JPH0138073B2 - - Google Patents

Info

Publication number
JPH0138073B2
JPH0138073B2 JP58207107A JP20710783A JPH0138073B2 JP H0138073 B2 JPH0138073 B2 JP H0138073B2 JP 58207107 A JP58207107 A JP 58207107A JP 20710783 A JP20710783 A JP 20710783A JP H0138073 B2 JPH0138073 B2 JP H0138073B2
Authority
JP
Japan
Prior art keywords
silica
weight
brick
bricks
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58207107A
Other languages
Japanese (ja)
Other versions
JPS60103074A (en
Inventor
Masao Shibuno
Osamu Yoshida
Koji Imada
Osayuki Akahori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP20710783A priority Critical patent/JPS60103074A/en
Publication of JPS60103074A publication Critical patent/JPS60103074A/en
Publication of JPH0138073B2 publication Critical patent/JPH0138073B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は珪石煉瓦に係り、特に耐熱衝撃性に極
めて優れており、窯炉の熱間補修等に使用するに
好適な珪石煉瓦に関するものである。 〔従来技術〕 従来の珪石煉瓦は、周知の如く、急熱急冷抵抗
性に著しく弱く非常に割れ易い性質がある。その
理由は、主鉱物相のトリジマイト、クリストバラ
イトが150〜250℃の範囲の温度で結晶構造を急変
する時に大きな容積変化を生ずるので、異常膨張
又は異常収縮するからである。そのため従来の珪
石煉瓦は冷間から予熱なく直ちに炉内に持ち込ん
で修理に供することは不可能であつた。 この時の割れを防ぐため、珪石煉瓦を400℃以
上に予熱して炉内に持ち込んで補修する方法が過
去に実施された。しかし、安全性、作業性の面で
大きな題があり、現在は殆ど実施されていない。
そこで煉瓦を常温のまま熱間の炉内に持ち込んで
も割れ難い他の品質の煉瓦、例えば粘土質煉瓦、
高アルミナ質煉瓦、炭化珪素質煉瓦等が、コーク
ス炉炭化室の差し込み補修に用いられたこともあ
る。しかしながら、全く異質の珪石煉瓦積の壁の
一部に混用した場合、熱間性状、特に熱間線膨張
率の違いによつて、煉瓦間の目地からガスリーク
を起こしたり、差し込み煉瓦の強度が劣化したり
する等のため、期待する充分な効果は得られてい
ない。 一方、溶融石英煉瓦は、熱間線膨張収縮率が周
知の如く極めて小さいので、急熱しても極めて割
れ難い性質がある。この煉瓦は常温のまま熱間の
窯炉炉内に持ち込んでも、割れることなく補修に
使うことができる。しかし、継続使用された場
合、特に1100℃以上になるとクリストバライト転
移し、溶積膨張して煉瓦組織が脆くなり、強度が
劣化する。そのため、コークス炉等の窯炉で長期
使用に耐えないことが認められている。 珪石煉瓦と粘土質煉瓦の中間的性質を有するセ
ミシリカ煉瓦は、熱間線膨張率が低く割れに比較
的強い性質がある。しかし、高温域での耐クリー
プ性状が珪石煉瓦より著しく小さいので、コーク
ス炉炭化室壁の補修には、構造体の強度不足の点
から実用されていない。 〔発明の目的〕 本発明の目的は、上記従来技術の問題点を解消
し、耐熱衝撃性に極めて優れており、常温のまま
熱間の窯炉内に持ち込んで煉瓦壁の積み替えや補
修に供しても割れることなく、しかもそのまま継
続使用し得る珪石煉瓦を提供することにある。 〔発明の構成〕 本発明の珪石煉瓦は、粒径0.7mm以上の溶融石
英の粗粒30〜70重量%と珪石70〜30重量%とを含
むようにしたものである。(なお、以下含有率に
係%はすべて重量%を示す。) 従来の溶融石英煉瓦は石英ガラスを微粉の形で
相当量使用しているので、1100℃以上になるとこ
れが早期にクリストバライト化して、煉瓦組織が
劣化する主因となつていた。本発明者らはこの点
の改良に着眼し、溶融石英原料の粒度による転移
度を検討して、溶融石英粗粒と珪石とを併せ活用
すれば、極めて熱間で安定した品質になることを
見い出した。本発明の珪石煉瓦はこのような知見
に基いて為されたものである。 以下に本発明を詳細に説明する。 本発明において用いられる溶融石英の粗粒の粒
径は0.7mm以上である。これは、溶融石英の粒径
が0.7mmよりも小さい場合にはクリストバライト
への転移速度が大きくなるからである。下記表2
は表1に示す組成の溶融石英(石英ガラス)の粒
度と転移速度との関係を示すものである。 表1.溶融石英原料の化学組成例 成 分 % SiO2 99.50 MgO 0.07 TiO2 0.04 Na2O 0.03 Al2O3 0.05 K2O 001 Fe2O3 0.08 Ig・loss 0.20 CaO 0.04
[Field of Application of the Invention] The present invention relates to a silica brick, and particularly to a silica brick that has extremely excellent thermal shock resistance and is suitable for use in hot repairs of kilns. [Prior Art] As is well known, conventional silica bricks have extremely poor resistance to rapid heating and cooling and are extremely susceptible to cracking. The reason for this is that when the main mineral phases, tridymite and cristobalite, suddenly change their crystal structure at a temperature in the range of 150 to 250°C, they undergo a large volume change, resulting in abnormal expansion or contraction. Therefore, it has been impossible to bring conventional silica bricks from cold to a furnace for repair without preheating. In order to prevent cracking at this time, a method used in the past was to preheat the silica bricks to over 400 degrees Celsius and then bring them into the furnace for repair. However, there are major problems in terms of safety and workability, and this method is rarely practiced at present.
Therefore, we recommend using other types of bricks, such as clay bricks, which are difficult to break even if the bricks are brought into a hot furnace at room temperature.
High alumina bricks, silicon carbide bricks, etc. have also been used to repair coke oven carbonization chambers. However, when used in a part of a completely different type of silica brick wall, gas leaks may occur from the joints between the bricks and the strength of the inserted bricks may deteriorate due to the difference in hot properties, especially the coefficient of hot linear expansion. Because of this, the desired effect has not been achieved. On the other hand, fused silica brick has an extremely small coefficient of hot linear expansion and contraction, as is well known, and therefore is extremely resistant to cracking even when heated rapidly. Even if these bricks are brought into a hot kiln at room temperature, they will not crack and can be used for repairs. However, when used continuously, particularly at temperatures above 1100°C, cristobalite transition occurs, the molten volume expands, the brick structure becomes brittle, and its strength deteriorates. Therefore, it is recognized that it cannot withstand long-term use in furnaces such as coke ovens. Semi-silica brick, which has intermediate properties between silica brick and clay brick, has a low coefficient of hot linear expansion and is relatively resistant to cracking. However, since the creep resistance in the high temperature range is significantly lower than that of silica brick, it has not been put to practical use in repairing coke oven carbonization chamber walls due to insufficient strength of the structure. [Object of the Invention] The object of the present invention is to solve the above-mentioned problems of the prior art, to provide a material with extremely excellent thermal shock resistance, and to be able to be brought into a hot kiln at room temperature for reloading or repairing brick walls. To provide a silica brick that does not crack under any conditions and can be used continuously as it is. [Structure of the Invention] The silica brick of the present invention contains 30 to 70% by weight of coarse particles of fused quartz having a particle size of 0.7 mm or more and 70 to 30% by weight of silica stone. (All percentages in the following content percentages are by weight.) Conventional fused silica bricks use a considerable amount of quartz glass in the form of fine powder, so at temperatures above 1100°C, this quickly converts to cristobalite. This was the main cause of the deterioration of the brick structure. The present inventors focused on improving this point, examined the degree of transition depending on the particle size of the fused silica raw material, and found that if coarse fused silica particles and silica stone were used together, extremely stable quality could be achieved under hot conditions. I found it. The silica brick of the present invention was created based on this knowledge. The present invention will be explained in detail below. The particle size of the coarse particles of fused silica used in the present invention is 0.7 mm or more. This is because when the grain size of fused silica is smaller than 0.7 mm, the rate of transition to cristobalite increases. Table 2 below
Table 1 shows the relationship between the particle size and transition rate of fused silica (quartz glass) having the composition shown in Table 1. Table 1. Example of chemical composition of fused silica raw material Component % SiO 2 99.50 MgO 0.07 TiO 2 0.04 Na 2 O 0.03 Al 2 O 3 0.05 K 2 O 001 Fe 2 O 3 0.08 Ig・loss 0.20 CaO 0.04

〔実施例〕〔Example〕

前記表1.に示す化学組成を有し、密度2.203、
粒度3〜0.7mmの溶融石英の粗粒40重量部、焼成
珪石原料60重量部及び硼酸1重量部に、バインダ
ーとして消石灰とパルプ廃液を3重量部加え、良
く混練して煉瓦坏土とした。これを所定寸法に成
形し乾燥した後1170℃で焼成し珪石煉瓦を得た。 なお用いた焼成珪石原料の組成及び製造された
珪石煉瓦の組成を表3.に示す。
It has the chemical composition shown in Table 1 above, and has a density of 2.203.
Three parts by weight of slaked lime and pulp waste liquid were added as a binder to 40 parts by weight of coarse particles of fused quartz having a particle size of 3 to 0.7 mm, 60 parts by weight of the calcined silica stone raw material, and 1 part by weight of boric acid, and the mixture was thoroughly kneaded to obtain brick clay. This was molded into a predetermined size, dried, and then fired at 1170°C to obtain a silica brick. Table 3 shows the composition of the fired silica stone raw material used and the composition of the manufactured silica brick.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本発明の珪石煉瓦は下記の
如き優れた効果を有しており、コークス炉等の窯
炉の熱間補修に用いるに好適である。 従来のコークス炉熱間補修用煉瓦に比べ、耐
熱衝撃性に著しく優れており、かつ補修後も長
期の耐用性を有するので炉体の保守に大いに役
立つ。 熱間補修時に予熱が全く不要であり、安全性
及び作業性の点において優れている。 損傷部位の珪石煉瓦を置き換えて同質煉瓦と
して使用することができるので、煉瓦目地から
のガスリークを防止することができる。
As detailed above, the silica brick of the present invention has the following excellent effects and is suitable for use in hot repair of kilns such as coke ovens. Compared to conventional coke oven hot repair bricks, it has significantly better thermal shock resistance and has long-term durability even after repair, making it very useful for furnace maintenance. Preheating is not required at all during hot repair, and it is excellent in terms of safety and workability. Since the silica brick in the damaged area can be replaced with a homogeneous brick, gas leaks from the brick joints can be prevented.

Claims (1)

【特許請求の範囲】 1 粒径0.7mm以上の溶融石英の粗粒30〜70重量
%と珪石70〜30重量%とを含むことを特徴とする
珪石煉瓦。 2 1000℃の熱間線膨張率が0.8%以下であるこ
とを特徴とする特許請求の範囲第1項に記載の珪
石煉瓦。 3 化学組成が SiO2 93 〜98 重量% Al2O3 0.5〜 3.0重量% Fe2O3 0.5〜 3.0重量% CaO 1.5〜 3.0重量% B2O3 0.5重量%以下 であることを特徴とする特許請求の範囲第1項又
は第2項に記載の珪石煉瓦。
[Scope of Claims] 1. A silica brick characterized by containing 30 to 70% by weight of coarse particles of fused quartz having a particle size of 0.7 mm or more and 70 to 30% by weight of silica stone. 2. The silica brick according to claim 1, which has a hot linear expansion coefficient of 0.8% or less at 1000°C. 3. The chemical composition is: SiO 2 93-98% by weight, Al 2 O 3 0.5-3.0% by weight, Fe 2 O 3 0.5-3.0% by weight, CaO 1.5-3.0% by weight, B 2 O 3 0.5% by weight or less. A silica brick according to claim 1 or 2.
JP20710783A 1983-11-04 1983-11-04 Silica brick Granted JPS60103074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20710783A JPS60103074A (en) 1983-11-04 1983-11-04 Silica brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20710783A JPS60103074A (en) 1983-11-04 1983-11-04 Silica brick

Publications (2)

Publication Number Publication Date
JPS60103074A JPS60103074A (en) 1985-06-07
JPH0138073B2 true JPH0138073B2 (en) 1989-08-10

Family

ID=16534312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20710783A Granted JPS60103074A (en) 1983-11-04 1983-11-04 Silica brick

Country Status (1)

Country Link
JP (1) JPS60103074A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696469B2 (en) * 1991-06-26 1994-11-30 品川白煉瓦株式会社 Manufacturing method of silica brick
NL9300558A (en) * 1993-03-30 1994-10-17 Hoogovens Groep Bv Coke oven battery with a renovated heating wall
JP4907094B2 (en) * 2005-03-30 2012-03-28 ニチアス株式会社 Method for producing fused siliceous refractories
KR101127530B1 (en) 2009-08-04 2012-03-23 주식회사 삼한 씨원 Manufacturing method of clay brick of several colors using Calclum Hydroxide
KR101073315B1 (en) * 2011-01-13 2011-10-12 (주)엘지하우시스 Artificial stone and manufacturing method thereof
CN106083095A (en) * 2016-06-27 2016-11-09 武汉科技大学 A kind of silicious checker brick used for hot-blast furnace gravity flow castable and preparation method thereof
CN109369196A (en) * 2018-11-22 2019-02-22 武汉科技大学 A kind of induction furnace quartziferous ramming mass and preparation method thereof
CN115536409B (en) * 2022-10-24 2023-04-07 中冶检测认证有限公司 Silica brick added with calcium nitrate tetrahydrate and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122001A (en) * 1974-08-20 1976-02-21 Mitsubishi Electric Corp Seiryushino seizohoho
JPS54131609A (en) * 1978-04-04 1979-10-12 Denki Kagaku Kogyo Kk Refractory for coke furnace door
JPS5692162A (en) * 1979-12-24 1981-07-25 Kogyo Gijutsuin Manufacture of low shrinkage quartz glass type refractories

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122001A (en) * 1974-08-20 1976-02-21 Mitsubishi Electric Corp Seiryushino seizohoho
JPS54131609A (en) * 1978-04-04 1979-10-12 Denki Kagaku Kogyo Kk Refractory for coke furnace door
JPS5692162A (en) * 1979-12-24 1981-07-25 Kogyo Gijutsuin Manufacture of low shrinkage quartz glass type refractories

Also Published As

Publication number Publication date
JPS60103074A (en) 1985-06-07

Similar Documents

Publication Publication Date Title
JP2009509898A (en) Sintered refractories with improved thermal shock resistance
CN101323530A (en) Fused quartz block for coke oven hot repair
JPH0138073B2 (en)
US8138110B2 (en) Fireproof ceramic mix, fireproof ceramic molded body formed of said mix and use thereof
US1942879A (en) Refractory material and batch and method for making the same
US3106475A (en) Burned refractory product
US3326541A (en) Glass tank structure with a regenerator chamber
CN110590342A (en) Silica sol combined corundum refractory mortar
EP1328490B1 (en) Refractory article
US1818506A (en) Refractory and method of making the same
US2880098A (en) Refractory articles and compositions therefor
JPH0138074B2 (en)
US2079715A (en) Process and batch for making ceramic bodies
US3140955A (en) Fused cast refractory
US3544666A (en) Method for producing a heat insulating refractory using calcined geyserite having a high tridymite content
JP4700560B2 (en) Manufacturing method for hot repair silica brick
Houldsworth et al. The reversible thermal expansion of refractory materials
US3216838A (en) Silica refractories
Bron et al. Testing dense silica in glass furnaces
US1515375A (en) Furnace lining and method of making the same
JP7397281B2 (en) Manufacturing method of precast blocks for coke ovens
US20020094930A1 (en) Alkali resistant silica refractory brick, method for producing the same and glass manufacturing furnace containing the same
Pole et al. Electric‐Furnace Alumina Cement for High‐Temperature Concrete
Al-Taie et al. Characterizations of semi-silica refractory bricks produced from local Iraqi materials
CA1244486A (en) Insulating refractory

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees