JPH02295538A - Method for determining depth of front section in operating eye and test lens device used for determining it depth of front - Google Patents
Method for determining depth of front section in operating eye and test lens device used for determining it depth of frontInfo
- Publication number
- JPH02295538A JPH02295538A JP1115842A JP11584289A JPH02295538A JP H02295538 A JPH02295538 A JP H02295538A JP 1115842 A JP1115842 A JP 1115842A JP 11584289 A JP11584289 A JP 11584289A JP H02295538 A JPH02295538 A JP H02295538A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- eye
- depth
- test lens
- determining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 40
- 230000003287 optical effect Effects 0.000 claims abstract description 47
- 210000002159 anterior chamber Anatomy 0.000 claims description 47
- 238000005259 measurement Methods 0.000 claims description 17
- 239000013078 crystal Substances 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 abstract 1
- 210000000695 crystalline len Anatomy 0.000 description 119
- 230000004323 axial length Effects 0.000 description 17
- 238000001356 surgical procedure Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 210000004087 cornea Anatomy 0.000 description 10
- 238000005286 illumination Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 5
- 210000003664 lens nucleus crystalline Anatomy 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 208000002177 Cataract Diseases 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 210000004127 vitreous body Anatomy 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 210000001742 aqueous humor Anatomy 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 210000001110 axial length eye Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000036040 emmetropia Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、水晶体核が除去された手術暇に挿入される眼
内レンズ(IOL)の前房深度を迅速に決定する手術眼
の前房深度決定方法及びその前房深度決定に用いるテス
トレンズ装置に関するものである.
(従来の技術)
従来から、白内障の患者の手術のため、手術眼の角膜を
切開して水晶体核を切除し,所定のパワーを有する眼内
レンズをその手術眼に挿入する技術がある.その限内レ
ンズのパワーの決定には、たとえば、下記に示すB i
nkhorstの公式を用いて行うようにしたものがあ
る.
P=1000N (4R−L)/ (L−C)(4R−
C)ここで、Pは正視するのに必要な前房水中内の眼内
レンズの度数(眼内レンズのパワー)、Lは眼軸長(単
位はmm)、Rは角膜曲率測定手段(ケラトメータ)に
よって測定した角膜曲率半径(単位はmm)、Nは前房
及び硝子体の屈折率、Cは手術後の前房深さ(前房深度
)である.ここで、前房深度Cは、眼軸長Lによって補
正を加えたものが用いられるが、一般的には固定値とし
て定められている.
(発明が解決しようとする問題点)
ところで、光学的に検討すると、眼内レンズのの眼軸方
向の挿入位置が1mI1ずれると、手術眼全体の屈折力
値として約1ジオブターの誤差が生じる.従って限内レ
ンズのパワーを精密に決定できたとしても、前房深度の
ばらつきによって手術眼の屈折力値の精度が低下する不
具合がある.また、前房深度を従来から用いられている
超音波測定方法により測定することも考えられるが、水
晶体の前面位置と限内レンズの前面位置とが必ずしも一
致しないので、前房深度のばらつきに基づく眼屈折力値
の精度の低下を抑制することは難しい.さらに、超音波
測定方法による測定値自体のばらつきを小さくすること
も困難である.そこで、本発明の目的は、水晶体核が除
去された手術暇に挿入される眼内レンズの前房深度を簡
単に精度良好に決定できる手術眼の前房深度決定方手法
及びその前房深度決定に用いるテストレンズ装置を提供
するところにある.
(課題を解決するための手段)
本明細書の特許請求の範囲の請求項1に記載の手術眼の
前房深度決定方手法は、
手術眼に挿入される眼内レンズの光学データに対応する
光学データを有するテストレンズを前記手術眼に挿入し
て該テストレンズが挿入された手術眼の眼屈折力を測定
する眼屈折力測定段階と、前記テストレンズが挿入され
た状態で測定された眼屈折力に基づき前記眼内レンズを
挿入した際の前房深度を算出する算出段階と、
からなることを特徴とする.
本明細書の待許請求の範囲の請求項2に記載の前房深度
決定に用いるテストレンズ装置は、手術眼に挿入される
眼内レンズの光学データに対応する光学データを有する
テストレンズを保持するテストレンズ保持手段と、該テ
ストレンズ保持手段を前記テストレンズが眼軸方向に移
送されるように鹿動する駆動手段とを備えたところにあ
る.
(作用)
本発明に係わる手術眼の前房深度決定方法は、手術暇に
挿入される限内レンズの光学データに対応する光学デー
タを有するテストレンズを手術眼に挿入して、テストレ
ンズが挿入された手術眼の眼屈折力を測定する.そして
、次に、テストレンズが挿入された状態で測定された眼
屈折力に基づき眼内レンズ,を挿入した際の前房深度を
算出する.従って、この前房深度となるようにその眼内
レンズを挿入すれば、手術眼の前房深度のばらつきに基
づく眼屈折力値の精度の低下を抑制できる.また、この
前房深度決定方法に用いるテストレンズ装置は、手術眼
の眼軸方向に移送可能に構成されているので、テストレ
ンズ挿入の際に手術眼の屈折力の測定を容易に行うこと
ができる.なお、このテストレンズとしては、挿入され
る眼内レンズの種類に対応させて準備する.(実施例)
以下に、本発明に係わる前房深度決定方法及びその前房
深度の決定に用いるテストレンズ装置について説明する
.
眼内レンズのパワー決定には、従来方法として超音波法
による眼軸長測定、角膜曲車半径測定、眼屈折力測定を
用いることもできるが、ここでは、以下に説明する装置
を用いて眼内レンズのパワーを決定することにする.
(眼内レンズのパワー決定装置の構成)第1図は本発明
に係わるパワー決定装置の光学構成を示し、第1図にお
いて、1は手術眼、2は前眼部照明光学系、3は観察光
学系,4は眼屈折力測定光学系、5は角膜曲率半径測定
光学系である.前眼部照明光学系2は前眼部照明光源6
、コンデンサレンズ7、レンズ付プリズム8から概略な
っており、観察光学系3の一部を構成する対物レンズ9
を介して手術眼1の前眼部1′を照明する.I!察光学
系3は対物レンズ9と共にミラー10、リレーレンズ1
1、l2、l3、接眼レンズ14を有し、術者はこの観
察光学系3により手術眼1を観察する.その第1図にお
いて、15は術者眼である.眼屈折力測定光学系4は投
影チャート照明光源l6、投影チャート17、ビームス
プリッタl8、リレーレンズ19、絞りW1 リレー
レンズ21、受光マスクn、受光素子23から概略なっ
ており、投影チャート光束はビームスプリツタl8によ
り反射され、リレーレンズ19、絞り20、リレーレン
ズ21, ミラー10、対物レンズ9を介して手術眼
1の眼底24に投影される.この眼底24からの反射光
は、対物レンズ9を介してミラー10に導かれ,このミ
ラー10により反射され、リレーレンズ2l、絞り加、
リレーレンズ19、ビームスプリツタ18、受光マスク
22を通過して受光索子23に導かれる.投影チャート
照明光源16と投影チャート17とは矢印X+方向に移
動可能とされ、また、受光マスク22と受光素子23は
矢印x2方向に移動可能とされ、受光索子23の移動量
はポテンションメータ25によって検知され、そのボテ
ンションメータ25の出力は測定回路26に入力され、
このポテンションメータ25の出力に基づき手術眼1の
眼屈折力が測定される.角膜曲率半径測定光学系5は照
明光源n、ミラ−28、投影レンズ四、固体撮像索子3
0から構成され、手術[1は照明光@27により照明さ
れ、角膜31にリング状の虚像が形成される,そのリン
グ状の虚像を形成する角膜反射光はミラー28により反
射され、投影レンズ29によりリング状の虚像に対応す
る像が固体橋像素子30に形成され、この固体撮像索子
30の出力は測定回路26に入力され、角膜曲率半径が
測定される.これらの測定光学系は、手術用顕微鏡に組
み込まれている.
測定回路26は、第2図に示すように、角膜曲率半径入
力手段32と眼屈折力測定値入力手段33とを有すると
共に、手術後に所望の予定眼屈折力値を入力する予定眼
屈折力値入力手段あ、所定の光学データを入力する光学
データ入力手段あ、演算手段36を有する.この光学デ
ータについては後述する.演算手段3Bは角膜曲率半径
入力手段!、眼屈折力測定値入力手段お、予定眼屈折力
値入力手段調、光学データ入力手段に基づき、眼軸長を
算出して算出された限軸長を記録表示する限軸長算出手
段としての機能と、算出された眼軸長と手術後に所望の
予定眼屈折力値に基づき眼内レンズのパワーを算出する
パワー決定手段としての機能とを有する.
測定回路2Bは角膜曲率半径値と眼屈折力測定値とに基
づき眼軸長を算出し、この算出された眼軸長を表示記録
する眼軸長算出手段3lとこの算出された限軸長と手術
徨に所望する眼屈折力値とに基づき手術眼1の眼内レン
ズのパワーを算出するパワー決定手段とを有している.
この限軸長算出手順、眼内レンズのパワー決定手順をフ
ローチャートに基づき説明する前に必要とする光学デー
タを第3図、第4図を参照しつつ説明する.
第3図はコンタクトレンズ37が装用された手術眼1の
模式図を示し、第4図は限内レンズ38がセットされた
手術@1の模式図を示している.この第3図、第4図に
おいて、コンタクトレンズ37の前面曲率半径をrl、
その後面曲率半径r2、その厚さをd+、その屈折率を
n2、涙液39の厚さをd2、その屈折率をns、角膜
31の角膜前面の角膜曲率半径をr3、その角膜後面の
曲率半径をr4、その厚さをd3、その屈折率をn4、
前房40の厚さをdも、その屈折率をn6、眼内レンズ
38の前面曲率半径をr6、その後面曲率半径をr6、
その厚さをn●、硝子体4lの厚さをd7、その屈折率
をn?とする.なお、n+は空気中の屈折率である.角
膜曲率半径r3は測定によって求められ、そのr3の値
は一般に6. 9mm 〜8. 5mmである.ま
た、角膜曲率半径r4は文献等を参考にして6. 8
1111と仮定する.コンタクトレンズ37の曲率半径
X’I. t*、その厚さd1、眼内レンズ38の厚
さd8、コンタクトとレンズ37の屈折率n2、眼内レ
ンズ38の屈折率n拳は仕様によって定められるもので
、r+:rt:r雪、 d+=0.2、 da=1.
0、 n a= n *=1. 491とする.さ
らに、涙液39の厚さd2、角膜3lの厚さd事、角膜
31の後面から水晶体核(眼内レンズ38)の前面まで
の面間距離ds、空気の屈折1! n I、涙液39の
屈折率n3、角膜31の屈折率n4、前房40の屈折率
nsを文献等を参考にして下記のように定める.
dt=0.1、 ds=0.5、 ds=3.[l、
nI=1.0、n*=ns==1 336、 n a
= 1. 376、 nt=ns,r●=■とする
.これらの光学データは光学データ入力手段により入力
する.
眼内レンズ38の前面の曲率半径rs、その眼内レンズ
38の後面から像点0′までの面間距離dy、角膜31
の後面から像点0′までの面間距離d4を演算手段36
によって算出する.
これらの演算は、近軸計算によって行うもので,第5図
に示すように、一般にk個の屈折面からなる球面系列か
らなる光学系の近軸光線の追跡について考える.この第
5図において、Sは物点0から第.1面までの光軸距離
、S′は第k面から偉点0′までの光軸距離、dy−は
V番目の屈折面とv+1番目の屈折面との間の面間距離
(V番目の屈折面とy+1番目の屈折面との間のレンズ
の厚さ)、Ny−=Ny.tはV番目の屈折面とy+1
番目の屈折面との間の屈折率、hyはV番目の屈折面に
おいての光軸からの高さ、Utは物点0から出射して第
1而の高さh+の箇所に入射する光線の光軸に対する傾
き角、U**+は第k面の高さhkの箇所から出射して
像点0′に入射する光線の光軸に対する傾き角、Lly
゛、υV.Iはy+1番目の屈折面に入射する光線の光
軸に対する傾き角、ryはV番目の屈折面の曲率半径で
ある.
すると、下記の式が一般に成立する.
Ny ” ・IJv − =Ny+Uy+ ( (Ny
−My − ) ・hV ) / r v
My =Nv.+
Ijy.+=Lly
hy.+=hy−dy −IJv
NV*+ H uV*I=Nv−Uv + ( (My
.+−Ny ) ・hy } / r v
hy*+=hy−dv ”UV*+
但し、
8 = h H / tl+ = 1 / LI+h
Iは任意の値であるが、ここでは、簡単化のためにb+
=1とした.
S = = hh/Um−+
なお、Sをジオプターで表現すると、
3 − − 1000/ D t
となる.ここで、D1手術後に所望の予定眼屈折力{直
である.
ここで、光線を物点0から追跡するときは像点0から第
1面までの光軸距離Sを定めて行い、像点O′から光線
追跡を行うときは第k面から物点0′までの九軸距離S
′を定めて行う.なお、この第5図においては、物点O
に最も近い面を第1面としたが、偉点0′に最も近い面
を第1面として光線追跡を行うことも可能である.
以下に、眼内レンズ38のパワー決定方法を図面を参照
しつつ説明する.
《眼軸長の算出手順)
まず、第6図に示すように、角膜曲率半径測定手段とし
ての角膜曲率半径測定光学系5により手術+111の切
開前に角膜曲率半径rsを求めて記録する(31),
そして、手術眼lを切開して水晶体核24′の切除を
行い(S2)、水晶体核24′が切除された無水晶体限
である手術III1にコンタクトレンズ37を装用する
(33), 次に、水晶体核24゛が除去されかつコ
ンタクトレンズ37を装用した手術lI1の眼屈折力を
眼屈折力測定手段としてのaS折力測定光学系4により
測定する(34),これにより、水晶体核24゛が切除
された手術@1が有する眼屈折力にコンタクトレンズ3
7の眼屈折力を加味した眼屈折力が求められる.
次に、その眼屈析力値に基づき眼底24と共役な物平面
Oとコンタクトレンズ37の頂点Pとの間の眼軸方向距
IIS●を算出する(35). 前述した近軸計算の
式に基づき、物平面Oに対する像点0゛の位置を算出す
る(36).そして、演算手段36により像点0゛の位
置から角膜3lの後面までの面間距離d4を算出し(8
7).ds+d4を算出してこの値を眼軸長Lとして用
いる(38).(II内レンズのパワー決定手順)
眼内レンズ38を手術II11に挿入後の所望の予定眼
屈折力値D+を決定する(81). 次に、眼軸長測
定手順の87で求めた面間距II d aに基づき眼内
レンズ38の後面から像点0′までの面間距M d t
を算出する(32), そして、眼底24と共役な像
平面oIと手術@1の角膜31の頂点位置との間の而間
距Ill S Iを、下記の式
S L= (−1000) / D Iにより求める(
S 3 )II
次に、眼内レンズ38のパワーを仮にP′に定める.そ
して、前述の近軸計算の式を用いて手術眼1から像点ま
での面間距#I S I−を求める.面間距離S+−の
ジオブター表示を、
D I= ( −1000) / S L−とする(S
4),そして、 S5において、 l D+ D+
” l <0. 1か否かを判断する.S5において
ノーとき、演算手段36によりP”=1”+0.1の処
理を行って、新たにD+−を求める.この新たに求めた
Dt−をDz”とする(se), そして% S7に
おいて,ID+ D*’l<O.lか否かを判断する
.S7において、ノーのときはS8に移行して、I D
+−Dt− I > I D+ Da” Iか否かの
判定を行う.S8においてイエスのときは、S6に移行
して、再びP”=P’+0.1の処理を行って、新たに
D1″を求める.この新たに求めたD+−をD2′とす
る.この86〜S8の処理を繰り返すことにより0.1
づつ眼内レンズ3日のパワーが更新される.
S8においてノーノときは、P−=f”−0.1とし、
D曾゛を求める( S 9 ), そして、310に
移行して、 l D I− D t − l <0.
1カiカヲ判断tル.310においてノーのときは、
s9に移行してP−=P−−Q.1とし、D,−を再び
求め、この処理を繰り返す.S10において、イエスの
ときは、所望の眼屈折力DIを実現する限内レンズ38
のパワーはp=p−とじて処理を終了する(Sll),
S5、S7において、イエスのときも所望の眼屈折力D
Iを実現する眼内レンズ38のパワーは、p=p−とじ
て処理を終了する(Sll), 従って、この処理を
繰り返すことにより眼内レンズ38のバワーPを0.1
の精度で決定できる.
この実施例によれば、手術眼1に装用されるコンタクト
レンズ37についてプラスのパワーを有するものを用い
れば、水晶体核24゛の除去後の手術lII1のパワー
がマイナスであるので、コンタクトコンタクトレンズ3
7を装用して眼屈折力値を測定すれば、ゼロジオブター
近くになって便利である.なお、このパワー決定手順に
おいての近軸計算では、限内レンズ3Bのパワーを入力
するのではなく、眼内レンズ38の曲率半径r6を変数
として入力する.この曲率半径rsを変化させて近軸計
算を行うこととした場合、バワーPの変動ΔP=0.0
1は曲率半径rsの変動Δl’iは、Δrs=0.
005に相当する.
ここでは、このような手順を踏んで得られたパワーを有
する限内レンズ38を手術IIIに挿入することにする
.この限内レンズ3Bの挿入位置を決定するために第8
図、第9図に示すテストレンズ装置を用いて前房深度を
測定する.
第81gは本発明に係わる前房深度決定方法に用いるテ
ストレンズ装置の第1実施例を示す図であって、この第
8図において、50はテストレンズ装置を構成する固定
筒であり、この固定筒50には移動筒51が設けられて
いる.この移動筒51の底部にはネジ部52が設けられ
、このネジ部52は固定筒50に回動可能に取り付けら
れた回転筒53の内周部に螺合されている.移動筒51
の先端部には、スプリンクワイヤ54が取り付けられ、
このスプリングヮイヤ54の先端部には第lO図に示す
テストレンズ55が取り付けられている.ここで、移動
筒5lとスプリングワイヤ54とはテストレンズ55を
保持する保持手段として機能する.
その移動筒51の周部にはビン56が植設され、ビン5
6は固定筒50の艮手方向に形成されたスリット57を
介して固定筒50の外部に突出している.移動筒51は
回転筒53を回転させると上下方向に往復動され、この
移動筒5lの往復動に伴ってワイヤスプリング54が矢
印方向に往復され、後述する前房深度の決定の際にテス
トレンズ55の限軸方向の位置調整が行われる.ここで
、回転筒53はテストレンズ保持手段を駆動する駆動手
段として機能する.ビン56はそのテストレンズ55の
基準位置からの位置表示を行う機能を有し、固定117
50の外周部にはスリット57の延びる方向に沿って指
示目盛りが形成されている.なお、53′は回転fI4
53に形成されたツマミ部である.
第9図はそのテストレンズ装置の第2実施例を示す図で
あって,この第9図において、60は固定筒であり、こ
の固定筒60には中空flJ81が上下方向に設けられ
、この中空筒6lの下端には横方向に向かって延びる注
入管62が設けられ、その中空筒6lの上端にはテスト
レンズ保持手段とテストレンズとを構成するバルーン6
3が設けられている.このバルーン63には注入管62
と中空筒61とを介してシリコン流体64が充満される
もので、注入管62に注射器64′を差込み、シリコン
流体64を注入するものである.バルーン63はシリコ
ン流体64が充満されると第11図に示すように膨張し
てテストレンズ55を形成する.
これらのテストレンズ55は、第12図に示すように水
晶体核24′が除去された手術眼1に挿入されて、前房
深度が決定されるもので、このテストレンズ55として
は眼内レンズ28の光学データに対応させて各種のもの
を準備する.
(前房深さの決定手順)
まず、第13図に示すように、水晶体核24′が除去さ
れた手術眼1にテストレンズ55を挿入した状態で、か
つ、一コンタクトレンズを装用した状態で、その手術眼
1の眼屈折力D●を測定する.ここで、コンタクトレン
ズを装用させて眼屈折力D−を測定するのは、角膜切開
後は、たとえ、切開箇所が治癒したとしても乱視、歪み
が発生するからである.この測定には、ここでは、眼屈
折力測定光学系4を用いる.そして、第14図に示すフ
ローチャートに従って、眼屈折力D●、眼軸長L =
d .+ d.、rIA+r●、
d+〜d4、n1〜n?を演算手段36に入力する(S
1).ここで、r6、rs、d@% nsはテストレン
ズ55の光学データであり、ここでは,眼軸長L,角膜
曲率半径r3については眼軸長測定手順で得た測定値を
用いる.次に、演算手段36によりS●=一1000/
D mの演算を行う(32),そして、仮に前房深度
をds●と定め、爽の前房深度をdsとして、ds=d
%自とする(83).そして、dtの値を下記の式を用
いて求める(34).dt=L−(dネ+ds+ds)
.
そして、近軸計算のサブルーチン処理を行い、眼内レン
ズ38を挿入したときの眼底24と共役な位RS1を求
める(S5).次に、s6に移行シテS1とS●との差
の絶対値がl S+−Sat <0. 05か否かを
判別する.S6においてノーのときはs7に移行して、
S L− 3 g > Oか否かを判別する.S7にお
いてイエスのときはS8に移行して、d s” d &
−0. 01(7)演算処理ヲ行ッテ、84〜s8の
処理を繰り返す.これによって、0.01ずつ仮の前房
深度d6−の値が加算されて真の前房深度d%に近づく
ことになる.S7において、ノーのときはS9に移行し
て、dも=ds+0.01の処理を行って、84〜S7
、S9の処理を繰り返す,これによって、0.01ずつ
仮の前月深度ds−の値が減算されて真の前房深度d6
に近づくことになる.そして、眼底24と共役な位yI
SIとS●との差が0. 05以内になると、S6に
おいてイエスと判定され、310に移行して前房深度d
sがプリントアウトされる,このようにして、真の前房
深度が0. 01mmの精度で決定される.
(5!明の効果)
本発明に係わる手術眼の前月深度決定方法によれば、水
晶体核が除去された手術眼に挿入される眼内レンズの前
房深度を簡単に精度良好に決定できる.従って、白内障
の手術成績の向上を期待できることになる.
本発明に係わる前房深度決定方法に用いるテストレンズ
装置によれば、前房深度測定の際にテストレンズの眼軸
方向の位置調整を簡単に行うことができるDETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the anterior chamber of a surgical eye for rapidly determining the anterior chamber depth of an intraocular lens (IOL) inserted during surgery when the lens nucleus has been removed. This article relates to a depth determination method and a test lens device used to determine the anterior chamber depth. (Prior Art) Conventionally, for cataract surgery on patients, there is a technique in which the cornea of the surgical eye is incised, the crystalline lens nucleus is removed, and an intraocular lens with a predetermined power is inserted into the surgical eye. Determining the power of the in-limit lens requires, for example, the following B i
There is one that uses nkhorst's formula. P=1000N (4R-L)/(L-C)(4R-
C) Here, P is the power of the intraocular lens in the anterior aqueous humor (power of the intraocular lens) necessary for emmetropia, L is the axial length (unit: mm), and R is the corneal curvature measuring means (keratometer). ), N is the refractive index of the anterior chamber and vitreous body, and C is the anterior chamber depth after surgery (anterior chamber depth). Here, the anterior chamber depth C is corrected by the axial length L, but is generally determined as a fixed value. (Problems to be Solved by the Invention) By the way, optically considered, if the insertion position of the intraocular lens in the ocular axis direction is shifted by 1 mI1, an error of about 1 diobter will occur in the refractive power value of the entire surgical eye. Therefore, even if the power of the intralens can be determined precisely, there is a problem that the accuracy of the refractive power value of the operated eye decreases due to variations in the depth of the anterior chamber. It is also possible to measure the anterior chamber depth using the conventional ultrasonic measurement method, but since the anterior position of the crystalline lens and the anterior position of the intralens do not necessarily match, it is possible to measure the anterior chamber depth using the It is difficult to suppress the decline in the accuracy of eye refractive power values. Furthermore, it is difficult to reduce the variation in the measured values themselves using the ultrasonic measurement method. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for determining the anterior chamber depth of an operated eye, which can easily and accurately determine the anterior chamber depth of an intraocular lens inserted during surgery after the lens nucleus has been removed, and the method for determining the anterior chamber depth. The objective is to provide a test lens device for use in (Means for Solving the Problems) A method for determining the depth of the anterior chamber of a surgical eye according to claim 1 of the claims of the present specification corresponds to optical data of an intraocular lens inserted into a surgical eye. an eye refractive power measurement step of inserting a test lens having optical data into the surgical eye to measure the eye refractive power of the surgical eye into which the test lens is inserted; and an eye refractive power measurement step with the test lens inserted. The present invention is characterized by comprising a calculation step of calculating the anterior chamber depth when the intraocular lens is inserted based on the refractive power. A test lens device used for anterior chamber depth determination according to claim 2 of the appended claims of the present specification holds a test lens having optical data corresponding to optical data of an intraocular lens inserted into a surgical eye. and a driving means for moving the test lens holding means so that the test lens is transported in the ocular axis direction. (Function) The method for determining the anterior chamber depth of a surgical eye according to the present invention involves inserting a test lens having optical data corresponding to the optical data of an intra-limit lens inserted into the surgical eye into the surgical eye, and inserting the test lens into the surgical eye. Measure the ocular refractive power of the surgically operated eye. Next, the anterior chamber depth when the intraocular lens is inserted is calculated based on the ocular refractive power measured with the test lens inserted. Therefore, by inserting the intraocular lens to achieve this anterior chamber depth, it is possible to suppress the decrease in the accuracy of the ocular refractive power value due to variations in the anterior chamber depth of the operated eye. Additionally, the test lens device used in this anterior chamber depth determination method is configured to be transportable in the axial direction of the surgical eye, making it easy to measure the refractive power of the surgical eye when inserting the test lens. can. The test lens is prepared according to the type of intraocular lens to be inserted. (Example) Below, a method for determining the depth of the anterior chamber according to the present invention and a test lens device used for determining the depth of the anterior chamber will be described. Conventional methods for determining the power of an intraocular lens include measuring axial length using ultrasound, measuring corneal curvature radius, and measuring ocular refractive power. Let us determine the power of the inner lens. (Configuration of intraocular lens power determining device) Fig. 1 shows the optical configuration of the power determining device according to the present invention. In Fig. 1, 1 is a surgical eye, 2 is an anterior segment illumination optical system, and 3 is an observation optical system. 4 is an optical system for measuring the eye refractive power, and 5 is an optical system for measuring the radius of corneal curvature. Anterior eye illumination optical system 2 includes an anterior eye illumination light source 6
, a condenser lens 7, and a prism with a lens 8, and an objective lens 9 forming a part of the observation optical system 3.
The anterior segment 1' of the surgical eye 1 is illuminated through the. I! The sensing optical system 3 includes an objective lens 9, a mirror 10, and a relay lens 1.
1, 12, 13, and an eyepiece 14, the operator observes the surgical eye 1 through this observation optical system 3. In Figure 1, 15 is the operator's eye. The eye refractive power measuring optical system 4 roughly consists of a projection chart illumination light source l6, a projection chart 17, a beam splitter l8, a relay lens 19, an aperture W1, a relay lens 21, a light receiving mask n, and a light receiving element 23, and the projection chart light flux is It is reflected by the prism lens 18 and projected onto the fundus 24 of the surgical eye 1 via the relay lens 19, the diaphragm 20, the relay lens 21, the mirror 10, and the objective lens 9. The reflected light from the fundus 24 is guided to the mirror 10 via the objective lens 9, is reflected by the mirror 10, and is sent to the relay lens 2l, aperture filter,
The light passes through a relay lens 19, a beam splitter 18, and a light receiving mask 22, and is guided to a light receiving cable 23. The projection chart illumination light source 16 and the projection chart 17 are movable in the direction of the arrow X+, and the light receiving mask 22 and the light receiving element 23 are movable in the direction of the arrow 25, the output of the potentiometer 25 is input to the measuring circuit 26,
The ocular refractive power of the surgical eye 1 is measured based on the output of the potentiometer 25. The corneal curvature radius measurement optical system 5 includes an illumination light source n, a mirror 28, four projection lenses, and a solid-state imaging probe 3.
0, the surgery [1 is illuminated with illumination light @ 27, and a ring-shaped virtual image is formed on the cornea 31. The corneal reflected light forming the ring-shaped virtual image is reflected by the mirror 28, and the projection lens 29 An image corresponding to the ring-shaped virtual image is formed on the solid-state bridge imaging device 30, and the output of this solid-state imaging probe 30 is input to the measurement circuit 26, and the radius of corneal curvature is measured. These measurement optical systems are built into a surgical microscope. As shown in FIG. 2, the measurement circuit 26 has a corneal curvature radius input means 32 and an eye refractive power measurement value input means 33, and also has a planned eye refractive power value input means for inputting a desired expected eye refractive power value after surgery. It has input means (A), optical data input means (A) for inputting predetermined optical data, and calculation means (36). This optical data will be discussed later. Calculation means 3B is corneal curvature radius input means! , an eye refractive power measurement value input means, a planned eye refractive power value input means, and a limited axial length calculation means for calculating the ocular axial length and recording and displaying the calculated limited axial length based on the optical data input means. It also functions as a power determining means for calculating the power of the intraocular lens based on the calculated axial length and the desired expected refractive power value after surgery. The measurement circuit 2B calculates the axial length based on the corneal curvature radius value and the measured eye refractive power, and includes an axial length calculating means 3l for displaying and recording the calculated axial length, and the calculated limited axial length. and power determination means for calculating the power of the intraocular lens of the surgical eye 1 based on the eye refractive power value desired by the surgeon. Before explaining the limited axis length calculation procedure and the intraocular lens power determination procedure based on flowcharts, the necessary optical data will be explained with reference to FIGS. 3 and 4. FIG. 3 shows a schematic diagram of the surgical eye 1 in which a contact lens 37 is worn, and FIG. 4 shows a schematic diagram of the surgical eye 1 in which an intra-limit lens 38 is set. In FIGS. 3 and 4, the radius of curvature of the front surface of the contact lens 37 is rl,
The radius of curvature of the posterior surface r2, its thickness is d+, its refractive index is n2, the thickness of the tear fluid 39 is d2, its refractive index is ns, the radius of corneal curvature of the anterior surface of the cornea 31 is r3, the curvature of the posterior surface of the cornea Its radius is r4, its thickness is d3, its refractive index is n4,
The thickness of the anterior chamber 40 is d, its refractive index is n6, the radius of curvature of the front surface of the intraocular lens 38 is r6, the radius of curvature of the rear surface is r6,
Its thickness is n●, the thickness of the vitreous body 4l is d7, and its refractive index is n? Suppose that Note that n+ is the refractive index in air. Corneal curvature radius r3 is determined by measurement, and the value of r3 is generally 6. 9mm ~8. It is 5mm. Also, the radius of corneal curvature r4 was calculated based on 6. 8
Assume 1111. The radius of curvature X'I. of the contact lens 37 t*, its thickness d1, the thickness d8 of the intraocular lens 38, the refractive index n2 of the contact and lens 37, and the refractive index n of the intraocular lens 38 are determined by the specifications, r+: rt: r snow, d+=0.2, da=1.
0, n a= n *=1. 491. Furthermore, the thickness d2 of the tear fluid 39, the thickness d of the cornea 3l, the distance ds between the surfaces from the back surface of the cornea 31 to the front surface of the crystalline lens nucleus (intraocular lens 38), and the refraction of air 1! nI, the refractive index n3 of the tear fluid 39, the refractive index n4 of the cornea 31, and the refractive index ns of the anterior chamber 40 are determined as follows with reference to literature and the like. dt=0.1, ds=0.5, ds=3. [l,
nI=1.0, n*=ns==1 336, n a
= 1. 376, nt=ns, r●=■. These optical data are input using an optical data input means. The radius of curvature rs of the anterior surface of the intraocular lens 38, the inter-plane distance dy from the posterior surface of the intraocular lens 38 to the image point 0', the cornea 31
Calculating means 36 calculates the inter-plane distance d4 from the rear surface to the image point 0'.
Calculate by. These calculations are performed by paraxial calculations, and as shown in Fig. 5, we generally consider the tracing of paraxial rays in an optical system consisting of a spherical series of k refractive surfaces. In this Figure 5, S is from object point 0 to object point 0. The optical axis distance to the 1st surface, S' is the optical axis distance from the k-th surface to the great point 0', and dy- is the inter-plane distance between the V-th refractive surface and the v+1-th refractive surface (the thickness of the lens between the refractive surface and the y+1th refractive surface), Ny-=Ny. t is the Vth refractive surface and y+1
The refractive index between the Vth refractive surface and the Vth refractive surface, hy is the height from the optical axis at the Vth refractive surface, and Ut is the refractive index of the ray that exits from object point 0 and enters the first object at height h+. The inclination angle with respect to the optical axis, U**+ is the inclination angle with respect to the optical axis of the light ray that is emitted from the location of the height hk of the k-th surface and enters the image point 0', Lly
゛、υV. I is the inclination angle of the light beam incident on the y+1th refractive surface with respect to the optical axis, and ry is the radius of curvature of the Vth refractive surface. Then, the following formula generally holds. Ny” ・IJv − =Ny+Uy+ ((Ny
−My − ) ・hV ) / r v My = Nv. + Ijy. +=Lly hy. +=hy-dy −IJv NV*+ H uV*I=Nv-Uv + ((My
.. +-Ny) ・hy} / r v hy*+=hy-dv "UV*+ However, 8 = h H / tl+ = 1 / LI+h
I can be any value, but here, b +
= 1. S = = hh/Um-+ When S is expressed in diopters, it becomes 3 - - 1000/D t. Here, the desired expected eye refractive power after D1 surgery {direct. Here, when tracing a ray from object point 0, it is done by determining the optical axis distance S from image point 0 to the first surface, and when tracing a ray from image point O', from object point 0' to the kth surface. Nine-axis distance S to
′ is determined. In addition, in this Fig. 5, the object point O
The surface closest to 0' is set as the first surface, but it is also possible to perform ray tracing using the surface closest to the great point 0' as the first surface. Below, a method for determining the power of the intraocular lens 38 will be explained with reference to the drawings. <<Steps for calculating axial length of the eye] First, as shown in FIG. 6, the corneal curvature radius rs is determined and recorded before the incision at surgery +111 using the corneal curvature radius measuring optical system 5 as a corneal curvature radius measuring means (31 ),
Then, the surgical eye 1 is incised and the lens nucleus 24' is removed (S2), and a contact lens 37 is worn in the aphakic surgery III1 in which the lens nucleus 24' has been removed (33). The eye refractive power of the surgical patient II1 in which the lens nucleus 24' has been removed and the contact lens 37 is worn is measured by the aS refractive power measuring optical system 4 as the eye refractive power measuring means (34), whereby the lens nucleus 24' is Contact lens 3 for the refractive power of the removed surgery @1
The eye refractive power that takes into account the eye refractive power of 7 is calculated. Next, the axial distance IIS● between the object plane O conjugate to the fundus 24 and the vertex P of the contact lens 37 is calculated based on the eye refractive power value (35). Based on the above-mentioned paraxial calculation formula, the position of the image point 0' with respect to the object plane O is calculated (36). Then, the calculation means 36 calculates the inter-plane distance d4 from the position of the image point 0゛ to the posterior surface of the cornea 3l (8
7). Calculate ds+d4 and use this value as the axial length L (38). (Procedure for determining power of intraocular lens II) Determine the desired expected ocular refractive power value D+ after inserting the intraocular lens 38 into surgery II11 (81). Next, based on the inter-plane distance II d a obtained in step 87 of the axial length measurement procedure, the inter-plane distance M d t from the rear surface of the intraocular lens 38 to the image point 0' is calculated.
(32), and the distance between the image plane oI conjugate to the fundus 24 and the vertex position of the cornea 31 in surgery @1 is calculated using the following formula S L = (-1000) / D Obtained by I (
S 3 )II Next, the power of the intraocular lens 38 is temporarily set as P'. Then, the interplane distance #IS I- from the surgical eye 1 to the image point is determined using the above-mentioned paraxial calculation formula. The interplane distance S+- is expressed in a geobutter as DI=(-1000)/SL-(S
4), and in S5, l D+ D+
" l < 0. Determine whether or not 1. If NO in S5, the calculation means 36 performs the processing of P"=1"+0.1 to newly obtain D+-. This newly obtained Dt- Let Dz'' be (se), and in % S7, ID+D*'l<O. Determine whether or not. If the answer is no in S7, the process moves to S8 and the ID
+−Dt− I > I D+ Da” It is determined whether or not I. If YES in S8, the process moves to S6, and the process of P”=P′+0.1 is performed again, and D1 is newly '' is determined. Let this newly determined D+- be D2'. By repeating the processing from 86 to S8, 0.1
The power of the intraocular lens is updated every 3 days. In case of no in S8, P-=f"-0.1,
Find D ゛ (S 9 ), and proceed to 310 to find l DI− D t − l <0.
1 Kawo judgment. If no in 310,
Moving to s9, P-=P--Q. 1, calculate D,- again, and repeat this process. If YES in S10, the intra-limit lens 38 that realizes the desired eye refractive power DI is selected.
The power of p=p- and the process ends (Sll),
In S5 and S7, when the answer is YES, the desired eye refractive power D
The power of the intraocular lens 38 that realizes I is p=p-, and the process ends (Sll). Therefore, by repeating this process, the power P of the intraocular lens 38 is reduced to 0.1.
It can be determined with an accuracy of According to this embodiment, if the contact lens 37 worn on the surgical eye 1 has positive power, the power of the surgery lII1 after removal of the crystalline lens nucleus 24' is negative, so the contact lens 37 is worn on the surgical eye 1.
If you measure the eye refractive power value while wearing the 7, it will be convenient as it will be close to zero dioptre. Note that in the paraxial calculation in this power determination procedure, the radius of curvature r6 of the intraocular lens 38 is input as a variable instead of inputting the power of the intraocular lens 3B. If paraxial calculation is performed by changing this radius of curvature rs, the variation in power P ΔP = 0.0
1, the variation Δl'i of the radius of curvature rs is Δrs=0.
Corresponds to 005. Here, the intra-limit lens 38 having the power obtained through these steps will be inserted in surgery III. The eighth lens is used to determine the insertion position of this intralens 3B.
The anterior chamber depth is measured using the test lens device shown in Fig. 9. 81g is a diagram showing a first embodiment of the test lens device used in the anterior chamber depth determination method according to the present invention, and in this FIG. The cylinder 50 is provided with a movable cylinder 51. A threaded portion 52 is provided at the bottom of the movable barrel 51, and this threaded portion 52 is screwed into the inner peripheral portion of a rotary barrel 53 rotatably attached to the fixed barrel 50. Moving cylinder 51
A sprink wire 54 is attached to the tip of the
A test lens 55 shown in FIG. 10 is attached to the tip of this spring ear 54. Here, the movable cylinder 5l and the spring wire 54 function as a holding means for holding the test lens 55. A bottle 56 is installed around the movable cylinder 51.
6 protrudes to the outside of the fixed cylinder 50 through a slit 57 formed in the direction of the arm of the fixed cylinder 50. The movable tube 51 is reciprocated in the vertical direction when the rotary tube 53 is rotated, and the wire spring 54 is reciprocated in the direction of the arrow as the movable tube 5l reciprocates, and the test lens is used when determining the anterior chamber depth, which will be described later. 55 is adjusted in the direction of the limit axis. Here, the rotating barrel 53 functions as a driving means for driving the test lens holding means. The bin 56 has a function of displaying the position of the test lens 55 from the reference position, and the fixed 117
An indicator scale is formed on the outer periphery of the slit 50 along the direction in which the slit 57 extends. In addition, 53' is the rotation fI4
This is the knob part formed in 53. FIG. 9 is a diagram showing a second embodiment of the test lens device, and in this FIG. An injection tube 62 extending laterally is provided at the lower end of the cylinder 6l, and a balloon 6 constituting the test lens holding means and the test lens is provided at the upper end of the hollow cylinder 6l.
3 are provided. This balloon 63 has an injection tube 62
A syringe 64' is inserted into the injection tube 62, and the silicone fluid 64 is injected. When the balloon 63 is filled with silicone fluid 64, it expands as shown in FIG. 11 to form a test lens 55. These test lenses 55 are inserted into the surgical eye 1 from which the crystalline lens nucleus 24' has been removed to determine the anterior chamber depth, as shown in FIG. Prepare various items corresponding to the optical data. (Procedure for Determining Anterior Chamber Depth) First, as shown in FIG. , measure the ocular refractive power D● of the operated eye 1. The reason why the eye refractive power D- is measured by wearing a contact lens is because astigmatism and distortion occur after the corneal incision, even if the incision site has healed. For this measurement, the eye refractive power measurement optical system 4 is used here. Then, according to the flow chart shown in FIG. 14, eye refractive power D●, eye axial length L =
d. + d. , rIA+r●, d+~d4, n1~n? is input to the calculation means 36 (S
1). Here, r6, rs, d@% ns are optical data of the test lens 55, and here, for the axial length L and the corneal curvature radius r3, the measured values obtained in the axial length measurement procedure are used. Next, the calculation means 36 calculates S●=-1000/
Calculate D m (32). Then, if the anterior chamber depth is set as ds● and the anterior chamber depth of the air is ds, then ds=d
% own (83). Then, calculate the value of dt using the following formula (34). dt=L-(dne+ds+ds)
.. Then, a paraxial calculation subroutine process is performed to find a position RS1 that is conjugate with the fundus 24 when the intraocular lens 38 is inserted (S5). Next, at s6, the absolute value of the difference between S1 and S● is l S+−Sat <0. Determine whether it is 05 or not. If no in S6, move to s7,
Determine whether S L-3 g > O. If YES in S7, move to S8 and d s” d &
-0. 01(7) Perform the calculation process and repeat the processes from 84 to s8. As a result, the value of the tentative anterior chamber depth d6- is added by 0.01 and approaches the true anterior chamber depth d%. If the answer is NO in S7, the process moves to S9, where d also processes ds+0.01, and 84 to S7
, repeats the process of S9. As a result, the value of the provisional previous month depth ds- is subtracted by 0.01 to obtain the true anterior chamber depth d6.
This will bring us closer to . And the position yI that is conjugate to the fundus 24
The difference between SI and S● is 0. If it is within 05, it is determined yes in S6, and the process moves to 310 to determine the anterior chamber depth d.
s is printed out, thus the true anterior chamber depth is 0. Determined with an accuracy of 0.1mm. (5! Effect of light) According to the method for determining anterior chamber depth of a surgical eye according to the present invention, the anterior chamber depth of an intraocular lens inserted into a surgical eye from which the lens nucleus has been removed can be easily and accurately determined. Therefore, it can be expected that the results of cataract surgery will improve. According to the test lens device used in the anterior chamber depth determination method according to the present invention, it is possible to easily adjust the position of the test lens in the axial direction when measuring the anterior chamber depth.
第1図は本発明に係わる眼内レンズのパワー決定装置の
光学系の概略構成を示す図、
第2図は第1図に示す測定回路の細部構成を示すブロッ
ク図、
第3図はコンタクトレンズが装用された手術眼1の模式
図、
第4図は眼内レンズがセットされた手術眼1の模式図、
第5図は近軸計算の説明に用いる説明図2第6図は眼軸
長測定手順のフローチャート、第7図はパワー決定手順
のフローチャート、である.
第8図は本発明に係わる前房深度の決定方法に用いるテ
ストレンズ装置の第1実施例を示す図、第9図は本発明
に係わる前房深度の決定方法に用いるテストレンズ装置
の第2実施例を示す図、第lO図は第8図に示すテスト
レンズの正面図、第11図は第9図に示すテストレンズ
の正面図、第12図はそのテストレンズを手術眼に挿入
した状態を示す図、
第13図はコンタクトレンズとテストレンズとを装用し
た手術眼の模式図、
第14図は本発明に係わる前房深度決定手順を示すフロ
ーチャート、FIG. 1 is a diagram showing a schematic configuration of the optical system of the intraocular lens power determining device according to the present invention, FIG. 2 is a block diagram showing the detailed configuration of the measurement circuit shown in FIG. 1, and FIG. 3 is a contact lens diagram. Fig. 4 is a schematic diagram of the surgical eye 1 with an intraocular lens installed. Fig. 5 is an explanatory diagram used to explain paraxial calculations. Fig. 6 shows the axial length of the eye. FIG. 7 is a flowchart of the measurement procedure, and FIG. 7 is a flowchart of the power determination procedure. FIG. 8 is a diagram showing a first embodiment of a test lens device used in the method for determining anterior chamber depth according to the present invention, and FIG. 9 is a diagram showing a second embodiment of the test lens device used in the method for determining anterior chamber depth according to the present invention. Figure 10 is a front view of the test lens shown in Figure 8, Figure 11 is a front view of the test lens shown in Figure 9, and Figure 12 is a state in which the test lens is inserted into the surgical eye. FIG. 13 is a schematic diagram of a surgical eye wearing a contact lens and a test lens; FIG. 14 is a flowchart showing the anterior chamber depth determination procedure according to the present invention;
Claims (2)
応する光学データを有するテストレンズを前記手術眼に
挿入して該テストレンズが挿入された手術眼の眼屈折力
を測定する眼屈折力測定段階と、 前記テストレンズが挿入された状態で測定された眼屈折
力に基づき前記眼内レンズを挿入した際の前房深度を算
出する算出段階と、 からなることを特徴とする手術眼の前房深度決定方法。(1) Ocular refraction in which a test lens having optical data corresponding to the optical data of an intraocular lens inserted into the surgical eye is inserted into the surgical eye and the ocular refractive power of the surgical eye into which the test lens is inserted is measured. A surgical eye characterized by comprising: a force measurement step; and a calculation step of calculating the anterior chamber depth when the intraocular lens is inserted based on the eye refractive power measured with the test lens inserted. Method for determining anterior chamber depth.
応する光学データを有するテストレンズを保持するテス
トレンズ保持手段と、該テストレンズ保持手段を前記テ
ストレンズが眼軸方向に移送されるように駆動する駆動
手段とを備えた前房深度決定に用いるテストレンズ装置
。(2) a test lens holding means for holding a test lens having optical data corresponding to the optical data of an intraocular lens to be inserted into the surgical eye; and a test lens holding means for transporting the test lens in the ocular axis direction. A test lens device used for determining the depth of the anterior chamber, comprising a driving means for driving the lens as shown in FIG.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1115842A JP2763585B2 (en) | 1989-05-09 | 1989-05-09 | Apparatus for determining anterior chamber depth of surgical eye and test lens apparatus used for determining the anterior chamber depth |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1115842A JP2763585B2 (en) | 1989-05-09 | 1989-05-09 | Apparatus for determining anterior chamber depth of surgical eye and test lens apparatus used for determining the anterior chamber depth |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02295538A true JPH02295538A (en) | 1990-12-06 |
JP2763585B2 JP2763585B2 (en) | 1998-06-11 |
Family
ID=14672478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1115842A Expired - Fee Related JP2763585B2 (en) | 1989-05-09 | 1989-05-09 | Apparatus for determining anterior chamber depth of surgical eye and test lens apparatus used for determining the anterior chamber depth |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2763585B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021154068A (en) * | 2020-03-30 | 2021-10-07 | 株式会社ニデック | Ophthalmologic apparatus |
JP2021154066A (en) * | 2020-03-30 | 2021-10-07 | 株式会社ニデック | Ophthalmologic device and eye axis length calculating program |
JP2021154067A (en) * | 2020-03-30 | 2021-10-07 | 株式会社ニデック | Ophthalmologic device |
US12133687B2 (en) | 2020-03-30 | 2024-11-05 | Nidek Co., Ltd. | Ophthalmic apparatus |
-
1989
- 1989-05-09 JP JP1115842A patent/JP2763585B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021154068A (en) * | 2020-03-30 | 2021-10-07 | 株式会社ニデック | Ophthalmologic apparatus |
JP2021154066A (en) * | 2020-03-30 | 2021-10-07 | 株式会社ニデック | Ophthalmologic device and eye axis length calculating program |
JP2021154067A (en) * | 2020-03-30 | 2021-10-07 | 株式会社ニデック | Ophthalmologic device |
US12133687B2 (en) | 2020-03-30 | 2024-11-05 | Nidek Co., Ltd. | Ophthalmic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2763585B2 (en) | 1998-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101417726B1 (en) | Toric lenses alignment using pre-operative images | |
US20080004610A1 (en) | System for calculating IOL power | |
JP4510534B2 (en) | Optical characteristic measuring device and fundus image observation device | |
ES2210364T3 (en) | METHOD OF SELECTING AN INTRAOCULAR LENS TO BE IMPLEMENTED IN ONE EYE. | |
US7988291B2 (en) | Intraoperative estimation of intraocular lens power | |
Huber | Myopic astigmatism a substitute for accommodation in pseudophakia | |
JPH0470018B2 (en) | ||
US20170189231A1 (en) | Optical pressure measurement systems for ophthalmic surgical fluidics | |
CN110582255A (en) | Retreatment in ophthalmic refractive correction surgery | |
RU2643417C1 (en) | Method for positioning the toric intraocular lens during implantation | |
JPH02295538A (en) | Method for determining depth of front section in operating eye and test lens device used for determining it depth of front | |
Colliac | Matrix formula for intraocular lens power calculation. | |
RU2201724C2 (en) | Method for determining optical force of intraocular lens with intracapsular fastening for correcting ametropia | |
US20220007937A1 (en) | Probe for eye examination using a distal convex mirror | |
Hartridge et al. | Accommodation and other optical properties of the eye of the cat | |
CN116056626A (en) | Illumination system and method for ophthalmic surgical microscope | |
CN111163681B (en) | Phase sensitive optical coherence tomography to measure optical aberrations of the anterior segment | |
JP2934254B2 (en) | Intraocular lens power determination device | |
Olsen | Calculating axial length in the aphakic and the pseudophakic eye | |
Fisher et al. | Endoscopy for vitreoretinal surgery | |
US11944571B2 (en) | Treatment apparatus with an optical coherence tomography device, and method for correcting an OCT cross-sectional image | |
Holladay | Advanced IOL power calculations | |
RU2665677C1 (en) | Method for personalized determination of optical strength of an intraocular lens with intracapsular fixation in patients with keratectasia | |
RU2055519C1 (en) | Method of measuring radius of curvature of non-transparent cornea | |
Singh et al. | Significance of intraocular lens power calculation. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080327 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090327 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |