熱性無機質繊維である。 以下にこの発明を説明する。 本発明の基本成分はシリカと周期律表の第4周
期の第族ないし第族に属する金属、即ちV、
Cr、Mn、Fe、Co及びNiの酸化物(以下、金属
酸化物という)である。シリカにこの金属酸化物
を4〜30モル%混合することにより、繊維の耐熱
性を大巾に向上させるとともに溶融状態にあるシ
リカに電気伝導性を与える。即ち、シリカは溶融
状態にでも大きな電気抵抗を有するが、これに上
記金属酸化物を配合することによつて電気伝導性
を与え電気炉での溶解を容易にすることが出来
る。シリカは70モル%未満となると金属酸化物及
び後述する第3成分の量を増大させ、逆にシリカ
の量が低減してガラスの安定性が低下し、金属酸
化物の結晶が晶出し易くなつてシヨツトが大量に
生成し繊維の収率が低下して来る。また耐熱性も
乏しくなる。一方シリカが90モル%を越えると融
液の粘性が大きくなつて電気炉より液を流出させ
ることが出来なくなる。本発明によつて得られた
繊維は、常温において或いはこれが加熱される以
前、大部分の金属酸化物はガラスの1成分を構成
し、或いは石英ガラス中に溶融した状態にあり、
固相として存在するものはごく僅かである。従つ
て、金属酸化物とシリカより成るガラスの耐熱性
を著るしく阻害することなく、かつこのガラスを
安定化させる働きをなす第3成分を更に原料に添
加することは一向に差支えない。かかる第3成分
としてはカルシア(CaO)、マグネシア(MgO)、
チタニア(TiO2)及びアルミナ(Al2O3)の1種
または2種以上の組合わせがあり、これらを金属
酸化物及びシリカの量を上記に規制した範囲とし
たうえで用いると相応の効果を発揮する。上記の
原料混合物は在来のセラミツクフアイバーの製造
の方式と全く同じ方法で繊維化される。即ち、原
料を米国特許属2686821号明細書に開示されてい
るような構造の電気炉で溶解し、湯出し口より流
出させた溶融物を、米国特許第3476324号明細書
で開示するノズルを用いて空気又は蒸気で吹き飛
ばし繊維化させるものである。 本発明の構成は以上の通りであるが、これによ
れば得られたセラミツクフアイバーは従来のアル
ミナ−シリカ質セラミツクフアイバー或いは米国
特許第3449137号に開示されたクロミアを原料中
に配合したアルミナ−シリカ質セラミツクフアイ
バーよりも明らかに耐熱性が改善したものとする
ことが出来た。 なお、本発明者がこの発明の効果の確認のため
用いた試験はシガレツトガスライターによる簡易
耐熱試験、繊維長変化率の測定、ブランケツトの
線収縮率試験などである。まずシガレツトガスラ
イターによる簡易耐熱試験は、シガレツトガスラ
イターの焔に耐熱性繊維を直接近かづけるもので
ある。この試験によつて従来のアルミナ−シリカ
質セラミツクフアイバーは全て端部から収縮して
見えなくなつてしまうので、この試験で本発明品
と従来品との優劣を簡単に判別することができ
る。次の繊維長の変化測定は、1本の繊維を昇温
加熱しながらその繊維の膨張、収縮を測定するも
のであるが、その場合繊維を吊り下げる支持棒と
して白金線を用い、繊維をほぼ垂直に保つために
繊維先端にシヨツト(shot)が附着したものを選
んでこのシヨツトを錘りとし、シヨツトのない繊
維にはセラミツクフアイバーの微粉末をコイルダ
ルシリカ液中に懸濁させてコーテイングセメント
の一滴を先端に付着させ、乾燥したものを用い
た。最後のブランケツト製品の線収縮率の測定で
は一部の繊維試料を水中で撹拌して大部分のシヨ
ツトを除去したのち、常法に従つてブランケツト
に形成し、その加熱線収縮率を測定した。以下に
実施例を示して本発明を更に説明する。 実施例 1 (金属酸化物としてクロミアを用いた場合) 原料として、シリカ源はオーストラリア産フリ
マントル珪砂、クロミアはPfzer−Quigley社製
のAecrox−R(商品名)、アルミナは住友化学社
製A−21(商品名)、その他は市販の工業薬品を用
いた。 上記原料を湯出し口幅25mmの電気炉で溶融し、
電気炉を傾斜させてここから徐々に溶融物を流出
させながら米国特許第3426324号に示されている
ノズルを用いて圧縮空気で吹き飛ばし繊維化し
た。圧縮空気は750Kg/cm2、容量10m3/minとし
た。繊維は金属で囲つた集綿室で集綿した。繊維
のシヨツト量は比較的少なく、X線回折分析の結
果結晶質の存在は認められなかつた。繊維の一部
をとり、これにシガレツトガスライターの焔を近
づけ、その際焔中でも肉眼的に収縮が認められな
いものを「優」とし、僅かな収縮が認められる
が、従来のセラミツクフアイバーよりもその程度
が大巾に少ないと認められるものを「良」とし
た。外に軟化温度、ブランケツト収縮率等につい
ても測定しその結果を第1表に示した。なお繊維
長変化率の測定結果は第2図A〜Kとして示し
た。
This invention relates to heat-resistant inorganic fibers. The most common type of heat-resistant inorganic fiber is what is usually called ceramic fiber, which is made of alumina and silica, has a glassy quality, and has an average diameter of about 3 μm. In recent years, energy saving measures have been taken in various industrial furnaces due to the need to save oil, and the adoption of ceramic fibers for furnace walls has rapidly become widespread and has achieved corresponding results. It is also true that accidents have occurred in furnace walls using ceramic fibers, such as delamination, opening of joints and cracks, and partial or complete collapse of furnace walls and ceilings. Looking into the cause of these accidents, we found that the heat resistance of the ceramic fiber products used did not reach the level required by the environmental conditions in which they were used; in other words, the usage conditions were not suitable for ceramic fibers. The conclusion has often been that it is too harsh. Ceramic fiber is a glassy material, so when heated, it transforms into a more stable crystal structure.
As a result, the fibers shrink and their strength deteriorates, causing shrinkage and a decrease in elasticity of the ceramic fiber product, which is an aggregate of these fibers. There are many publications and documents regarding this phenomenon, but the most representative ones are Leonard E. Olds and William C.
Miller, John M. Pallo, “Hish Temperature
Alumina−Silicate Fibers Stabilized with
Cr2O3 Ceramic Bulletin, 59 , 7, 739-741
(1980). Olds et al. conducted a comparison between a conventional alumina-siliceous ceramic fiber and a ceramic fiber containing 3 to 4% chromia (chromia stabilized ceramic fiber), and investigated the deterioration of the ceramic fiber and the stabilizing effect of chromia. and its effects were clarified. As a result, we discovered the remarkable fact that the effect of chromia is not to delay or prevent fiber crystallization, but to prevent sintering that occurs at the contact points between fibers, which was previously thought. The theory that crystallization causes the deterioration of fibers and their aggregates has been overturned. However, although the chromia-containing alumina-silica ceramic fiber tested by Olds et al. had better heat resistance than the conventional alumina-silica fiber, it still satisfies the severe usage conditions required today. It is difficult to say that it is something that can be adapted. Therefore, today, crystalline fibers made by a completely different method have no choice but to be used where necessary, even though they are expensive. This product is composed of microcrystals, such as those manufactured by Imperial Chemical of the UK.
Industries Ltd.'s alumina fiber called "Safil" and the applicant's company's mullite fiber called "Fibermux". Figure 1 shows the thermal expansion and contraction rates (fiber length line change rate) of these chromia-containing ceramic fiber B and mullite crystalline fiber C in comparison with alumina-siliceous ceramic fiber A. .
In this experiment, a weight was hung from the end of each fiber to keep it vertical, and the temperature was raised at a heating rate of 3°C/min to measure the expansion or contraction rate of each fiber. It is something. As is clear from FIG. 1, both the alumina-siliceous ceramic fiber and the chromia-containing ceramic fiber undergo rapid fiber shrinkage at around 950°C. In contrast, 1000 for mullite crystalline fiber.
℃, there is almost no expansion or contraction, and at 1400℃ it is approximately
It has expanded by 3.3%. In order to investigate the cause of shrinkage in alumina-siliceous ceramic fibers, the inventors conducted numerous experiments.
As a result, it was recognized that this is closely related to the crystallization of mullite crystals, and it was concluded that any composition that causes the crystallization of mullite would not be able to prevent the rapid shrinkage of fibers at 950℃. . Therefore, the inventors conducted further research, and first, they focused on the fact that silica glass has less decrease in viscosity at high temperatures and is more stable than other heat-resistant glasses. As a result of repeated experiments, we discovered that a raw material with a basic composition in which oxides of metals belonging to Groups 5 to 8 of the fourth period of the periodic table were blended with the quartz glass was equivalent to or better than the conventional one. It has been found that the above heat-resistant fibers can be obtained. Furthermore, it was confirmed that by using the above raw materials, the same process and equipment as used for manufacturing conventional ceramic fibers could be used, and this invention was finally completed. That is, this invention can be applied to V, Fe, Co, Ni, Cr, Mn.
4 to 30 mol% of one or more oxides of
70-90 mol% silica, CaO, MgO, TiO2 ,
It is a heat-resistant inorganic fiber containing 0 to 26 mol% of one or more types of Al 2 O 3 and having a uniform glassy appearance throughout. This invention will be explained below. The basic ingredients of the present invention are silica and a metal belonging to Group 4 or Group 4 of the periodic table, namely V,
These are oxides of Cr, Mn, Fe, Co, and Ni (hereinafter referred to as metal oxides). By mixing 4 to 30 mol% of this metal oxide with silica, the heat resistance of the fibers is greatly improved and the molten silica is given electrical conductivity. That is, silica has a large electrical resistance even in a molten state, but by blending the metal oxide with it, it can be imparted with electrical conductivity and can be easily melted in an electric furnace. When silica is less than 70 mol%, the amount of metal oxide and the third component described below increases, and conversely, the amount of silica decreases, resulting in a decrease in the stability of the glass and the tendency for metal oxide crystals to crystallize. As a result, a large amount of shots are produced and the yield of fibers is reduced. Also, heat resistance becomes poor. On the other hand, if the silica content exceeds 90 mol%, the viscosity of the melt increases and the melt cannot flow out from the electric furnace. In the fiber obtained by the present invention, at room temperature or before it is heated, most of the metal oxides constitute one component of glass or are in a state of being fused in quartz glass,
Only a small amount exists as a solid phase. Therefore, there is no problem in adding a third component to the raw material which serves to stabilize the glass without significantly impeding the heat resistance of the glass made of metal oxide and silica. Such third components include calcia (CaO), magnesia (MgO),
There are one type or a combination of two or more of titania (TiO 2 ) and alumina (Al 2 O 3 ), and when these are used with the amounts of metal oxide and silica within the above-regulated ranges, appropriate effects can be obtained. demonstrate. The above raw material mixture is made into fibers in exactly the same manner as in the production of conventional ceramic fibers. That is, raw materials are melted in an electric furnace having a structure as disclosed in U.S. Pat. The material is then blown away with air or steam to form fibers. The structure of the present invention is as described above, and the obtained ceramic fiber is either a conventional alumina-silica ceramic fiber or an alumina-silica fiber containing chromia as a raw material as disclosed in U.S. Pat. No. 3,449,137. The heat resistance was clearly improved compared to high-quality ceramic fiber. The tests used by the present inventor to confirm the effects of the present invention include a simple heat resistance test using a cigarette lighter, measurement of the fiber length change rate, and a blanket linear shrinkage test. First, a simple heat resistance test using a cigarette lighter involves bringing heat-resistant fibers directly close to the flame of a cigarette lighter. By this test, all the conventional alumina-silica ceramic fibers shrink from the ends and become invisible, so that the superiority or inferiority of the products of the present invention and the conventional products can be easily determined by this test. The next measurement of changes in fiber length involves measuring the expansion and contraction of a single fiber while heating it. In order to keep the fibers vertical, fibers with shots attached to their ends are selected and used as weights.Fibers without shots are coated with coating cement by suspending fine ceramic fiber powder in coiled silica liquid. A drop of was applied to the tip and dried. Finally, to measure the linear shrinkage rate of the blanket product, some of the fiber samples were stirred in water to remove most of the shots, and then formed into a blanket using a conventional method, and the linear shrinkage rate was measured. The present invention will be further explained by showing examples below. Example 1 (When chromia is used as the metal oxide) As raw materials, the silica source is Australian Fremantle silica sand, the chromia is Aecrox-R (trade name) manufactured by Pfzer-Quigley, and the alumina is A- manufactured by Sumitomo Chemical. 21 (trade name), and other commercially available industrial chemicals were used. The above raw materials are melted in an electric furnace with a tap width of 25 mm,
While the electric furnace was tilted and the melt gradually flowed out, it was blown away with compressed air using a nozzle shown in US Pat. No. 3,426,324 to form fibers. The compressed air was 750Kg/cm 2 and the capacity was 10m 3 /min. The fibers were collected in a collection room surrounded by metal. The amount of fiber shots was relatively small, and as a result of X-ray diffraction analysis, no crystalline material was observed. Take a part of the fiber and bring it close to the flame of a cigarette gas lighter.If there is no visible shrinkage even in the flame, it is rated as "excellent."Slight shrinkage is observed, but it is better than conventional ceramic fiber. However, those that were recognized to have a significantly lower level of severity were rated "good." In addition, the softening temperature, blanket shrinkage rate, etc. were also measured and the results are shown in Table 1. The measurement results of the rate of change in fiber length are shown in FIGS. 2A to 2K.

【表】【table】

【表】 実施例 2 (金属酸化物がクロミアと酸化鉄である場合) 金属酸化物としてインド産クロム鉱石を用い
た。その化学分析値は次の通りであつた。
[Table] Example 2 (When the metal oxides are chromia and iron oxide) Chromium ore from India was used as the metal oxide. The chemical analysis values were as follows.

【表】 これ以外は実施例1と同様にして繊維を造り、
実施例1と同様に試験した。結果を次表に示す。
[Table] Other than this, fibers were made in the same manner as in Example 1.
The test was conducted in the same manner as in Example 1. The results are shown in the table below.

【表】 なお繊維長変化率の測定結果を第3図a〜hと
して示した。 実施例 4 (その他の金属の酸化物の場合) 酸化コバルト、五酸化バナジウム、酸化ニツケ
ル、酸化鉄を金属酸化物として用い実施例1、2
と同様の実験をした。結果を第4表に示した。な
お、No.5、No.6はシリカが本発明の範囲内にない
もので比較例として示した。またこれらの繊維長
変化率は第4図イ〜ヌで示した。
[Table] The measurement results of the fiber length change rate are shown in Figure 3 a to h. Example 4 (In the case of other metal oxides) Examples 1 and 2 using cobalt oxide, vanadium pentoxide, nickel oxide, and iron oxide as metal oxides
conducted a similar experiment. The results are shown in Table 4. Incidentally, No. 5 and No. 6 contained silica which was not within the scope of the present invention and were shown as comparative examples. Moreover, these fiber length change rates are shown in FIG.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はアルミナ−シリカ質セラミツクフアイ
バーA、クロミア安定化セラミツクフアイバー
B、ムライト質結晶質セラミツクフアイバーCの
温度変化に対する繊維長変化率(%)を示す線
図、第2図A〜K及び第3図a〜hは、いづれも
この発明になるセラミツクフアイバーの温度変化
に対する繊維長変化率(%)を示す線図、第4図
イ〜ヌはホ,ヘを除き、いづれもこの発明になる
セラミツクフアイバーの温度変化に対する繊維長
変化率%を示す線図である。上記ホ,ヘは本発明
の比較例として示したセラミツクフアイバーの温
度変化に対する繊維長変化率を示す線図。
Figure 1 is a diagram showing the rate of change in fiber length (%) with respect to temperature change for alumina-siliceous ceramic fiber A, chromia stabilized ceramic fiber B, and mullite crystalline ceramic fiber C; Figures 2 A to K; Figures 3 a to h are graphs showing the fiber length change rate (%) with respect to temperature changes for ceramic fibers according to the present invention. FIG. 2 is a diagram showing the percentage change in fiber length with respect to temperature change of ceramic fiber. The above E and F are diagrams showing the fiber length change rate with respect to temperature change of the ceramic fiber shown as a comparative example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 V、Fe、Co、Ni、Cr、Mnの酸化物の1種
または2種以上を4〜30モル%、シリカを70〜90
モル%、CaO、MgO、TiO2、Al2O3の1種また
は2種以上を0〜26モル%含み、全体が均一なガ
ラス質であることを特徴とする耐熱性無機質繊
維。
1 4 to 30 mol% of one or more oxides of V, Fe, Co, Ni, Cr, Mn, 70 to 90% of silica
1. A heat-resistant inorganic fiber containing 0 to 26 mol % of one or more of CaO, MgO, TiO 2 , and Al 2 O 3 by mol %, and having a uniform glassy appearance as a whole.
JP14501081A 1981-09-14 1981-09-14 Heat-resistant inorganic fiber Granted JPS5846121A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14501081A JPS5846121A (en) 1981-09-14 1981-09-14 Heat-resistant inorganic fiber
CA000411260A CA1189091A (en) 1981-09-14 1982-09-13 Heat-resistant inorganic fiber
DE8282108434T DE3269411D1 (en) 1981-09-14 1982-09-13 Heat resistant inorganic fiber
EP19820108434 EP0074655B1 (en) 1981-09-14 1982-09-13 Heat resistant inorganic fiber
AU88370/82A AU540095B2 (en) 1981-09-14 1982-09-14 Silica based fibres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14501081A JPS5846121A (en) 1981-09-14 1981-09-14 Heat-resistant inorganic fiber

Publications (2)

Publication Number Publication Date
JPS5846121A JPS5846121A (en) 1983-03-17
JPH0229615B2 true JPH0229615B2 (en) 1990-07-02

Family

ID=15375353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14501081A Granted JPS5846121A (en) 1981-09-14 1981-09-14 Heat-resistant inorganic fiber

Country Status (1)

Country Link
JP (1) JPS5846121A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212976B1 (en) 2013-03-15 2021-02-04 유니프랙스 아이 엘엘씨 Inorganic fiber
MX2017000670A (en) 2014-07-16 2017-06-29 Unifrax I Llc Inorganic fiber with improved shrinkage and strength.
CA3076663C (en) 2017-10-10 2023-12-05 Unifrax I Llc Crystalline silica free low biopersistence inorganic fiber
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331711A (en) * 1976-09-06 1978-03-25 Kansai Hoon Kogyo Kk Manufacture of inorganic porous mold products
JPS53115711A (en) * 1977-03-19 1978-10-09 Kyushu Refractories Silicaachrome base refractories
JPS5626081A (en) * 1979-08-03 1981-03-13 Kuraray Co Leather like sheet with good hydrolysis resistance and folded crepe and production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331711A (en) * 1976-09-06 1978-03-25 Kansai Hoon Kogyo Kk Manufacture of inorganic porous mold products
JPS53115711A (en) * 1977-03-19 1978-10-09 Kyushu Refractories Silicaachrome base refractories
JPS5626081A (en) * 1979-08-03 1981-03-13 Kuraray Co Leather like sheet with good hydrolysis resistance and folded crepe and production

Also Published As

Publication number Publication date
JPS5846121A (en) 1983-03-17

Similar Documents

Publication Publication Date Title
JP5270913B2 (en) High electrical resistance high zirconia cast refractory
US5466643A (en) High zirconia fused cast refractories
JP4658870B2 (en) High electrical resistance high zirconia cast refractory
CN103496992B (en) Chromium zirconium mullite refractory material and preparation method thereof
US3348956A (en) Refractory fiber composition
US3007806A (en) High silica refractory wools
CN107555971B (en) High-resistivity electric-melting AZS brick at high temperature and preparation method thereof
FI79086B (en) FOERFARANDE FOER UTNYTTJANDE AV SLAGG MED HOEG JAERNOXIDHALT FRAON METALLFRAMSTAELLNING.
CN104010989A (en) Refractory product having a high content of zirconia
EP0074655B1 (en) Heat resistant inorganic fiber
US2289211A (en) Titanium oxide composition
JPH0229615B2 (en)
JP3682888B2 (en) High zirconia electroformed brick
US2674539A (en) High temperature refractory products
US4483930A (en) Ceramic fiber composition
Sheldon Forming fibres from basalt rock
JPH0138073B2 (en)
US2252981A (en) Resistor and method of making same
DE2310618A1 (en) FIRE-RESISTANT ALUMINUM SILICATE FIBER
US4751205A (en) Thermally bonded fibrous product
JPS5913646A (en) Inorganic fiber
TW202035334A (en) High-alumina melt-casted refractory and method for manufacturing same
JPS5934150B2 (en) Rod-shaped reinforcement material for monolithic refractories and its manufacturing method
JPH0444624B2 (en)
JPH02502372A (en) How to mix ferrochrome slag to produce fire-resistant and chemical-resistant fibers