JPH0444624B2 - - Google Patents

Info

Publication number
JPH0444624B2
JPH0444624B2 JP60156329A JP15632985A JPH0444624B2 JP H0444624 B2 JPH0444624 B2 JP H0444624B2 JP 60156329 A JP60156329 A JP 60156329A JP 15632985 A JP15632985 A JP 15632985A JP H0444624 B2 JPH0444624 B2 JP H0444624B2
Authority
JP
Japan
Prior art keywords
glass
temperature
devitrification
fibers
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60156329A
Other languages
Japanese (ja)
Other versions
JPS6217041A (en
Inventor
Kaoru Ikeda
Keihachiro Tanaka
Takahiro Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP15632985A priority Critical patent/JPS6217041A/en
Publication of JPS6217041A publication Critical patent/JPS6217041A/en
Publication of JPH0444624B2 publication Critical patent/JPH0444624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は繊維用ガラス組成物に係り、特に旋回
ガスジエツトをガラス溶融物に作用させてガラス
短繊維を得るのに適し、且つ不燃性に優れた繊維
用ガラス組成物に関する。 [従来の技術] ガラス等の熱軟化性物質を細くして繊維化する
方法として、近年、いわゆる旋回ガスジエツト法
(BGJ法)が提案された(特公昭58−57374号)。
この方法は、熱軟化性物質の円柱状溶融物流に、
その進行方向に対する横断面の外周の接線方向成
分を有するガス流を、溶融物が横方向に変位する
のを防げるように接触させながら高速で回転さ
せ、細線化された糸状物質を遠心力によつて引き
出す方法である。この旋回ガスジエツト法は、従
来の火炎法や遠心法等に比し、生産効率、得られ
る製品品質の面で極めて有利であることが明らか
になってきており、注目を集めている。 この旋回ガスジエツト法は、粘度約30〜70ポア
ズの溶融物に適用することが好ましい。また、旋
回ガスジエツト法によつてガラス繊維を製造する
場合、白金ないし白金合金性の溶融ポツトが使用
されるが、このポツトの損傷を防止するために、
ガラスの溶融作業温度(溶融ポツト内の最高温度
で規定する)は1400℃以下であることが必要であ
り、特にポツトの寿命をより長期化する点から、
作業温度はは1320℃以下であることが望ましい。 このため、旋回ジエツト法に適切なガラス組成
物は1320℃以下の温度において30〜70ポアズの粘
度を有することが望まれるのである。 このような旋回ガスジエツト法に適するガラス
組成物として、先に、特開昭56−5352に、重量百
分率にして、SiO2:35〜47,Al2O3:9〜15,
CaO:15〜40,MgO:0〜7,Na2O:0〜19,
K2O:0〜19、ただしNa2O及びK2Oの合計
量:2〜19,B2O3:3〜8からなる繊維用ガラ
ス組成物が提案された。上記繊維用ガラス組成物
は、旋回ガスジエツト法に適切な高温粘度特性を
有し、しかも安価な原料の使用が可能であり、耐
湿性にも優れている。 [発明が解決しようとする問題点] しかるに、特開昭56−5352に提示された組成範
囲を満たす組成物の中には、不燃性に優れていな
いものがあることが判明した。 即ち、材料の持つ不燃性は、通常、建設省告示
第1828号(昭和45年12月28日)に定められた不燃
試験によつて評価され、該試験に合格した材料が
不燃材料としての指定を受けることができる。こ
の不燃試験は、基材試験と表面試験とからなる
が、前掲の特開昭56−5352に規定された組成範囲
を満たす種々の組成物より作製した短繊維ボード
をこの不燃試験に供したところ、必ずしも全組成
範囲にわたつて合格し得る特性を具備する訳では
ないことが見出された。 このガラス組成物の不燃性は、一般のグラスウ
ール断熱材や保温材等で不燃材料の用途に用いな
いものに対しては規制されない。従つて、この場
合には、不燃性に優れていないガラス組成物でも
使用可能である。 しかしながら、不燃性でないガラス組成物では
製品の用途が制限され、例えば不燃性と熱抵抗性
の両特性を必要とする用途には使用できないな
ど、使用上の不都合が生ずる。 このため、熱抵抗性等の数多くの品質性能と共
に不燃性を具備する。旋回ガスジエツト法に適切
な繊維用ガラス組成物の出現が強く望まれてい
た。 [問題点を解決するための手段] 本発明のガラス組成物は、 それぞれ重量百分率で表わして、 SiO2: 35〜47 Al2O3: 9〜15 CaO: 15〜30 MgO: 0〜7 Na2O: 17〜22 K2O: 0〜4 (ただしNa2O及びK2Oの合計量: 19を超え22以下) B2O5: 3〜6 を含むことを特徴とする。 本発明において、SiO2は47重量%(以下、単
に%と記載する。)を超えると、ガラスの溶融温
度が高くなり、作業温度が上昇して繊維系が太く
なるなどの不都合を生じる。また、35%より少な
いと、失透傾向が必要以上に大きくなり、しかも
耐湿性も悪くなる。好ましいSiO2配合割合は36
〜42%である。 Al2O3は9%未満では耐湿性が著しく低下し、
また15%を超えると液相温度が上昇するので好ま
しくない。好ましいAl2O3の配合割合は12〜14%
である。 CaOは、その配合割合が多くなるにつれて耐湿
性が向上するのであるが、30%を超えると失透傾
向が必要以上に大きくなるので繊維製造上好まし
くない。また、15%より少ないと耐湿性は良い
が、耐水性が著しく低くなつて不都合である。 MgOはその配合割合は少ない方が、耐湿性が
良い傾向を示す。MgOが7%を超えると作業温
度は低くなる反面液相温度が上昇し、しかも耐湿
性が著しく悪くなる。従つてMgOの配合割合は
0〜7%以下とする。 Na2O及びK2Oは、いずれも作業温度を低下
せしめるので、ガラス成分として相当量を含有さ
せることが好ましい。優れた不燃性を得るのに、
有効な失透を生成するために、Na2Oは17〜22
%、K2Oは0〜4%以下とする。なお、Na2
及びK2Oの合計量は19%を超え22%以下である。
Na2O+K2Oが19%以下であると失透生成量が
少なく不燃性の向上効果が低く、また22%を超え
るととくに耐湿性が低下して好ましくない。 B2O3は作業温度及び液相温度のいずれも低下
させる効果を有する。B2O3の配合割合が3%未
満ではその効果は小さく、6%を超えると失透傾
向が小さくなりすぎ、またガラス繊維の耐酸性を
非常に低下させ、かつガラスが高価になるので好
ましくない。従つて、B2O3の配合割合は3〜6
%とする。 なお、SiO2,Al2O3,CaO及びMgOを主成分
とするガラス組成物は、安価な原料として代表的
な珪砂、アプライト、石灰石、ドロマイトを適宜
に組合せて利用することにより得られる。さらに
は、溶鉱炉から多量に廃残物として発生する高炉
スラグや鹿児島地方に無尽に埋蔵しているシラス
等の、近年安価な原料として注目されているもの
を使用することもできる。従つて、SiO2−Al2O3
−CaO−MgO系を基本組成に選ぶことによつて、
使用原料を廉価にすることができ、経済的に有利
である。 本発明においては、ガラスに付与される失透性
の程度に応じて、その他の配合成分及び各々の配
合割合が限定される。即ち、不燃性を向上させる
ためには、失透生成量が多い方が望ましいが、失
透生成量が必要以上に増加した場合には、繊維化
装置のノズル詰りを発生させるなど繊維製造上の
障害が発生する原因となるので好ましくない。ま
た、液相温度の上昇も同様の理由から好ましくな
い。従つて、失透生成量は不燃性にとつて必要か
つ十分なだけの量であることが好ましく、この量
よりも少ないと不燃性が低下し、逆に多すぎた
り、液相温度が上昇すると、繊維製造上の障害と
なり、好ましくない。 [作用] 本発明の繊維用ガラス組成物によれば、得られ
るガラスに適度な量の失透が生成し、このため、
ガラスの粘性を上げることなく、繊維の溶融や軟
化による変形を防止し、これにより短繊維ボード
の溶融や亀裂の発生を防止し、不燃性を向上させ
ることが可能である。 なお、以下に失透による作用について説明す
る。 溶融や軟化による繊維の変形を防止して、ガラ
ス組成物に不燃性をもたせるには、粘性の高いガ
ラス材料とすれば良いのであるが、この場合に
は、通常、作業温度も上昇するので製造上好まし
くない。そこで、粘性を上げることなく繊維の変
形を防止するべく鋭意検討を重ねた結果、短繊維
ボードではある種の失透を生ずるガラス組成物が
効果的であることが見出された。 ガラスが失透すると脆性が上がるために強度が
低下するが、結晶化の程度によつては、逆にガラ
スの機械的強度を高めかつ軟化温度を高め、耐熱
性を向上せしめることが知られている。 一般に、単位時間当りの失透生成量と温度との
関係は、第1図のように示され、最も失透を生じ
させ易い温度範囲があるので、この温度にガラス
を保持することにより失透を効率良く生じさせる
ことができる。 第2図は、種々の組成のガラスについて行つた
実験により求められた各ガラスの失透生成量と温
度との関係を示すグラフである。なお、失透生成
量はガラスの白濁の程度で示している。第2図に
おいては不燃試験(表面試験)に不合格な組成
ガラス、は合格する組成ガラスであり、は
より繊維の溶融や変形量が少なく、不燃性に優
れたものである。 なお、用いた各組成のガラスの温度、粘度特性
を調べたところ、ガラス組成による差は殆どなか
つた。本発明組成のガラスは、いずれも,の
組成のガラスと同じような失透生成能を有する。 即ち、本発明組成のガラス繊維は、500〜1000
℃の温度範囲(不燃試験時の試験体表面温度は、
ほぼこの温度となる。)にて速やかに失透を生じ
させる。そして、軟化温度が高く、しかも高強度
であり、ボードに成形したときに不燃性に優れ、
熱溶融や熱亀裂を生じさせ難いものとなる。 [実施例] 以下、実施例及び比較例について説明する。 第1表に示す原料組成の試料番号1〜15のガラ
ス試料又はガラス繊維試料を、各々次のようにし
て作製した。 ガラス量として400gになるように原料を調合
し、1350℃の電気炉内で4時間溶融した後、鉄板
上に流し出した。このガラスを冷却した後、1cm
角以下の大きさに粉砕したものをガラス試料とし
た。 また、このガラス試料を、底面に内径1.8mm、
長さ6mmのノズルのついた約100c.c.に白金ポツト
に投入し、白金ポツトの電気抵抗加熱により溶融
した。白金ポツトのノズルから流出した溶融ガラ
スを、旋回ガスジエツト法により、直径約7μの
繊維に成形したものをガラス繊維試料とした。 各試料を用いて、各々、不燃性、耐湿性、作業
温度、吹繊性を調べた。結果を第1表に示す。な
お各々の特性の測定及び評価方法は下記に示す通
りである。 不燃性 前述の不燃試験結果とガラス失透生成量との関
係を調べる実験(第2図参照)より、,,
を標準試料とし、失透生成量の多いもの(不燃性
に優れたもの)から◎,○,×の順に3段階に分
ける。ここでは○以上で不燃試験合格となる。本
実施例で得られたガラス試料についても前述の実
験方法を同様の方法で失透を生成させ、その失透
生成量を標準試料と目視で比較し、不燃性を評価
した。 耐湿性 ガラス繊維試料20gを縦横各々20mm、厚さ50mm
のマツト状に成形し、縦横250mm、厚さ3mmの2
枚の鉄板の間に挿入し、ボルトとナツトを用いて
マツトの厚みが5mmになるように圧縮して固定す
る。これを気温40℃、相対湿度70%にコントロー
ルされた恒温恒湿槽内に5日間放置する。その
後、これを取り出して鉄板をとり外し、マツトを
無加重で約1時間室内に放置した後、厚みを測定
する。得られた厚みの測定結果を互いに比較し
て、厚みの大きいもの(耐湿性のよいもの)から
◎,○,△,×の順に4段階で評価した。 作業温度 白金ポツト(ガラス繊維試料の作製に用いたと
同一のもの)に、準備したカレツトを投入し、白
金ポツトの電気加熱により溶融し、ノズルより流
出するガラス量が420g/hrになつたときのポツ
ト内最高温度を作業温度とし、その値を示した。
この温度はその時のポツト内のガラス粘度がほぼ
30ポアズとなる温度であることが、温度、粘度特
性が既知のガラスでのテストから確かめられてい
る。 吹繊性 上記白金ポツトに旋回ガスジエツト用のエアー
ノズルを取付けて、ガラス溶融物を繊維化したと
きの、失透によるノズルの詰りぐあい、流出量の
安定性から判断したものであり、安定性のよいも
のから順に◎,○,△,×,××の5段階で示し
た。×印以下は繊維化ができなかつたものである。
[Industrial Field of Application] The present invention relates to a glass composition for fibers, and in particular to a glass composition for fibers that is suitable for obtaining short glass fibers by applying a swirling gas jet to a glass melt and has excellent nonflammability. . [Prior Art] In recent years, the so-called swirling gas jet method (BGJ method) has been proposed as a method for thinning thermosoftening materials such as glass into fibers (Japanese Patent Publication No. 57374/1983).
This method involves creating a cylindrical melt stream of a thermosoftening material.
A gas flow having a component tangential to the outer periphery of the cross section with respect to the direction of movement is rotated at high speed while contacting the melt to prevent it from being displaced laterally, and the thin filamentous material is spun by centrifugal force. This is a method of drawing out the information. It has become clear that the swirling gas jet method is extremely advantageous in terms of production efficiency and product quality compared to conventional flame methods, centrifugal methods, etc., and is attracting attention. This swirling gas jet method is preferably applied to melts with a viscosity of about 30 to 70 poise. Furthermore, when manufacturing glass fiber by the swirling gas jet method, a platinum or platinum alloy melting pot is used, but in order to prevent damage to this pot,
The working temperature for glass melting (defined as the maximum temperature inside the melting pot) must be below 1400℃, especially from the point of view of extending the life of the pot.
It is desirable that the working temperature is below 1320℃. For this reason, glass compositions suitable for the swirl jet process are desired to have a viscosity of 30 to 70 poise at temperatures below 1320°C. As a glass composition suitable for such a swirling gas jet method, previously published in Japanese Patent Application Laid-Open No. 56-5352, SiO 2 : 35-47, Al 2 O 3 : 9-15,
CaO: 15-40, MgO: 0-7, Na2O : 0-19,
A glass composition for fibers was proposed comprising K 2 O: 0 to 19, but the total amount of Na 2 O and K 2 O: 2 to 19, and B 2 O 3 : 3 to 8. The above glass composition for fibers has high temperature viscosity characteristics suitable for the swirling gas jet method, allows the use of inexpensive raw materials, and has excellent moisture resistance. [Problems to be Solved by the Invention] However, it has been found that some compositions satisfying the composition range proposed in JP-A-56-5352 do not have excellent non-flammability. In other words, the noncombustibility of a material is usually evaluated by the noncombustibility test specified in Ministry of Construction Notification No. 1828 (December 28, 1972), and materials that pass the test are designated as noncombustible materials. can receive. This noncombustibility test consists of a base material test and a surface test, and short fiber boards made from various compositions satisfying the composition range specified in the above-mentioned Japanese Patent Application Laid-Open No. 56-5352 were subjected to this noncombustibility test. However, it has been found that the composition does not necessarily have properties that can be passed over the entire composition range. The nonflammability of this glass composition is not regulated for general glass wool insulation materials, heat insulating materials, etc. that are not used for noncombustible purposes. Therefore, in this case, even a glass composition that is not excellent in flame resistance can be used. However, non-flammable glass compositions have disadvantages in use, such as the limited use of the product and, for example, the inability to use them in applications that require both non-flammability and heat resistance. Therefore, it has many quality properties such as heat resistance as well as non-flammability. It has been strongly desired that a glass composition for fibers suitable for the swirling gas jet method be developed. [Means for Solving the Problems] The glass composition of the present invention has the following components, each expressed in weight percentage: SiO2 : 35-47 Al2O3 : 9-15 CaO : 15-30 MgO: 0-7 Na 2 O: 17-22 K 2 O: 0-4 (however, the total amount of Na 2 O and K 2 O: more than 19 and less than 22) B 2 O 5 : 3-6. In the present invention, if SiO 2 exceeds 47% by weight (hereinafter simply referred to as %), the melting temperature of the glass increases, the working temperature increases, and the fiber system becomes thicker. On the other hand, if it is less than 35%, the tendency to devitrify becomes greater than necessary, and moisture resistance also deteriorates. The preferred SiO 2 blending ratio is 36
~42%. When Al 2 O 3 is less than 9%, moisture resistance decreases significantly;
Moreover, if it exceeds 15%, the liquidus temperature will rise, which is not preferable. The preferred blending ratio of Al 2 O 3 is 12-14%
It is. Moisture resistance improves as the proportion of CaO increases, but if it exceeds 30%, the tendency to devitrify becomes greater than necessary, which is not preferable in fiber production. On the other hand, if it is less than 15%, moisture resistance is good, but water resistance is extremely low, which is disadvantageous. The lower the blending ratio of MgO, the better the moisture resistance tends to be. If the MgO content exceeds 7%, the working temperature will decrease, but the liquidus temperature will increase, and moisture resistance will deteriorate significantly. Therefore, the blending ratio of MgO is set to 0 to 7% or less. Since both Na 2 O and K 2 O lower the working temperature, it is preferable to contain a considerable amount as a glass component. To obtain excellent nonflammability,
To produce effective devitrification, Na2O must be between 17 and 22
%, K 2 O is 0 to 4% or less. In addition, Na 2 O
and the total amount of K 2 O is more than 19% and less than 22%.
If Na 2 O + K 2 O is less than 19%, the amount of devitrification generated will be small and the effect of improving nonflammability will be low, and if it exceeds 22%, moisture resistance will particularly deteriorate, which is undesirable. B 2 O 3 has the effect of lowering both the working temperature and the liquidus temperature. If the blending ratio of B 2 O 3 is less than 3%, the effect will be small, and if it exceeds 6%, the devitrification tendency will be too small, and the acid resistance of the glass fiber will be greatly reduced, and the glass will become expensive, so it is preferable. do not have. Therefore, the blending ratio of B 2 O 3 is 3 to 6
%. Note that the glass composition containing SiO 2 , Al 2 O 3 , CaO, and MgO as main components can be obtained by appropriately combining typical silica sand, aplite, limestone, and dolomite as inexpensive raw materials. Furthermore, it is also possible to use materials that have recently attracted attention as inexpensive raw materials, such as blast furnace slag, which is generated in large quantities as waste residue from blast furnaces, and whitebait, which is found in limitless reserves in the Kagoshima region. Therefore, SiO 2 −Al 2 O 3
By choosing −CaO−MgO system as the basic composition,
It is economically advantageous because the raw materials used can be made inexpensive. In the present invention, other blending components and their respective blending ratios are limited depending on the degree of devitrification imparted to the glass. In other words, in order to improve nonflammability, it is desirable to have a large amount of devitrification produced, but if the amount of devitrification produced increases more than necessary, it may cause problems in fiber production, such as clogging of the nozzle of the fiberizing equipment. This is not desirable as it may cause problems. Furthermore, an increase in liquidus temperature is also undesirable for the same reason. Therefore, it is preferable that the amount of devitrification generated is necessary and sufficient for non-flammability; if it is less than this amount, the non-flammability will decrease, and if it is too much or the liquidus temperature increases, it is therefore preferable. , which is undesirable as it becomes a hindrance in fiber production. [Function] According to the glass composition for fibers of the present invention, an appropriate amount of devitrification is generated in the resulting glass, and therefore,
It is possible to prevent deformation due to melting and softening of the fibers without increasing the viscosity of the glass, thereby preventing melting and cracking of the short fiber board and improving its nonflammability. Note that the effect of devitrification will be explained below. In order to prevent the deformation of the fibers due to melting and softening and to make the glass composition nonflammable, it would be better to use a glass material with high viscosity, but in this case, the working temperature would also usually rise, so manufacturing Not good. Therefore, as a result of intensive studies to prevent fiber deformation without increasing viscosity, it was discovered that a glass composition that causes a certain type of devitrification is effective for short fiber boards. When glass becomes devitrified, its strength decreases due to increased brittleness, but it is known that depending on the degree of crystallization, it can conversely increase the mechanical strength and softening temperature of the glass, improving its heat resistance. There is. In general, the relationship between the amount of devitrification generated per unit time and temperature is shown in Figure 1, and there is a temperature range where devitrification is most likely to occur, so by holding the glass at this temperature, devitrification can be improved. can be generated efficiently. FIG. 2 is a graph showing the relationship between the amount of devitrification produced and temperature for each glass, which was determined through experiments conducted on glasses of various compositions. Note that the amount of devitrification produced is indicated by the degree of cloudiness of the glass. In FIG. 2, the composition glass that fails the nonflammability test (surface test) is the composition glass that passes the nonflammability test, which has less melting and deformation of fibers and is excellent in noncombustibility. In addition, when the temperature and viscosity characteristics of the glasses of each composition used were investigated, there were almost no differences depending on the glass composition. All of the glasses with the compositions of the present invention have the same devitrification-generating ability as the glasses with the compositions. That is, the glass fiber of the composition of the present invention has a molecular weight of 500 to 1000
℃ temperature range (the surface temperature of the test piece during the nonflammability test is
The temperature will be approximately this. ) to quickly cause devitrification. It has a high softening temperature and high strength, and is highly nonflammable when formed into a board.
It becomes difficult to cause thermal melting or thermal cracking. [Example] Examples and comparative examples will be described below. Glass samples or glass fiber samples with sample numbers 1 to 15 having the raw material compositions shown in Table 1 were each produced as follows. The raw materials were mixed so that the amount of glass was 400 g, melted in an electric furnace at 1350°C for 4 hours, and then poured onto an iron plate. After cooling this glass, 1cm
A glass sample was obtained by crushing the glass to a size smaller than a square. In addition, this glass sample was placed on the bottom with an inner diameter of 1.8 mm.
Approximately 100 c.c. was poured into a platinum pot equipped with a 6 mm long nozzle, and melted by electric resistance heating of the platinum pot. The molten glass flowing out of the nozzle of the platinum pot was formed into fibers with a diameter of approximately 7 μm by the swirling gas jet method, and this was used as a glass fiber sample. Each sample was examined for nonflammability, moisture resistance, working temperature, and fiber blowing properties. The results are shown in Table 1. The methods for measuring and evaluating each characteristic are as shown below. Non-flammability From the experiment to investigate the relationship between the above-mentioned non-flammability test results and the amount of glass devitrification produced (see Figure 2)...
is used as a standard sample, and is divided into three grades in the order of ◎, ○, and × in descending order of the amount of devitrification produced (those with excellent nonflammability). Here, if it is ○ or above, it passes the nonflammability test. For the glass sample obtained in this example, devitrification was generated using the same experimental method as described above, and the amount of devitrification produced was visually compared with a standard sample to evaluate nonflammability. Moisture resistance 20g glass fiber sample, length and width 20mm, thickness 50mm
250 mm in length and width and 3 mm in thickness.
Insert the mat between two iron plates and use bolts and nuts to compress and fix the mat to a thickness of 5 mm. This is left in a constant temperature and humidity chamber controlled at a temperature of 40°C and a relative humidity of 70% for 5 days. Thereafter, the mat was taken out, the iron plate was removed, and the mat was left indoors for about an hour without any weight applied, and then the thickness was measured. The obtained thickness measurement results were compared with each other and evaluated in four stages in the order of ◎, ◯, △, and × from the thickest one (the one with the best moisture resistance). Working temperature: The prepared cullet was put into a platinum pot (the same one used to prepare the glass fiber sample) and melted by the electric heating of the platinum pot, and when the amount of glass flowing out from the nozzle reached 420 g/hr. The maximum temperature inside the pot was taken as the working temperature and its value is shown.
At this temperature, the viscosity of the glass in the pot at that time is approximately
It has been confirmed through tests with glass whose temperature and viscosity characteristics are known that the temperature is 30 poise. Fiber blowing properties When an air nozzle for swirling gas jet is attached to the above platinum pot and the glass melt is made into fibers, it is judged from the clogging of the nozzle due to devitrification and the stability of the flow rate. Ranked in 5 grades: ◎, ○, △, ×, and XX in descending order of best. Items below the mark x are those that could not be made into fibers.

【表】【table】

【表】 第1表から明らかなように、本発明の実施例に
係る繊維用ガラス組成物の試料は、いずれも優れ
た不燃性を有し、しかも吹繊性にも優れ、作業温
度も1230℃以下と低く、且つ耐湿性も十分良好で
あると判断できるものであり、繊維用ガラス組成
物として極めて有用である。 [効果] 以上詳述した通り、本発明の繊維用ガラス組成
物により得られるガラス繊維は、約500〜1000℃
の温度にて速やかに失透を生じ、高軟化温度、高
強度となる。従つて、かかるガラス繊維により製
造されるボード等のガラス繊維成形体は、熱溶融
や熱亀裂が極めて生じにくく、不燃性に優れる。 また、本発明組成のガラスは、 極めて低廉価の原料から得られる。 低い作業温度で繊維を製造することができ
る。 耐湿性、吹繊性等の特性にも優れる。 等の利点を有する。 本発明のガラス組成物は旋回ガスジエツト法に
供する原料ガラスとして極めて好適である。
[Table] As is clear from Table 1, the samples of the glass compositions for fibers according to the examples of the present invention all have excellent nonflammability, excellent blowability, and a working temperature of 1230°C. The temperature is as low as 0.degree. C. or less, and the moisture resistance can be judged to be sufficiently good, making it extremely useful as a glass composition for fibers. [Effect] As detailed above, the glass fiber obtained by the glass composition for fibers of the present invention has a temperature of about 500 to 1000°C.
It quickly devitrifies at a temperature of , resulting in a high softening temperature and high strength. Therefore, glass fiber molded bodies such as boards manufactured using such glass fibers are extremely unlikely to undergo thermal melting or thermal cracking, and are excellent in nonflammability. Furthermore, the glass having the composition of the present invention can be obtained from extremely inexpensive raw materials. Fibers can be produced at low working temperatures. It also has excellent properties such as moisture resistance and blowability. It has the following advantages. The glass composition of the present invention is extremely suitable as a raw material glass to be subjected to the swirling gas jet method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なガラスの失透生成量と温度と
の安定的な関係を示すグラフであり、第2図は失
透生成量と温度の測定結果を示すグラフである。
FIG. 1 is a graph showing a stable relationship between the amount of devitrification produced in a general glass and temperature, and FIG. 2 is a graph showing the measurement results of the amount of devitrification produced and temperature.

Claims (1)

【特許請求の範囲】 1 それぞれ重量百分率で表わして、 SiO2: 35〜47 Al2O3: 9〜15 CaO: 15〜30 MgO: 0〜7 Na2O: 17〜22 K2O: 0〜4 (ただしNa2OおよびK2Oの合計量: 19を超え22以下) B2O3: 3〜6 を含むことを特徴とする繊維用ガラス組成物。 2 SiO2の含有率が36〜42重量%、Al2O3の含有
率が12〜14重量%である特許請求の範囲第1項に
記載の繊維用ガラス組成物。
[Claims] 1. Each expressed as a weight percentage: SiO 2 : 35-47 Al 2 O 3 : 9-15 CaO: 15-30 MgO: 0-7 Na 2 O: 17-22 K 2 O: 0 - 4 (However, the total amount of Na 2 O and K 2 O: more than 19 and 22 or less) B 2 O 3 : A glass composition for fibers, characterized in that it contains 3 to 6. 2. The glass composition for fibers according to claim 1, wherein the content of SiO2 is 36 to 42% by weight and the content of Al2O3 is 12 to 14% by weight.
JP15632985A 1985-07-16 1985-07-16 Glass composition for fiber Granted JPS6217041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15632985A JPS6217041A (en) 1985-07-16 1985-07-16 Glass composition for fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15632985A JPS6217041A (en) 1985-07-16 1985-07-16 Glass composition for fiber

Publications (2)

Publication Number Publication Date
JPS6217041A JPS6217041A (en) 1987-01-26
JPH0444624B2 true JPH0444624B2 (en) 1992-07-22

Family

ID=15625402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15632985A Granted JPS6217041A (en) 1985-07-16 1985-07-16 Glass composition for fiber

Country Status (1)

Country Link
JP (1) JPS6217041A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2883864B1 (en) 2005-04-01 2007-06-15 Saint Gobain Isover Sa COMPOSITIONS FOR GLASS FIBERS
KR101179170B1 (en) * 2009-05-08 2012-09-03 이세린 Quartz Sand Nonflammable Material for Substituting Asbestos and Method for Preparing the Same
IN2014DN10759A (en) * 2012-06-29 2015-09-04 Nichias Corp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565352A (en) * 1979-06-22 1981-01-20 Nippon Sheet Glass Co Ltd Glass composition for fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565352A (en) * 1979-06-22 1981-01-20 Nippon Sheet Glass Co Ltd Glass composition for fiber

Also Published As

Publication number Publication date
JPS6217041A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
US5108957A (en) Glass fibers decomposable in a physiological medium
US3929497A (en) Crystallizable glass suitable for fiber production
US4363878A (en) Alkali- and heat-resistant inorganic fiber
CA1271785A (en) Inorganic fiber composition
US4824806A (en) Glass fibers having low dielectric constant
US6933045B2 (en) Heat-resistant glass fiber and process for the production thereof
JP3121374B2 (en) Mineral fiber decomposed in physiological media and heat and sound insulation products containing the same
US2877124A (en) Glass composition
US4461840A (en) Heat resistant glass fiber composition
US4102692A (en) Reinforcing glass fibers of MgO-CaO-ZnO-Al2 O3 -SiO2 -TiO2
EP0946442B1 (en) Biosoluble, high temperature mineral wools
JPH06504754A (en) How to make durable bioabsorbable fibers
US3348956A (en) Refractory fiber composition
US2882173A (en) Glass composition
US3081179A (en) Glass fiber composition
CA1106413A (en) Glass composition for fiberization
JPH0656472A (en) Fiber-formable zinc phosphate glass composition
US3484259A (en) High strength-high modulus glass fibers
JPS6299B2 (en)
US3600205A (en) Boric oxide-free glass fibers and compositions for making them
EP1038846B1 (en) Mineral wool composition with enhanced biosolubility and thermostability
JPH0444624B2 (en)
US2756158A (en) Glass composition
US3508939A (en) Fiberizable glass compositions
KR890000726B1 (en) Glass composition suitable for manufacture of fibres